The $L(2, 1)$-labeling Problem from Graph Theoretic and Graph Algorithmic Approaches with Our Contributions

Zhendong Shao

Department of Computer Science, the University of Western Ontario, London, ON, Canada.

The frequency assignment problem is to assign frequencies to a number of radio transmitters so that interfering transmitters are assigned frequencies with allowed separation. The frequency assignment problem has been extensively studied. Motivated by a variation of the frequency assignment problem, a generalization of the graph vertex coloring has been presented and is called an $L(2,1)$-labeling. More precisely, an $L(2,1)$-labeling of a graph is a function from the vertex set $V(G)$ to the set of all nonnegative integers such that $|f(x) - f(y)| \geq 2$ if $d(x, y) = 1$ and $|f(x) - f(y)| \geq 1$ if $d(x, y) = 2$. The $L(2,1)$-labeling number $\lambda(G)$ of G is the smallest number k such that G has an $L(2,1)$-labeling with $\max\{f(v) : v \in V(G)\} = k$. In this work, we first give a survey of some results and methods on the $L(2,1)$-labeling problem from graph theoretic and graph algorithmic approaches. We then present some of our results in this area. We finally propose some future work to be done.

Keywords: frequency assignment, graph theory, graph algorithm