Periodic Behavior in a Class of Second Order Recurrence Relations Over the Integers

by

Brittany Fanning
UMD M.S. Candidate

Abstract:
Suppose we start a sequence with \(a_0 = 4 \) and \(a_1 = -13 \), and define the rest of the sequence using the relation

\[
a_n = \begin{cases}
\frac{1}{64} (2a_{n-1} - 6a_{n-2}), & \quad \frac{1}{64} (2a_{n-1} - 6a_{n-2}) \in \mathbb{Z} \\
(2a_{n-1} - 6a_{n-2}), & \quad \text{otherwise.}
\end{cases}
\]

The resulting sequence is 4, -13, -50, -22, 4, 140, 4, -13, ... When a sequence repeats after \(k \) terms, we call the solution periodic with period \(k \). Thus the sequence above is periodic with period six.

In general, given the system

\[
a_n = \begin{cases}
x(Pa_{n-1} - Qa_{n-2}), & \quad x(Pa_{n-1} - Qa_{n-2}) \in \mathbb{Z} \\
Pa_{n-1} - Qa_{n-2}, & \quad \text{otherwise},
\end{cases}
\]

where \(x \) is a rational number, \(P \) and \(Q \) are integers, we are interested in finding when periodic solutions occur. In other words, we want \(x \) values and initial conditions for specific values of \(P \) and \(Q \) which lead to a periodic solution. Using a common linear algebra method for solving recurrence relations, we developed a search method. The method and results will be outlined in this talk.

Thursday, December 18, 2014
2:00-3:00 PM
SCC 130
EVERYONE IS WELCOME

The University of Minnesota Duluth is an equal opportunity educator and employer.