In this talk we will consider two natural extensions of previously defined graph labelings. The first labeling is a magic labeling whose evaluation is based on the neighbourhood of a vertex and the second is an antimagic labeling whose evaluation is based on the graph’s covering.

We define a 1-vertex-magic vertex labeling of a graph with \(v \) vertices as a bijection \(f \) taking the vertices to the integers 1, 2, ..., \(v \) with the property that there is a constant \(k \) such that at any vertex \(x \), \(\sum_{y \in N(x)} f(y) = k \), where \(N(x) \) is the set of vertices adjacent to \(x \).

A simple graph admits an \(H \)-covering, if every edge belongs to a subgraph that is isomorphic to \(H \). An \((a, d)\)-\(H \)-antimagic total labeling of a graph with \(v \) vertices and \(e \) edges is a bijection \(g \) taking the vertices and edges to the integers 1, 2, ..., \(v + e \) such that for all subgraphs \(H' \) isomorphic to \(H \), the \(H \)-weights \(w(H') = \sum_{x \in V(H')} g(x) + \sum_{xy \in E(H')} g(xy) \) constitute an arithmetic progression \(a, a+d, a+2d, \ldots, a+(t-1)d \) where \(a \) and \(d \) are positive integers and \(t \) is the number of subgraphs isomorphic to \(H \).

Keywords: magic labeling, antimagic labeling, distance, covering.

rino@math.itb.ac.id