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Figure 1.  Index map showing location of study area (shaded), 7 1/2 minute 
quadrangles of area, and nearby published geologic mapping.
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Figure 2.  Landsat image showing selected geographic features.
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Map no.
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Table 1.  Potassium-argon (K-Ar), uranium-lead (U-Pb), and fission-track (FT) age determinations for 
selected rocks in the Mohave Mountains area, Arizona

[K-Ar and FT numerical ages from Nakata and others (1990); U-Pb age (map no. 36) determined by Wooden and 
Miller (1990). *, age considered unlikely to represent crystallization age]
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INTRODUCTION
The Mohave Mountains area surrounds Lake Havasu City, Arizona, in the Basin and 

Range physiographic province (fig. 1). The Mohave Mountains and the Aubrey Hills form two 
northwest-trending ranges adjacent to Lake Havasu (elevation 132 m; 448 ft) on the Colorado 
River (fig. 2). The low Buck Mountains lie northeast of the Mohave Mountains in the alluviated 
valley of Dutch Flat. Lowlands at Standard Wash separate the Mohave Mountains from the Bill 
Williams Mountains to the southeast. The highest point in the area is Crossman Peak in the 
Mohave Mountains, at an elevation of 1519 m (5148 ft). Arizona Highway 95 is now rerouted 
in the northwestern part of the map area from its position portrayed on the base map; it now 
also passes through the southern edge of the map area (fig. 2). 

Geologic mapping was begun in 1980 as part of a program to assess the mineral resource 
potential of Federal lands under the jurisdiction of the U.S. Bureau of Land Management (Light 
and others, 1983). Mapping responsibilities were as follows: Proterozoic and Mesozoic rocks, 
K.A. Howard; dikes, J.K. Nakata; Miocene section, J.E. Nielson; and surficial deposits, H.G. 
Wilshire. 

Earlier geologic mapping includes reconnaissance mapping by Wilson and Moore (1959). 
The present series of investigations has resulted in reports on the crystalline rocks and structure 
(Howard and others, 1982a), dikes (Nakata, 1982), Tertiary stratigraphy (Pike and Hansen, 
1982; Nielson, 1986; Nielson and Beratan, 1990), surficial deposits (Wilshire and Reneau, 
1992), tectonics (Howard and John, 1987; Beratan and others, 1990), geophysics (Simpson 
and others, 1986), mineralization (Light and McDonnell, 1983; Light and others, 1983), field 
guides (Nielson, 1986; Howard and others, 1987), and geochronology (Nakata and others, 
1990; Foster and others, 1990).

GEOLOGY
The area lies within a terrane characterized by major low-angle normal faults (commonly 

called detachment faults) of Miocene age (Davis and others, 1980; Howard and John, 1987; 
John, 1987a; Davis and Lister, 1988; Davis, 1988; Carr, 1991). The Whipple Mountains 
detachment fault is exposed 3 km (2 mi) southwest of the mapped area, and the probably 
equivalent Chemehuevi detachment fault is exposed 8 km (5 mi) northwest of the mapped 
area. Both dip gently toward the Mohave Mountains area and project beneath it at shallow 
depth. 

Proterozoic metamorphic and igneous rocks, Cretaceous plutons, and Tertiary dikes 
underlie the map area. Tertiary volcanic and sedimentary rocks overlie the Proterozoic rocks. 
Tilting to the southwest in the Miocene along northeast-dipping normal faults resulted in steep 
to overturned dips of lower Miocene strata and the Proterozoic-Tertiary nonconformity. Conse-
quently the map view restores to cross-sectional views before the tilting, in which deeper crustal 
levels in any tilted block are encountered to the northeast. The faulting is inferred to relate to 
down-to-northeast motion on the deeper Whipple Mountains-Chemehuevi fault (Howard and 
John, 1987). Upper Miocene to Quaternary deposits overlie the deformed rocks. 

The largest of the tilted fault blocks is the Crossman block, centered in the map area 
(Crossman plate of Howard and others, 1982a). Other large tilt blocks are the Bill Williams, 
Buck, and Tumarion blocks (fig 3). Smaller tilt blocks or slices are present in the Standard 
Wash, Aubrey Hills, and Boulder Mine areas.

Proterozoic and Mesozoic Rocks 
Granite gneisses are the predominant Early Proterozoic rocks in the map area. The 

gneisses are like those widely exposed elsewhere in the eastern Mojave Desert region (Wooden 
and Miller, 1990) and consist partly of supracrustal rocks and largely of metaplutonic rocks 
(Howard and others, 1982a). Scattered amphibolite bodies (Xga) help to define large folds in 
the gneiss terrane. Fold axes plunge to the southwest and restore to northeast plunge if Terti-
ary tilting is removed (Howard and others, 1982a). 

Amphibolite is associated with white garnet-bearing gneissic pegmatite (Xgp) in the north-
western part of the Crossman block; it serves as a marker for fault separation to a block in the 
Boulder Mine area. The same assemblage also crops out along strike to the northeast in the 
Buck block, as well as farther southeast in the Crossman block. 

Remnant metasedimentary rocks (Xgs) and fine-grained biotite granite gneiss (Xgb) and 
younger foliated monzogranite (Xgp) crop out in the northern part of the area in structurally 
high positions of the pre-Tertiary crustal section. Augen gneiss (Xap, Xag, and Xagd) occurs 
in structurally intermediate levels of the section and becomes more foliated and more mafic 
with paleodepth. Dating by the uranium-lead (U-Pb) method indicates an Early Proterozoic age 
(1642 Ma) for an augen gneiss body in the Bill Williams Mountains (Wooden and Miller, 1990; 
*table 1, No. 36). Howard and others (1982a) earlier had grouped the augen gneiss with Mid-
dle Proteozoic(?) granitoids of Standard Wash, which it resembles. The augen gneiss commonly 
coincides with aeromagnetic highs (Simpson and others, 1986). The deepest rocks in the 
exposed crustal section are dominated by garnet-spotted leucocratic gneiss (Xgl) in which per-
vasive garnets, now mostly retrograded, suggest high-grade metamorphism.

Granite and quartz monzonite in Standard Wash (Ysg, Ysqm) are tentatively correlated 
with rocks of Middle Proterozoic age (about 1400 Ma) described by Anderson and Bender 
(1989). An aeromagnetic high is associated with the quartz monzodiorite (Simpson and others, 
1986). The granite is seen to intrude older gneiss just south of the map area in the southern 
Aubrey Hills. The Standard Wash granitoids are not mapped in the Crossman, Bill Williams, or 
Buck blocks. 

Swarms of Middle Proterozoic ophitic diabase dikes intrude the gneiss and granitoids (see 
cross sections; Nakata, 1982; Howard, 1991). The dikes (Yd) are similar to diabase dikes dis-
tributed widely in Arizona and southeastern California and are interpreted to have an age of 
about 1100–1200 Ma (Wrucke and Shride, 1972; Hendricks and Lucchitta, 1974; Davis and 
others, 1980; Howard and others, 1982a; 1982b; Fitzgibbon, 1988). The dikes cut older folds 
and fabrics without deflection. Their generally northwest strikes and steep dips restore to sub-
horizontal when Tertiary tilting defined by the dip of lowest Tertiary strata is removed. Hence 
the dikes are intrerpreted as originally horizontal sheets. They are mapped to paleodepths of as 
great as 14 km below the Proterozoic-Tertiary nonconformity. Original depths of emplacement 
below the Proterozoic ground surface must have been even greater. 

Cooling ages obtained on Proterozoic rocks by the fission-track (zircon) and potassium-
argon (K-Ar) methods range from 46 to 1372 Ma (table 1; Nakata and others, 1990). The 
numerical ages tend to young downward (northeastward) in the pre-Tertiary structural sections 
and are consistent with younger cooling at deeper levels. Age determinations by  the 
40Ar/39Ar technique support this interpretation (Foster and others, 1990). 

Mineralized quartz veins in the Mohave Mountains contain sulfides and precious metals 
(Light and others, 1983). The veins cut the Proterozoic diabase and are cut by Tertiary dikes 
and have a minimum age of mid-Cretaceous as determined by isotopic dating: medium-grained 
white mica in altered gneiss associated with the veins yielded K-Ar ages of 90 to 102 Ma; 
numerical cooling ages on fine-grained white mica and zircon are 52 to 78 Ma (table 1, Nos. 
30–32; Nakata and others, 1990). 

The Mohave Mountains and adjacent ranges are near the northeastern limit of the Creta-
ceous magmatic arc (Burchfiel and Davis, 1981; John, 1981; John and Wooden, 1990). Gran-
itic plutons of known and inferred Cretaceous age are widespread to the west but are rare to 
the northeast. Cretaceous rocks in the Mohave Mountains area may be apophyses of the 
deeper batholithic terrane exposed to the west in the Chemehuevi Mountains (John, 1987b). 
This interpretation is based on a hypothesis of Howard and John (1987) that the northern 
Mohave Mountains represent the displaced upper plate to rocks exposed in the Chemehuevi 
Mountains. Granodiorite and porphyritic granite (Kgb, Kpg) in the northern part of the map 
area are correlated to Late Cretaceous rocks of the Chemehuevi Mountains Plutonic Suite 
(John, 1987b, 1988; John and Mukasa, 1990; John and Wooden, 1990). 

Rocks in the Mohave Mountains area that may be either Cretaceous or Tertiary in age 
include a northeast-striking rhyolite dike dated by K-Ar on biotite at 62 Ma (table 1, No. 28, 
unit TYd), northeast-striking dikes of lamprophyre and quartz porphyry (TKl, TKqp), and small 
stocks of granite and diorite (TKg, TKd) that yielded middle Tertiary numerical K-Ar ages on 
biotite and hornblende (table 1, Nos. 26, 27). Northeast-striking dikes of Laramide (Late Creta-
ceous to early Tertiary) age are widespread in Arizona (Rehrig and Heidrick, 1976). 

Cenozoic Rocks 
The lowest stratified Tertiary unit (Tac) is arkosic conglomerate and sandstone, locally red-

bed, which is assigned an Oligocene or early Miocene age. It nonconformably overlies deeply 
oxidized Proterozoic rocks and forms the base of a heterogeneous, dominantly volcanic section 

of otherwise early and middle Miocene age (fig. 4; Pike and Hansen, 1982; Nielson, 1986; 
Nielson and Beratan, 1990; Beratan and others, 1990). The volcanic rocks consist of mafic 
and silicic lava flows, volcaniclastic flows and breccias, air-fall tuff, and tuff breccia. The Peach 
Springs Tuff of Young and Brennan (1974), a regional ash-flow tuff, crops out high in the 
lower Miocene part of the section. The sedimentary rocks include arkosic conglomerate and 
conglomeratic sandstones derived from Proterozoic sources, sandstone and sedimentary breccia 
derived solely from reworked volcanic rocks, and fanglomerate, sandstone, and claystone from 
mixed sources. The lower part of the Tertiary section is intruded by silicic and mafic dikes that 
may be feeders for some of the flows. 

The dikes are part of a dense swarm of northeast-dipping Tertiary dikes that pervades the 
pre-Tertiary basement of the Crossman block. This Mohave Mountains dike swarm forms about 
15 percent of the rock volume in the Crossman block (Nakata, 1982) and accounts for a north-
east-southwest crustal dilation of 2–3 km that occurred during regional tectonic extension. The 
K-Ar ages considered most reliable as intrusive ages for the swarm range from 19.2±0.5 to 
21.5±0.5 Ma (table 1, Nos. 21–25). 

The Tertiary strata below the Peach Springs Tuff correlate broadly with the sedimentary 
and volcanic rocks of Fox Wash described by Sherrod (1988) from the Bill Williams Mountains. 
Age determinations by the K-Ar method indicate that the age of the volcanic rocks in this sec-
tion is about 19 to 22 Ma (table 1, Nos. 8–11, 13; Nielson and Beratan, 1990; Nakata and 
others, 1990). The Peach Springs Tuff is dated from Kingman, Arizona, at 18.5+0.2 Ma (Niel-
son and others, 1990). The steeply dipping to overturned oldest part of the Tertiary section is 
overlain succesively by units of early Miocene to middle Miocene age having progressively shal-
lower dips, in places without obvious unconformities between strata. Therefore the stratified 
units were deposited during tilting, and they likely record sedimentary influxes that relate to the 
tilting and faulting. Conglomerates low in the section are largely roundstone. Higher units 
include lacustrine strata deposited in closed structural basins. Fanglomerates and landslide meg-
abreccias crop out high in the section. 

North of Lake Havasu City a gently dipping latite flow (Tadf) dated by K-Ar at 19.9±0.5 
Ma overlies more steeply tilted flows and strata (Tfts) from which an age of 19.2±0.5 Ma was 
obtained. The 30° and greater angular unconformity between the latite flow and underlying 
strata records the tilting of the Crossman block (Nielson and Beratan, 1988), so the age of tilt-
ing can be interpreted as near 19.5 Ma. Stratal dips indicate that tilting of other blocks ranged 
from before to after deposition of the 18.5–Ma Peach Springs Tuff.   

A middle Miocene fanglomerate unit (Tfg) represents the first of two distinct periods of 
postdetachment alluviation. Capping it are rhyolite and olivine basalt flows (Tr, Tob) that were 
dated at 12.2 to 8.6 Ma (Suneson and Lucchitta, 1983; Nakata and others, 1990). They and 
the underlying fanglomerate are relatively undeformed compared to older strata, but in the 
southeastern part of the map area they are faulted and are tilted gently southwest, the same 
direction as older steeper tilts. 

The Bouse Formation of late Miocene and Pliocene age was deposited mostly in quiet 
water along the valley that was later to be followed by the Colorado River. A sandy subaerial 
facies of the Bouse was deposited in the northern part of the Mohave Mountains area; a similar 
facies was mapped south of the Whipple Mountains by Dickey and others (1980). 

Undeformed upper Miocene to Quaternary piedmont sedimentary deposits record a sec-
ond period of alluviation. These deposits are fanglomerates composed of unsorted to poorly 
sorted, coarse, angular to subangular clastic debris derived from the exposed pre-Tertiary and 
Tertiary rocks. The fanglomerates interfinger with river-laid sand and gravel along the Colorado 
River west of the study area. Most of the fanglomerate deposits are at least as old as Pleisto-
cene and probably formed a series of large, coalescing alluvial fans (unit QTs1). The depositio-
nal surface later was nearly completely dissected, with levels of erosion generally below the soil 
profile, on the west side of the mountains where drainages flow directly into the Colorado 
River. Dissection, planation, and reworking is largely responsible for a series of inset terraces 
and washes veneered by succesively younger parts of the piedmont unit. Soils are progressively 
less well developed on younger units (Wilshire and Reneau, 1992). 

Tertiary Structure
Structural relations in the Crossman block indicate that it was tilted as a largely coherent 

block. The lower part of the Tertiary section dips steeply to overturned. The tilt persists at 
deeper structural levels in the block, as shown by the consistent steep orientations of rotated 
Proterozoic diabase sheets, subparallel to the lower Tertiary section. The Tertiary Mohave 
Mountains dike swarm maintains a moderate northeast dip all across the block and is unbroken 
by faults except in a few places.    

The evidence for tilting of the Crossman block implies that it exposes a cross section that 
represents progressively greater crustal depths from southwest to northeast. This section repre-
sents 10 to 15 km of crustal thickness if the Crossman block is unbroken and tilted at least 75° 
(Howard and John, 1987). Amphibolite bodies within the block trace cryptic Proterozoic folds 
that argue against much internal disruption of the block by Tertiary faulting, except where 
faults are mapped. The Crossman block may have been translated 40 km from Chemehuevi 
Valley, where the western Whipple Mountains below the Whipple Mountains detachment fault 
expose a footwall of similar dike swarms and Proterozoic gneisses (Carr and others, 1980; 
Dickey and others 1980; Davis and others, 1980, 1982; Howard and others, 1982a; Davis, 
1988; Lister and Davis, 1989). 

The Whipple Mountains-Chemehuevi detachment fault projects eastward beneath the 
Crossman block and is inferred to juxtapose it against deeper mid-crustal mylonitic gneisses 
(see cross sections). In the eastern Chemehuevi Mountains and eastern Whipple Mountains the 
footwall of the detachment exposes mylonitic gneisses derived from Proterozoic to Tertiary 
protoliths and mylonitized in the Cretaceous and Tertiary (Anderson and Rowley, 1981; Davis 
and others, 1982; Anderson and others, 1988; Davis, 1988; John and Mukasa, 1990).   

An abrupt northeast termination of the Crossman block at its originally deep end is pro-
posed on cross section A–A' in order to help explain a steep gravity gradient at this position. 
The gravity gradient led Simpson and others (1986) to model a steep boundary between denser 
rocks underlying the exposed Crossman block against less dense (lacking dikes?) bedrock to the 
northeast, under a thin sedimentary cover. The gravity model requires a greater density con-
trast (0.12 to 0.15 g/cm3) between bedrock terranes than would be expected from the largely 
granitic bedrock exposed in the region and from density measurements of rocks in the Cross-
man block (Simpson and others, 1986). Hence the interpretation portrayed on cross section 
A–A' must be considered tentative and uncertain. 

 A curving family of northwest-striking faults including the Wing fault cut the northwestern 
part of the Crossman block. These faults are steep, they cut the Mohave Mountains dike 
swarm, and they appear to have significant pre-dike-swarm displacements of gneiss units. 
Based on the generalized crustal section inferred for unbroken parts of the Crossman block, 
each fault of the Wing-fault family appears to attenuate crustal section, juxtaposing originally 
shallower rocks against originally deeper rocks to the north. Chloritized rock is present on the 
"deep" northeast side of the Wing fault but not on the "shallow" side, a pattern reminiscent of 
chloritized footwalls of low-angle normal faults in the region. Based on the resemblances to 
low-angle normal faults in the region, the steep Wing fault perhaps was rotated from an origi-
nally smaller dip.   

The Boulder Mine and Standard Wash areas expose numerous fault slices in synformal 
arrays structurally over the Crossman, Bill Williams, and Tumarion blocks. The faults in the 
Aubrey Hills and the Boulder Mine area mostly dip at low angles, and those in the Standard 
Wash area are inferred to also. Fault traces concave to the northeast in the Standard Wash 
area are consistent with synformal shapes and low northeast dips for the faults. Cross sections 
B–B' and C–C' interpret a shallow depth to the underlying footwall of the Whipple Mountains 
detachment fault. The depth is consistent not only with the geology but with the depth to a 
seismic-velocity increase interpreted as the base of the highly faulted allochthons (John and oth-
ers, 1987; McCarthy and others, 1987). 

The southeast-dipping Powell Peak fault bounds the Tumarion block against higher blocks 
of the Boulder Mine area, and the southeast-dipping Crossman Peak fault similarly bounds the 
exposed Crossman block against higher blocks of the Standard Wash area. Measured striae on 
the latter fault strike northeast in a direction parallel to the direction of extension and regional 
fault slips, including slip on the deeper Whipple Mountains and Chemehuevi detachment faults 
(Davis and others, 1980; Howard and John, 1987; John, 1987a).    

Cross sections B–B' and C–C' portray the Powell Peak and Crossman Peak faults as bot-
toming at shallow depth, so that the Crossman block is connected at depth below the Standard 
Wash area and the Boulder Mine area with the Bill Williams and Tumarion blocks. This inter-
pretation is based on (1) the alignment of Tertiary strata in the three big upended blocks; (2) 
the moderate (30–40°) dip of the exposed Powell Peak and Crossman Peak faults; and (3) the 
synformal array of higher blocks in the Boulder Mine and Standard Wash areas (Howard and 
others, 1982a; Howard and John, 1987). An alternate interpretation is that the Crossman 
Peak and Powell Peak faults are syndepositional transfer faults, and that the Crossman block 
does not intervene between the Standard Wash area and the Aubrey Hills as portrayed on the 
cross sections. This latter interpretation is based on stratigraphic coherence in the Tertiary sec-
tion of the Aubrey Hills and Standard Wash areas and stratigraphic contrasts to the Crossman 
block (Beratan and others, 1990; Nielson and Beratan, 1990).   

Relatively mild tilting and step faulting in upper Miocene strata (northeastern part of cross 
section B–B') may postdate active extension accomodated on the Whipple Mountains and 
Crossman Peak faults. The late Miocene tilting may relate to rebound of the detachment faults 
and later adjustments of tilted blocks following the end of movement on the Whipple Mountains 
fault. 
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Figure 4.  Interpretive stratigraphic cross sections showing 
relations among subdivided Tertiary units that pre-date Bouse 
Formation. Markedly angular unconformities in sections are 
shown by wavy lines. See sheet 1 for description of map units 
and location of sample numbers used for age determinations.

APPROXIMATE SCALE

2 km

5 km

5 km

0

NW

NEV
E

R
T

IC
A

L

8.6± 0.3 Ma
(Suneson and Lucchita, 1983) 

Tob
Tfg

Tbr

Tps

Tfl

Tys

Tys

Tr

Tfg

Tfot

Tfll

Tflt

Tflf

Tfls

Tfl

20.5±1.6 Ma
(map no. 11)

SOUTHEAST PART OF MAP AREA:

STANDARD W
ASH

MOHAVE W
ASH

12.7±0.6 MA
(map no. 2)

11.1±0.3 Ma
(map no. 1)

Tob

Tdl

1 km

Tfg

Tkl

WING
FAULT

COLO
R

A
D

O

RIVE
R

Pittsburg
Point

Bill William
s River

MOHAVE
SPRINGS

MESA

M O H A V E M O U N T A I N S

WHIPPLE

MOUNTAINS

BILL

WILLIAMS

MOUNTAINS

CALIFO
R
N

IA

ARIZO
N

A

Any use of trade, product, or firm names in this publication is for descriptive 
purposes only and does not imply endorsement by the U.S. Government

For sale by U.S. Geological Survey, Map Distribution, Box 25286, Federal 
Center, CO  80225

Available on World Wide Web at http://geopubs.wr.usgs.gov/data.html

U.S. DEPARTMENT OF THE INTERIOR
U.S. GEOLOGICAL SURVEY

Note:  Thin Quaternary units may be omitted 
or exaggerated in cross sections.




