The clinical presentation of optic nerve anomalies associated with renal hypodysplasia should alert the clinician to the possibility that a patient may have renal coloboma syndrome, a condition also known as papillorenal syndrome (OMIM#120330). The optic nerve findings could be described as a ‘dysplasia’, characterized by absent central vessels with the emergence of vessels from the periphery of the optic nerve papilla. The optic nerve findings in this condition have been referred to as ‘coloboma’ and a fraction of affected patients have clinical evidence of optic fissure closure defects. Mutations in the gene \(PAX2 \) are currently the only known genetic basis for renal coloboma (papillorenal) syndrome and are found in half of patients. Animal models have been instructive in demonstrating that \(PAX2 \) is critical for optic fissure closure and vascular routing in the retina.

The co-occurrence of optic nerve anomalies in patients who developed end-stage renal disease was first recognized 30 years ago in two separate reports by Reiger et al. [1] and Karcher et al. [2]. Affected family members had optic nerve abnormalities described as ‘morning glory anomaly’ with deeply excavated optic nerves, abnormal passage of the optic vessels at the periphery of the disc rather than its center and a central glial tuft [1,2]. A total of 10 years later, Weaver et al. reported a case of two brothers, both with optic nerve colobomas, interstitial nephritis and renal failure [3]. Weaver noted the similarity of the optic nerve colobomas in his patients with the ‘morning glory anomaly’, previously reported by Karcher et al. [1]. Weaver and coauthors called this condition renal coloboma syndrome. The following year, Bron et al. reported a family with an autosomal dominant condition, whose affected members exhibited optic disc dysplasia, microphthalmia, morning glory anomaly, optic nerve glial remnants, central serous retinopathy and renal failure [4]. Bron et al. reviewed a number of conditions where eye and kidney findings predominated. These authors suggested the name papillorenal syndrome to describe a variety of conditions where optic nerve and kidney abnormalities are observed [4].

Sanyanusin et al. provided the first evidence that renal coloboma (papillorenal) syndrome was caused by autosomal dominant mutations in the transcription factor gene \(PAX2 \). In this report, a father and three children were described to have optic disc dysplasia/optic nerve coloboma and renal hypodysplasia [5,6]. Following this report, Sanyanusin et al. published a second article where they identified a \(PAX2 \) mutation in the previously
discussed family described by Weaver et al. (7), confirming that renal coloboma syndrome resulted from mutations in PAX2. In 2001, Parsa et al. reported two unrelated families with a clinically identical condition that was called papillorenal syndrome based on the observation that no evidence of optic fissure closure defects were noted and that the eye findings consisted of vacant discs with emergence of cilioretinal vessels from the periphery of the optic disc (8). Mutations in PAX2 were not identified in these families (8). However, the clinical similarities suggest that both conditions were the same.

In this review, issues of nomenclature and clinical findings of renal coloboma syndrome (papillorenal syndrome) will be discussed. We will examine evidence from Pax2/pax2 animal models in an effort to understand how developmental defects contribute to the clinical observations in this condition. About half of individuals who have renal coloboma (papillorenal) syndrome have point mutations in the coding exons of PAX2. Therefore, it is very likely that other genetic mechanisms also cause renal coloboma (papillorenal) syndrome.

Nomenclature

Difference in terms to describe the present condition (i.e., renal coloboma syndrome or papillorenal syndrome) are a continuing source of confusion. In many reports, where individuals were identified to have mutations in PAX2, the eye findings have been described as optic nerve colobomas (3,6,9–21), sometimes along with retinal colobomas (10,11,15,19). Parsa et al. noted that anomalous optic nerves characterized by absent central vessels but the emergence of vessels from the periphery of the optic nerve papilla should be considered a ‘dysplastic’ optic nerve rather than a coloboma, as optic fissure closure defects are not typically observed, and thus recommended the appellation ‘papillorenal syndrome’ to broadly describe optic nerve abnormalities (8).

Both literature and online resources recognize usage of both names. Online Mendelian Inheritance in Man (OMIM) lists papillorenal syndrome as the primary appellation. A search of PubMed (November 7, 2008), using the search term ‘renal coloboma syndrome’ identified 138 citations while a search using the term ‘papillorenal syndrome’ identified 13 citations. From the more frequent use of renal coloboma syndrome in the medical literature, it would suggest that renal coloboma syndrome is the more commonly recognized term. For the remainder of this review, ‘renal coloboma syndrome’ and ‘papillorenal syndrome’ will be used to denote the same condition.

Ocular phenotypes in renal coloboma (papillorenal) syndrome

Published clinical observations of ocular phenotypes from individuals with renal coloboma (papillorenal) syndrome and mutations in PAX2 include: optic nerve dysplasia, optic nerve coloboma, retinal coloboma, cystic dilatation of the optic nerve, optic nerve hypoplasia and microphthalmia (3,8,11–14,19,20,22–28,101). Figure 1 shows retinal photographs from individuals with renal coloboma (papillorenal) syndrome.

In reviewing the ocular phenotypes of 85 patients with confirmed point mutations in the coding exons of PAX2, 46 were described to have optic nerve colobomas (3,6,9–21), 20 were described with optic disc dysplasia (3,11,14,16,19,23,24), five were described with optic disc hypoplasia/atrophy (9,10,14,16,24), six were described with optic nerve pits (9,19,24), six were described with retinal colobomas (10,11,15,19), four were described with morning glory-like anomalies (11,19,29), three had scleral staphyloma (6,15,29), two had optic nerve cyst (10,15), three had microphthalmia (10,11,18) and five had macular anomalies (20,23,24,31).

A single patient with bilateral anomalous discs had foveal hypoplasia and pigmentated macular atrophy (30). In this group of patients with PAX2 mutations, eight had normal eye examinations (14,16,20,21,29).

In patients without a mutation in PAX2, the optic disc abnormalities were comprised of absent central vessels with cilioretinal vessels emerging from the disc margins (8). Other findings included a low serous retinal detachment and a scarcity of vessels nasal to the disc. Similar observations were made by Nguyen and Riordan-Eva (28), in the patient described by Chen et al. (27) and in eight patients described by Dureau et al. (19). These findings overlap with the clinical findings in patients in whom a PAX2 mutation has been identified.

![Figure 1. Fundoscopic photos from three different patients with autosomal dominant mutations in PAX2. Note abnormal passage of retinal vessels from the optic nerve head.](Expert Rev. Ophthalmol. 4(2), (2009))

(A) This is a photograph of the right fundus from a patient with the PAX2 mutation c.77dupG (15). (B) This is a photograph of the left fundus from a patient with the PAX2 mutation c.59delT. The arrow denotes the anomalous portion of the optic nerve head (12). (C) This is a photograph of the right fundus from a patient with the PAX2 mutation p.Arg115X (23).
Visual acuity was reviewed in 54 studied patients (108 eyes) with mutations in PAX2. Visual acuity ranged from normal to light/color perception [23]. A total of 39 eyes were recorded to have normal vision. Ten eyes were reported to have visual acuity to count fingers and two patients had only light and color perception. Only one eye in one patient lacked light perception [10]. Myopia was frequently reported. Studies to determine the long-term visual prognosis have not been performed; however, retinal detachments have been reported [24,29].

Asymmetry of ocular findings has been reported in affected patients. Examples include a patient with a large left optic nerve coloboma and optic pit [19], left normal fundus and right optic nerve atrophy [14], and left optic nerve hypoplasia and right coloboma [16].

Kidney phenotypes of renal coloboma (papillorenal) syndrome
The most common phenotype in patients with renal coloboma (papillorenal) syndrome who have confirmed mutations in PAX2 is renal hypodysplasia [16,32]. A number of histologic abnormalities have been noted in affected kidneys, including an overall decrease in nephron number with nephron hypertrophy (called oligomeganephronia) [14,24], focal segmental glomerulosclerosis [10], interstitial fibrosis and tubular atrophy [3], and multicystic dysplastic kidney [16,17].

In a review of 29 patients, 17 had small kidney size and one had an absent kidney [9]. From examination by ultrasonography, the kidneys are described as small and echogenic with poor corticomedullary differentiation [6]. Horseshoe kidney has been reported in one family [21].

In patients who have ocular findings of renal coloboma (papillorenal) syndrome, underlying renal pathology can be determined by the presence of renal tubular acidosis [12], failure to thrive [6], hypertension and proteinuria [6,10].

Up to a third of patients with renal coloboma (papillorenal) syndrome will develop end-stage kidney disease [10]. The age of onset is variable even within the same family. Absent renal tissue has been noted in affected fetuses, including an overall decrease in nephron number with nephron hypertrophy (called oligomeganephronia) [14,24], focal segmental glomerulosclerosis [10], interstitial fibrosis and tubular atrophy [3], and multicystic dysplastic kidney [16,17].

Hearing loss & renal coloboma (papillorenal) syndrome
Hearing loss has been reported in eight out of 85 patients with mutations in PAX2, suggesting a frequency of 10%. When hearing loss has been identified, it has been confirmed by audiogram as high frequency sensorineural hearing loss [6,9,10,16,17,23].

Prevalence
The true population prevalence of renal coloboma (papillorenal) syndrome remains unknown; however, studies have been performed to determine the prevalence of PAX2 mutations among groups of patients with renal hypodysplasia. Nishimoto et al. surveyed 20 patients, ascertained primarily for renal hypodysplasia, and found that two patients in this cohort had mutations in PAX2 [14]. A recent series of 100 patients (99 unrelated probands) with renal hypodysplasia from the European Multicenter Effect of Strict Blood Pressure Control and angiotensin-converting enzyme inhibition on Progression in chronic renal failure Pediatric Patients Study (ESCAPE), were studied to determine the genetic basis of renal hypodysplasia. In this study, four different PAX2 mutations in seven affected individuals from six families were identified. When these patients were examined for eye abnormalities, five out of seven were found to have subtle eye malformations, described as coloboma or dysplasia that had previously escaped detection [16]. Based on this study, the prevalence of PAX2 mutations in children with renal hypodysplasia is approximately 6%.

Only one study has been performed to identify the prevalence of PAX2 mutations in 100 patients with optic fissure closure defects, such as uveoretinal coloboma and patients with optic nerve anomalies. One patient in this group was identified to have a mutation in PAX2. This patient had optic nerve dysplasia and renal disease [13].

There are more than 80 published cases of renal coloboma (papillorenal) syndrome associated with PAX2 mutations (see Table 1). It is estimated that mutations in PAX2 can be identified in 50% of patients suffering from renal coloboma (papillorenal) syndrome [8,19]. This finding suggests that there are other genetic mechanisms underlying renal coloboma (papillorenal) syndrome. One possible mechanism is that another gene (locus) causes the syndrome. In order identify these other loci, linkage studies in families without PAX2 mutation can be performed. In the event that the syndrome does not map to 10q24, then genes that map to other loci can be examined [13].

PAX2 & the paired box family of transcription factors
PAX2 belongs to a well-known family of transcription factors, first identified in *Drosophila* and found to be highly conserved from flies to mammals [33]. In mammals, including both mouse and human, there are nine PAX/Pax genes, encoding transcription factors characterized by the paired domain, a highly conserved bipartite helix-loop-helix DNA binding domain [34]. The paired box family of transcription factors share similar protein structures characterized by an N-terminal paired domain, a regulatory octapeptide domain, a full or truncated homeodomain and a proline-and serine-rich carboxy-terminal domain (Figure 2) [22,35].

The PAX2 gene maps to human chromosome 10q24. It is encoded by 12 exons spanning a genomic region of 84,367 nucleotides from position 102,495,322 to position 102,579,688, according to the most recent build of the human genome (hg18) [102]. Exons 2, 3 and 4 encode the paired domain. Exon 5 encodes the negative regulatory octapeptide domain. Exon 7 encodes a truncated homeodomain (in contrast to PAX6, which has a full homeodomain). Exons 8, 9 and 10 encode the proline, serine, threonine-rich transactivation...
There are at least five separate isoforms of PAX2 mRNA that result from alternative splicing of the 6th and 10th exon and/or alternative reading frames of the last two exons [36].

PAX2 mutations

A variety of sequence variants (mutations) leading to renal coloboma (papillorenal) syndrome have been reported. The majority of mutations occur in exons 2, 3, and 4, which encode the paired domain and are frameshift or nonsense mutations leading to a null allele. As the paired domain is highly conserved, most missense mutations in this domain would be expected to interfere with the protein’s secondary structure, preventing DNA binding. Frameshift, nonsense and missense mutations have also been reported in exons 7, 8, and 9. Few genotype–phenotype correlations have been made. Although imperfect and with few examples to date, mutations occurring in exons 7, 8, and 9 result in phenotypes that are more likely to be associated with milder ocular phenotypes [9]. Table 1 lists the reported mutations.

The most commonly reported recurring mutation in PAX2 is insG619, now described as c.77dupG in the updated numbering system from the start of the ATG rather than the start of exon 1. The mutation c.77dupG has been reported more than 20 times [7,9,11,15,16,18,20,29] and occurs within a string of seven guanines (CTCGGGGGGTGTG) at the 5’ end of exon 2, which is the beginning of the region encoding the paired domain. This mutation has been identified in patients of European, African and Asian origin [7,15,18], suggesting that it does not result from a founder effect. This mutation has been identified in affected children but not in their unaffected parents, demonstrating that this mutation can occur de novo. It has also been identified in affected children and in a gonsosomal mosaic state in an unaffected parent [11]. Additionally, mutations that lead to a single deletion within this string of guanines have been identified (c.77delG [15]), as well as expansions to nine guanines (c.77dupGG [11]). This evidence strongly suggests that this string of seven guanines is a mutation hot spot and may occur from a DNA polymerase slippage event during replication and not from a founder effect.

Two chromosomal abnormalities have been reported in patients with renal coloboma (papillorenal) syndrome. The first was identified in a child with renal coloboma (papillorenal) syndrome who had a reciprocal translocation between chromosomes 10q24 and 13q12–14. This translocation breakpoint occurred between exons 3 and 4 and resulted in absent expression of the PAX2 gene [37]. The second was a large deletion at 10q24, which included PAX2 as well as 90 other genes. Interestingly, this patient had renal disease but normal ocular findings [20].

Pax2 expression during development

Most of our understanding of the role of PAX2 in eye development comes from vertebrate animal models, particularly mouse and zebrafish. In the developing mouse, Pax2 expression occurs in the kidney, midbrain/hindbrain, individual cells within the dorsal and ventral spinal column, the otic vesicle (developing ear), and the developing eye. In mouse eye development, Pax2 expression begins in the optic sulcus, followed by expression in the optic vesicle. As the vesicle forms into the optic cup and stalk, Pax2 expression becomes restricted to the ventral cup and throughout the stalk [38,39]. Pax2-expressing cells reside ventrally at the edge of the optic fissure at embryonic day 11.5 and in a few remaining cells in the optic cup at embryonic day 12.5 when the fissure closes. Upon closure of the optic fissure, Pax2 expression remains in individual cells of the optic stalk and in a cuff of cells surrounding the optic stalk as it exits the inner layer of the optic cup.

In the developing mouse kidney, Pax2 is initially expressed in the pronephric duct, which is the earliest epithelial structure of the developing kidney. This is followed by expression in the mesonephric tubules and, ultimately, in the condensing mesenchyme at the ureteric bud tips. As the mesenchyme undergoes epithelial conversion, Pax2 expression is suppressed (reviewed in [40]). Pax2 is not expressed in the postnatal kidney.

Furthermore, Pax2 is expressed in the developing brain at the midbrain/hindbrain boundary, in cells of the spinal cord, the cerebellum and in the otic vesicle [39]. Recent studies also show Pax2 expression in forebrain development, particularly in cells of the hypothalamus and eminentia thalami [41].

A number of Pax2 mutant mouse models exist; all alleles of which lead to null expression or impaired functioning of the paired domain. These include the transgene-induced deletion model *Kidney Retinal Defects (Krd)* mouse [42,43], a Pax2-knockout model [44], and the Pax2*Neo* [45] and Pax2A220G models [46]. The Pax2*Neo* model has an insertion of a guanine residue in Pax2, at position c.77dupG (formerly insG619). This mutation is identical to the most common mutation observed in affected patients. The Pax2A220G mutation has also been previously described in a human patient [24].

All homozygous mutant (Pax2−/−) mice die before birth and most are anephric [42–46]. Phenotypic anomalies found in homozygous embryos include midbrain/hindbrain malformations and a high rate of cranial neural tube closure defects that vary with background strain. Cochleae are absent. The ocular phenotype is characterized by failure of optic fissure closure with failed basement membrane dissolution, evidenced by persistent laminin immunoreactivity at the edges of the optic fissure [42–46].

In heterozygous Pax2 knock-out mice, optic nerve dysplasia with abnormal appearing vessels emerging from the periphery of the optic dics is observed. Retinae are thinned and rosettes are visible [42,44–46].
Heterozygotes do not have optic fissure closure defects but rather anomalous vasculature, as observed in humans with \(PAX2 \) mutations. Renal anomalies in these heterozygous mice include small dysplastic kidneys, renal cysts and lower nephron numbers \([9,45,47,48]\).

In Figure 3, eyes from embryonic day 14.5 \(\text{Pax2}^{1\text{Neu}} \) mice are pictured. Figure 3a shows an eye from a heterozygous mutant embryo and Figure 3b shows an eye from a homozygous mutant embryo. In whole mount embryo preparations, heterozygous embryos appear similar to wildtype embryos and apparent closure of the optic fissure can be observed (Figure 3a). By contrast, in homozygous \(\text{Pax2}^{2\text{Neu}} \) embryos, the optic fissure has failed to close (Figure 3b). Heterozygous \(\text{Pax2} \)-mutant mice do not have iris colobomas but exhibit optic nerve abnormalities, retinal patterning defects with fewer cells and formation of cellular rosettes \([42,43,45]\).

In heterozygous \(\text{Pax2} \)-mutant mice, the optic fissure does not extend into the optic stalk \([47]\). Optic nerve cell number is reduced and optic nerve routing is abnormal \([46]\). The ultimate fate of the \(\text{Pax2} \)-expressing cells is the astrocyte (glial) population of the optic nerve \([49,50]\).

The ocular phenotype observed in individuals with \(PAX2 \) mutation and in animal models may be partially explained by the developmental pattern of \(PAX2/\text{Pax2} \) expression. In mice, \(\text{Pax2} \) is initially expressed along with \(\text{Pax6} \) throughout the optic
As invagination of the optic vesicle proceeds to form the optic cup, Pax2 expression becomes restricted to the ventral optic cup and the optic stalk. During the process of optic fissure closure, Pax2 is expressed at the closing edges of the optic fissure and becomes downregulated as the closure progresses. Later in prenatal development, Pax2 expression is relegated to the optic stalk and is lost some time in early postnatal life, although in Pax2 heterozygous mice, the optic fissure does not extend into the optic stalk. Chu et al. note that in human fetal eyes, PAX2 expression is limited to astrocyte precursor cells, including those at the retina–optic nerve boundary. These authors hypothesize that it is a dosage sensitive loss of Pax2 expression at the retina–optic nerve boundary that may explain the congenital optic nerve anomalies in some patients with renal coloboma (papillorenal) syndrome. Although mutations in PAX2 are not a common cause of optic fissure closure defects in humans, homozygous disruption of Pax2 in animal models often leads to such defects, suggesting an important role for Pax2 in the process of fissure closure.

Because Pax2 expression is limited to neuroectodermally-derived tissues and is not expressed in the mesenchyme-derived fetal vasculature, it can be posited that the blood vessel patterning abnormalities are secondary to reduced Pax2 expression in the optic stalk and retinal astrocyte precursors. In fact, a complex set of interactions occurs during development between the developing neural, glial and vascular elements of the eye. Chan et al. found that Pax2-expressing astrocytic precursor cells precede the advancement of endothelial precursor cells that form the retinal vasculature, suggesting that these cells may act as a kind of scaffold for the developing vasculature.

Pax2-heterozygous mice have smaller kidneys by weight and size than wildtype littermates and histology of these small kidneys show fewer nephrons. Assays of cell death in heterozygous Pax2^{hnu} mice show increased rates of apoptosis in cells of the ureteric bud and decreased branching, which results in fewer nephrons of the developing kidney. Dziarmaga et al. showed that apoptosis in the cells of the ureteric bud is mediated by the proapoptotic gene Bcl2. Targeted disruption of Bcl2 rescued kidney size and reduced nephron number caused by Pax2 haploinsufficiency. These findings demonstrate that renal hypoplasia and reduced nephron number result directly from increased cell death in the developing kidney and are not mediated by vascular abnormalities.
In zebrafish, expression patterns of pax2 are very similar to those observed in developing mice with pax2 expression occurring in developing nephric structures, otic structures, midbrain/hindbrain, cells within the spinal column and in the optic stalk and cup of the eye [39]. In zebrafish, pax2 expression becomes visible at 10 h postfertilization (hpf) in the brain and forms a stripe at the midbrain/hindbrain junction by 14 hpf. At 14 hpf, pax2 expression is detected in the cells of the prospective optic stalk, auditory vesicle, pronephros and single cells of the hindbrain. At later points during development, single cells in the neural tube, both dorsally and ventrally, express pax2 [39]. Primarily described as being expressed in the optic stalk and the most proximal parts of the optic cup, pax2 expression occurs along the edges of the optic fissure. Demonstrated in the whole mount figure (performed at 24 hpf), pax2 expression also occurs in cells surrounding the optic fissure and stalk (single closed arrow in Figure 4).

It is important to mention that the zebrafish genome underwent evolutionary duplication [52]. Therefore, the zebrafish has two copies of pax2, called pax2a and pax2b [53]. Zebrafish pax2a is expressed earlier in development than pax2b [53]. In zebrafish with homozygous pax2a mutations of the isthmus organizer of the midbrain/hindbrain is absent, optic fissure closure defects and otic defects occur and nephric development is limited. These anomalies are very similar to those observed in mice with homozygous Pax2 mutations [44,45]. The fact that phenotypic anomalies observed in zebrafish with homozygous pax2a null mutations are the same as in Pax2 mutant mice confirms that mutations in pax2a are sufficient to recapitulate phenotypic anomalies caused by mutations in Pax2 null mice [54,55]. An allelic series of zebrafish pax2a mutants have been described. Zebrafish pax2a mutants were identified by large-scale genetic screening, isolating phenotypes with specific phenotypic anomalies [54,56]. This series of phenotypes were identified by the loss of the midbrain/hindbrain boundary, known as the isthmus, and are called the no isthmus or noi phenotype. Subsequent work showed that the noi phenotypes harbored point mutations in pax2a, the zebrafish orthologue of human PAX2 and mouse Pax2. Both hypomorphic (reduced function) and null alleles have been described [55]. Noi phenotypes include loss of the midbrain/hindbrain boundary, abnormalities of nephric structures, and noi homozygous mutants die with severe edema and heart failure a few days post-fertilization. Zebrafish pax2a homozygous mutants show delayed closure of the optic fissure and colobomatous eye defects (Figure 5) [57].

PAX2 as part of a gene-network of that controls optic fissure closure

Upstream control of Pax2/pax2a expression in both mouse and zebrafish is under control of sonic hedgehog (shh) protein. Shh/shh is expressed during the early development of cells of the precordial plate. In zebrafish, absence of shh expression leads to loss of pax2.1 expression [58,59], with concomitant ectopic expression of pax6 in the domain typically occupied by pax2.1. In humans with mutations in...
SHH, optic fissure closure defects have been demonstrated by the presence of uveoretinal colobomas [63].

In mice, loss of Pax2 expression results in an extension of Pax6 expression, with concomitant loss of Pax2 expression in the optic stalk. Conversely, loss of Pax6 expression results in increased Pax2 expression domain and loss of the retinal structures [51]. This suggests that differences in expression of either transcription factor could result in various optic nerve abnormalities [60].

Approximately half of the patients with a clinical phenotype of renal coloboma (papillorenal) syndrome do not have mutations in PAX2. This leads to the hypothesis that genes besides PAX2 cause renal coloboma (papillorenal) syndrome. Few downstream effectors of PAX2 function have been identified. Genes confirmed to be influenced by PAX2 that are expressed in the developing optic stalk and ventral optic cup would be ideal candidates for investigating this hypothesis.

Expert commentary
Renal coloboma (papillorenal) syndrome is an autosomal dominant disorder characterized primarily by optic nerve dysplasia. Many affected patients have kidney or urinary tract abnormalities and may suffer from kidney failure. Mutations in PAX2 are associated with the syndrome, although other genes are also likely to be responsible. Further studies are needed to help understand the basis for optic nerve defects, to determine how PAX2 functions during eye development and to identify the genetic basis of renal coloboma (papillorenal) syndrome in patients who do not have mutations in PAX2. Studies in mice and zebrafish with mutations in Pax2/pax2 have been useful in extending our insight into the developmental defects that result in renal coloboma (papillorenal) syndrome.

Five-year view
Although our group has identified a number of point mutations in PAX2 in patients with renal coloboma syndrome, nearly all studies have not used technology to identify large deletions or chromosomal rearrangements at the PAX2 locus. As researchers begin to routinely use deletion identification techniques, such as high resolution comparative genomic hybridization and multiplex ligation probe amplification or real-time PCR to identify dosage abnormalities, it is highly probable that large deletions of the PAX2 locus will emerge as an important cause of renal coloboma (papillorenal) syndrome.

It is anticipated that other genes beside PAX2 will be discovered to cause renal coloboma (papillorenal) syndrome. As genes that are part of the gene-network controlled by PAX2 are discovered, it is anticipated that some of these genes will contribute to the phenotype of renal coloboma (papillorenal) syndrome.

Animal models will prove critical to the identification of genes responsible for renal coloboma (papillorenal) syndrome, as well as other ocular conditions that result from abnormal optic fissure development and closure. One model that will, undoubtedly, contribute is zebrafish. Owing to their high clutch size (hundreds of eggs), rapid development of optically clear embryos (optic fissure closure is complete within 72 hpf), ease of pharmacologic intervention by treatment of the water surrounding the fish and facile genetic manipulation through the use of knockdown technologies, such as morpholinos [61,62,64], zebrafish are an ideal model to assay the effects of genetic manipulations or exogenous pharmacologic treatments on optic fissure closure and development [65].

Acknowledgement
Thank you to the individuals and families with renal coloboma (papillorenal) syndrome who have generously participated in research. Thank you to Brian Brooks, MD, PhD, at the National Eye Institute, NIH, for many insightful comments and helpful critiques, and to Brent Bill, PhD who prepared images for Figures 4 & 5.

Financial & competing interests disclosure
The author has no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Key issues
- Renal coloboma (papillorenal) syndrome is an autosomal dominant condition that can be caused by mutations in PAX2.
- Dysplastic abnormalities of the optic disc are the most common eye abnormality reported in renal coloboma (papillorenal) syndrome.
- Kidney abnormalities include small dysplastic kidneys (renal hypodysplasia) and vesicoureteral reflux.
- Kidney failure can occur at any age, from the prenatal period to the seventh decade.
- Patients with a history of renal hypodysplasia should have careful eye examination for conditions associated with renal coloboma syndrome.
- Patients with optic nerve dysplasia or eye abnormalities found in renal coloboma (papillorenal) syndrome should be evaluated for kidney disease.
- Both mouse and zebrafish with homozgyous mutations in Pax2/pax2 exhibit failed closure of the optic fissure with complete coloboma. Heterozygous mouse models have optic nerve findings similar to those in human patients.
- Pax2 is expressed in the astrocytic cells of the optic stalk and have a role in vascular routing in the developing optic nerve. This may, in part, explain the observed retinal vascular anomalies in individuals with renal coloboma (papillorenal) syndrome.

References
Genetic & developmental basis of renal coloboma (papillorenal) syndrome

Narahara K, Baker E, Ito S et al. 443

42 Keller SA, Jones JM, Boyle A et al. Kidney and retinal defects (Krd), a tyrosinegene-induced mutation with a deletion of the mouse chromosome 19 that includes the Pax2 locus. Genomics 23(2), 309–320 (1994).

44 Torres M, Gomez-Pardo E, Gruss P. Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122(11), 3381–3391 (1996).

Website

102 Genome bioinformatics. UCSC

www.genome.ucsc.edu

Accessed March 2006

Affiliations

- Lisa A Schimmenti, MD
 Associate Professor, Pediatrics and Ophthalmology, University of Minnesota Medical School, 420 Delaware Street Southeast, MMC 730, Minnesota, MN 55455, USA
 Tel.: +1 612 624 5613
 Fax: +1 612 626 2993
 las@umn.edu