New Methods for Magic Total Labelings of Graphs
by
Inne Singgih
UMD M.S. Candidate

Abstract:
A vertex magic total (VMT) labeling of a graph $G = (V, E)$ is a bijection from the set of vertices and edges to the set of numbers defined by $\lambda: V \cup E \rightarrow \{1, 2, ..., |V| + |E|\}$ so that for every $x \in V$, $w(x) = \lambda(x) + \sum_{y:xy \in E} \lambda(xy) = k$, for some integer k. An edge magic total (EMT) labeling is a bijection from the set of vertices and edges to the set of numbers defined by $\lambda: V \cup E \rightarrow \{1, 2, ..., |V| + |E|\}$ so that for every $xy \in E$, $w(xy) = \lambda(x) + \lambda(y) + \lambda(xy) = k$, for some integer k. Numerous results on labelings of many families of graphs have been published. In this thesis, we include methods that expand known VMT/EMT labelings into VMT/EMT labelings of some new families of graphs, such as unions of cycles, unions of paths, cycles with chords, tadpole graphs, braid graphs, triangular belts, wheels, fans, friendships, and more.

Monday, April 20, 2015
12:00-1:00 PM
SCC 130
EVERYONE IS WELCOME

The University of Minnesota Duluth is an equal opportunity educator and employer.