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EXECUTIVE SUMMARY 

 
 The objective of this research project was to develop an automatic, portable vehicle 
tracking system that can count the vehicle travel trajectories in an intersection. Using a cellular 
wireless mesh sensor network (WMSN), wireless sensor nodes can be placed in the middle of 
traffic lanes in the intersection to collect the data. Each node consists of an anisotropic 
magnetoresistance (AMR) circuit for detecting vehicles, a PAN4570 Radio Communications 
Module (RCM), and a lithium-ion rechargeable battery. When a vehicle travels over a wireless 
node, a detection occurs and a timestamp is recorded by the node and sent to the WMSN 
coordinator. The coordinator is responsible for logging the vehicle detections recorded by every 
node in the WMSN. From this logged data, a vehicle tracking algorithm that has been developed 
can track the trajectories of the vehicles through the intersection and also record a total vehicle 
count of the intersection. 
 Each node was designed and built using Mentor Graphics PADS software, CircuitCAM, 
and a LPKF ProtoMat S62 plotter. To protect the wireless node hardware, housings were built 
out of fiberglass. The shape of the housing resembles a raised pavement marker. This shape 
allows the wireless node to be protected if a vehicle happens to run over the sensor and also has a 
small profile so the sensor is not easily detected by drivers. A wireless sensor can be deployed in 
a matter of seconds using an adhesive spray to attach it to the pavement. It also can be collected 
very quickly by prying the wireless node from the pavement using only a screwdriver. 
 Before any actual testing of the WMSN in an intersection can occur, the vehicle tracking 
algorithms must be developed and tested. A software simulation of an intersection has been 
created using Visual Basic programming language in Microsoft Visual Studio.NET 2003 
environment. This intersection simulation allows a real intersection to be recreated and vehicle 
movements through the intersection to be simulated. The movements of vehicles through the 
intersection will produce logged data that is similar to the logged data of the actual WMSN. This 
logged data can then be used by the vehicle tracking algorithm to verify that the algorithm is 
tracking vehicles correctly before any actual data is collected. Along with verifying that the 
vehicle tracking algorithm works, the intersection simulator helps determine the minimum 
number of nodes that need to be deployed in an intersection, as well as the position of each node. 
 The WMSN was deployed in an actual intersection. The intersection that was used for 
testing is a 2-lane T-intersection in Duluth, MN. The two roadways that form this test-site 
intersection are Wallace Avenue and East 4th Street. This T-intersection configuration required 
one coordinator, six wireless nodes located in the lanes of the intersection, and one wireless 
router. The wireless router’s purpose was to extend the range of the WMSN in order for wireless 
nodes located farthest from the coordinator to be able to communicate with the coordinator.  
 Intersection data was collected for two time durations: 15 and 30 minutes. During data 
collection, a video camera was used to record traffic movements for ground truth verification, 
i.e., the results of the vehicle tracking algorithm are compared to the actual vehicle movements. 
Using the initial data, the vehicle tracking algorithm tracked vehicle trajectories with an error of 
12.7% for a 15 minute time duration and an error of 10.1% for the time duration of 30 minutes. 
After reviewing the video footage of the data collection process, it was noticed that the layout of 
the WMSN could be changed to improve vehicle detection by repositioning two wireless nodes 
farther away from the intersection. Also, it was observed that 90% of traffic coming from the 



   
   
   

 
 

north turned west instead of east. After the logged data was modified to account for this change 
in layout, and the vehicle tracking algorithm was modified, the results improved. 

Based on the experimental results and the research presented, we conclude that the 
proposed WMSN system is a practical tool for accurately tracking vehicles in an intersection and 
can significantly save time and resources for intersection-justification data collection. With fine 
tuning of sensor detection ranges and positions, the research team is confident to predict that the 
present tracking accuracy of 90% can be improved to near 100%. 
 
  
    

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 



   
   
   

1 
 

 
CHAPTER 1: INTRODUCTION 

 
1.1 Motivation and Objective 
 

More than 41% of all vehicle crashes in the US occur at intersections [1]. Of this 41% of 
crashes at intersection, 27% are at intersections with no control, stop sign or traffic signal, and 
39% are at intersection with stop signs [1]. If an intersection has a history of vehicle crashes or 
increased traffic, it is up to a traffic engineer to determine if an upgrade to the intersection 
control is needed. The Minnesota Department of Transportation (Mn/DOT) has created the 
Intersection Control Evaluation (ICE) report, which replaced the Signal Justification Report in 
March, 2007, to assist traffic engineers in determining a viable alternative for intersection 
control.   

In the Scoping Phase of the ICE report, data collection is an essential step. This data 
includes hourly intersection approach counts, turning movement counts for 3 hours for the AM 
and PM peak periods, among others [2]. Presently, engineers use handheld data collectors to 
collect this data. Using this approach, accuracy is difficult to achieve. Engineers must 
continuously monitor an intersection for a three-hour period constantly monitoring vehicles 
traveling through the intersection. For every vehicle that passes through the intersection, the 
engineer must be sure to press the corresponding button on the hand-held data collector 
according to the trajectory path observed. This demands a high degree of focus for an extended 
period of time. Furthermore, engineers monitoring intersections are on-site, which exposes them 
to weather and the chance of being struck by a vehicle. These factors lead to a loss of focus and 
in turn, a high degree of human error. 

The nature of human error related to vehicle tracking was examined through simple 
counting tests. The authors of this research and Scott Klar (a research assistant) attempted to 
record vehicle trajectories through the intersection of Mesaba Avenue and Highway 53 in 
Duluth, MN. This is a four-way, eight-lane, traffic light controlled intersection with separate 
turning lanes. Shortly after the monitoring began, it was determined that an entire intersection 
could not be monitored by a single person. Human eye was not able to track simultaneous 
movements of many vehicles. We then focused our attention to monitoring only the north bound 
lane of Highway 53 for a period equal to length of a green light. Our objective was to count 
vehicles traveling north bound on Highway 53 and turning right to travel east bound on Mesaba 
Avenue. After three green light periods, our trajectory counts were compared.  In two out of the 
three periods our counts did not match. Finally, we moved to West Arrowhead road, a simple 
two-lane street in Duluth. For ten minutes we monitored both east and west bound traffic. After 
the ten minute period ended, our east bound counts were 123, 120, and 120. Our west bound 
counts were 102, 105, and 101. These three simple vehicle trajectory counting experiments gave 
us first-hand experience in the difficulties of recording vehicle trajectories in the present method 
of vehicle tracking. This reaffirms the motivation behind this project.  

 
1.2 Related Work  
 

With U.S. DOT’s emphasis on intelligent transportation systems (ITS) in recent years, a 
wide range of traffic monitoring technologies for ITS have been researched and developed. 
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These technologies include video cameras [3, 4], microwave radars [5], passive infrared 
detectors [6], passive acoustic array sensors [7], and inductive loop detectors. 

The most published research work on traffic tracking technology consists of a video 
camera(s) and digital image processing. There are many limitations associated with vehicle 
tracking using video cameras. First, video images are a two-dimensional representation of a 
three-dimensional space, resulting in a loss of depth information. Second, accurately identifying 
roads and vehicles from these two-dimensional images is very difficult.  Occlusion is the main 
factor here. Third, the actual distance between objects is difficult to measure even if the objects 
are accurately detected. Fourth, visibility problems caused by weather such as snow, fog, and 
darkness limit the effectiveness of video cameras. 

Besides video cameras and image processing, the developmental focus of the 
technologies listed above has been limited to point measurements on a roadway. Point 
measurement data provides only a small piece of traffic information. Traffic data collected using 
point measurements include volume, occupancy, and speed. Spatial traffic measurements, 
movements in two dimensional spaces in time, have long been the goal of traffic engineers. 
Previously, engineers have been using point measurements and estimation techniques to derive 
spatial measurements. However, these estimates proved to be only accurate on free flow traffic 
conditions, performing poorly when traffic congestion exists [8]. Spatial traffic measurements, 
such as detailed vehicle tracking in an intersection, are not feasible using conventional point 
measurement technologies.  

Until recently, sensing technologies for spatial traffic measurements were unavailable, 
except video processing. Recent advances in wireless System-on-Chip (SoC) and magnetometer 
sensing technologies have enabled the opportunity to build small, cost-effective wireless sensors 
that can be deployed together in a wireless mesh sensor network (WMSN) to obtain spatial 
traffic measurements. The WMSN can be portable, temporary, and operate in a variety of 
environments and weather conditions. 

Besides the present research being done on vehicle tracking systems, there is one 
commercially available product. Sensys Networks Inc. has developed a system that provides 
permanent count stations on highways and arterials, ramp management, stop bar detection, and 
systems counts including vehicle trajectories [9]. Components of this system include access 
points, repeaters, and wireless sensors. Similar to the proposed vehicle tracking system in this 
report, ZigBee wireless technology and magnetoresistive sensors are used. The main difference 
between the proposed system and Sensys is that Sensys uses Time Division Multiple Access 
(TDMA) instead of a wireless mesh network. In TDMA, each sensor is polled by an access 
point, requesting data from a sensor. If a sensor’s time slot is passed by, it must wait (latency) a 
minimum of 125 ms before it is polled again. This minimum latency will increase with the size 
of the network. More sensors in the network result in more time slots the access point must poll. 
Also, each node in the network is not capable of routing or forwarding data and an access point 
can only read data from a sensor that is one hop away.  The result is a very limited coverage area.  
Furthermore, only 96 sensors are allowed to be connected to a single access point.   

On the other hand, the proposed WMSN is a fully functioning mesh network that can 
route or forward packets of data using the optimal path without the concern of time slots.  This 
reduces the latency to that of the transmitting latency of each sensor on the best path through the 
WMSN, which is about 10ms per hop [10].  Also, WMSN can have an unlimited number of 
nodes (264) where the range between each node can be 100 meters or more [10].  As a result, data 
can be relayed a long distances, with less latency, and the WMSN can cover a large area.           



   
   
   

3 
 

 
CHAPTER 2: WIRELESS ZIGBEE TECHNOLOGY 

 
ZigBee is a low-cost, low-power consumption, low data-rate, two-way wireless 

networking standard that is aimed at remote control and sensor applications which is suitable for 
operation in harsh radio environments and in isolated locations. It builds on the IEEE standard 
802.15.4-2003 which defines the physical (PHY) layer and medium access control (MAC) sub-
layer. Above this, ZigBee defines the application and security layer specifications enabling 
interoperability between products from different manufacturers. In this way ZigBee is a superset 
of the IEEE 802.15.4-2003 specification. 

ZigBee is organized within the ZigBee Alliance. Many companies (more than 150) 
already have adopted this technology. There are 15 companies who are the actual promoters of 
the ZigBee standard. These companies include:  Chipcon, Ember, Freescale, Honeywell, 
Mitsubishi Electric, Motorola, Philips, Samsung, and Texas Instruments [11]. 

 
2.1 ZigBee Stack Architecture 
 

The ZigBee stack architecture (Figure 1) is made up layers. Each layer performs a 
specific set of services for the layer above:  a data entity provides a data transmission service and 
a management entity provides all other services. Each service entity exposes an interface to the 
upper layer through a service access point (SAP), and each SAP supports a number of service 
primitives to achieve the required functionality. 

The ZigBee stack architecture is based on the standard Open Systems Interconnection 
(OSI) seven-layer model but defines only those layers relevant to achieving functionality in the 
intended market space. The IEEE 802.15.4-2003 standard defines the lower two layers:  the PHY 
layer and the MAC sub-layer. The ZigBee Alliance builds on this foundation by providing the 
network (NWK) layer and the framework for the application layer (APL), which includes the 
application support sub-layer (APS), the ZigBee device objects (ZDO) and the manufacturer-
defined application objects. 
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Figure 1: ZigBee stack architecture (source ref [12]). 

 

2.1.1 Physical Layer 
The PHY layer provides two services:  the PHY layer data service and PHY layer 

management service interfacing to the physical layer management entity. The PHY layer data 
service enables the transmission and reception of PHY layer protocol data units across the 
physical radio channel. The features of the PHY layer are activation and deactivation of the radio 
transceiver, energy detection, link quality indication, channel selection, clear channel 
assessment, and transmitting as well as receiving packets across the physical medium.   

The standard offers three PHY layer options based on the frequency band (Table 1). All 
are based on direct sequence spread spectrum. The data rate is 250kbps at 2.45GHz, 40kbps at 
915MHz, and 20kbps at 868MHz. The higher data rate at 2.45GHz is attributed to a higher-order 
modulation scheme. Lower frequency provides longer range due to lower propagation losses. 
Lower data rate can be translated into better sensitivity and larger coverage area.  

 
Table 1: Summary of PHY Layer Frequency Bands and Data Rates (source ref. [13]) 

Spreading Parameters Data Parameters  
PHY(MHz) 

Frequency 
Band 

(MHz) 
Chip Rate 
(kchip/s) 

 
Modulation 

Bit 
Rate 
(kb/s) 

Symbol   
Rate 

 
Symbols 

 
Channels 

868-868.8 300 BPSK 20 20 Binary 1 868/915 
902-928 600 BPSK 40 40 Binary 10 

2450 2400-2483.5 2,000 O-QPSK 250 62.5 Orthogonal 16 
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2.1.2 Medium Access Control Layer 
The MAC sub-layer provides two services:  the MAC data service and the MAC 

management service interfacing to the MAC sub-layer management entity SAP. The MAC data 
service enables the transmission and reception of MAC protocol data units across the PHY layer 
data service. The features of MAC sub-layer are beacon management, channel access, frame 
validation, acknowledged frame delivery, and association and disassociation. 

 

2.1.3 Network Layer 
The NWK layer supports star, tree, and mesh network topologies. The responsibilities of 

the ZigBee NWK layer include mechanisms used to join and leave a network, to apply security 
to frames, and to route frames to their intended destinations. In addition, the discovery and 
maintenance of routes between devices, and the storing of pertinent neighbor information are 
done at the NWK layer.  

 

2.1.4 Application Layer 
As shown in Figure 1, the APL consists of the APS, the ZDO (containing the ZDO 

management plane), and the manufacturer-defined application objects. The responsibilities of the 
APS sub-layer include maintaining tables for binding. Binding is the ability to match two devices 
together based on their services and their needs, and forwarding messages between bound 
devices. The responsibilities of the ZDO include defining the role of the device within the 
network (e.g., coordinator, router, or end device), discovering devices on the network and 
determining which application services they provide, initiating and/or responding to binding 
requests, and establishing a secure relationship between network devices. 

 

2.1.5 Application Support Sub-Layer 
The APS provides the interface between the NWK layer and itself through a general set 

of services for use by both the ZDO and the manufacturer-defined application objects. These 
services are offered via two entities:  the data service and the management service. The APS data 
entity (APSDE) provides the data transmission service via its associated SAP, the APSDE-SAP. 
The APS management entity (APSME) provides the management service via its associated SAP, 
the APSME-SAP, and maintains a database of managed objects known as the APS information 
base. 

 
2.2 Mesh Network Topology 
 

There are several different network topologies that a wireless sensor network can form:  
star, tree, bus, ring, and mesh. All these topologies have their own individual benefits but the 
mesh network topology is best suited for vehicle tracking and will be discussed in detail in the 
following subsections. 
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2.2.1 Definition of a Mesh Network 
If we have n nodes in a network, where the term “node” refers to a communications 

device that can transport data from itself to another node, then the ability of each node to 
communicate with every other node in the network represents a mesh network topology. The 
connection between each node is referred to as a link. In a true mesh network, each node in the 
network has a link to every other node in the network. As the number of nodes in a mesh 
network increase, so does the number of links. For example, a true mesh network with three 
nodes requires three links, six links are required to connect four nodes, and ten links are required 
to connect five nodes. This means that a true mesh network in which each node is interconnected 
with every node in the network becomes impractical as the number of nodes in the network 
increases.            
 Recognizing the previously mentioned constraints associated with network nodes resulted 
in the development of more cost-effective partial mesh network structure. Such networks consist 
of hundreds of nodes, however, instead of each node being directly interconnected to every other 
node—they simply had two or more links to other nodes to provide an alternate routing and 
traffic balancing capability. Because nodes are not directly connected to one another, traffic 
would typically flow through one or more router nodes to its destination. 
 

2.2.2 Mesh Network Nodes 
A ZigBee WMSN, shown in Figure 2, consists of three types of nodes: a ZigBee 

Coordinator (ZC), ZigBee Routers (ZR), and ZigBee End-Devices (ZED). 
 

 
Figure 2: A ZigBee WMSN (source ref. [14]). 
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The first type of node is a ZC.  The ZC is responsible for forming a new network. This is 
accomplished by scanning the 16 available channels in the 2.45GHz band and selecting an 
appropriate channel and an extended personal area network identifier (PAN ID). This PAN ID 
allows the ZC to accept requests from other devices that wish to join the network, assigning 
addresses to them as they join the network. The PAN ID also provides a way for two networks to 
exist on the same channel while still maintaining separate traffic flow. Only one ZC is necessary 
to create a ZigBee network but when two networks exist in the same channel they have to share 
time on the air. The ZC stores network information such as security keys, address and routing 
tables. Also, after forming the mesh network, the coordinator can function as a router. The ZC 
determines the maximum depth of the network, the maximum number of children (ZRs of ZEDs) 
a device in the network is allowed to have, and of these children the maximum number that is 
allowed to be ZRs.  The ZC then has a depth of zero while its children have a depth of one.   
 The second type of node is a ZR. A ZR locates existing networks by scanning the 
available channels in the 2.45GHz band. When a ZR finds a network with the correct stack 
profile and that is open to joining, it can request to join the network. A ZR can send a join 
request to a ZC directly or through another ZR if it is out of range of the ZC. Once a ZR has 
joined a network, it may run an application within the WMSN. They also provide routing 
services, acting as an intermediate router passing data between other devices.   
 The third type of node is a ZED. A ZED joins a network similar to a ZR and can run 
applications. Unlike ZR, they can only communicate with their parent node and they cannot relay 
messages intended for other nodes. Depending on the network stack, ZEDs can take three forms. 
The first is a sleepy ZED. Sleepy ZEDs power down their radio when idle, and thus conserves 
power leading to a longer battery life. The second is a non-sleepy ZED. This device remains 
powered during operation. The third is a mobile ZED. This device is a sleepy end device that can 
physically move within the WMSN, changing parent nodes quickly.  
 
2.3 ZigBee Mesh Network Routing 
 

The ZigBee routing algorithm is derived from the Ad-hoc On-Demand Distance Vector 
(AODV) routing [15]. Routes are formed when one node sends a route request to discover the 
path to another node. After a route is discovered between the two nodes, the source node sends 
its message to the first node in the route, as specified in the source node's routing table. Each 
intermediate node uses its own routing table to forward the message to the next node along the 
route until the message reaches its destination. Each node uses its own routing table to determine 
the next hop that is required to deliver messages to any other node. If a route fails, a route error is 
sent back to the originator of the message who can then rediscover the route. There are four main 
types of routing: multicast, unicast, broadcast, and many-to-one [12]. 

Multicast routing provides a one-to-many routing option. A multicast is used when one 
device wants to send a message to a group of devices. Under this mechanism, all the devices are 
joined into a multicast group. Only those devices that are members of the group will receive 
messages although other devices will route these multicast messages. A multicast is a filtered 
limited broadcast and therefore should be used only as necessary in applications because over 
use of broadcast mechanisms can degrade network performance. A multicast message is never 
acknowledged.  The opposite of multicast routing is unicast routing. A unicast is used when one 
device wants to send a message to a single device in the network.  
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Broadcast routing is a mechanism to send a message to all devices in a network. There 
are network level broadcast options to send to routers only or also to send broadcasts to end 
devices. A broadcast message is repeated by all powered devices in the network three times to 
ensure delivery to all devices. While a broadcast is a reliable means of sending a message, it is 
used sparingly because of the impact on network performance. Repeated broadcasts can limit any 
other traffic that may be occurring in the network. 

Many-to-one routing is a simple mechanism to allow an entire network to have a path to a 
central monitoring device. Under normal table routing, the central device and the devices 
immediately surrounding it would need routing table space to store a next hop for each device in 
the network. Given the memory limited devices often used in ZigBee networks, these large tables 
are undesirable. Under many-to-one routing, the central device sends a single route discovery 
that establishes a single route table entry in all routers to provide the next hop to the central 
device. All devices in the network then have a next hop path to the central device and only a 
single table entry is used. However, the central device also needs to send messages back out into 
the network. This would result in a similar increase in route table size. Instead, incoming 
messages to the central device first use a route record message to store the next hops used. The 
central device then stores these next hop routes in a route record table. Outgoing messages 
include this route record in the network header of the message. The message is then routed using 
next hops from the network header instead of from the route table. This provides for large 
scalable networks without increasing the memory requirements of all devices.  

 
2.4 Other Wireless Technologies 
 
 There are several other types of wireless technologies in the market today including 
Bluetooth, Wi-Fi, and GSM. These technologies offer many different wireless characteristics but 
ZigBee, specifically ZigBee WMSN, are best suited for the present vehicle tracking applications. 
Table 2 summarizes several key aspects of four types of wireless technologies. 
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Table 2: ZigBee Compared to Other Wireless Technologies (source ref. [16]) 

 
 

The most comparable wireless technology to ZigBee is Bluetooth. Bluetooth is designed 
for voice, image, and file transfers in ad-hoc networks increasing the complexity of it protocols. 
Wireless characteristics of Bluetooth include an operational range of 10 meters, a maximum of 
seven slave devices, and a battery life lasting a maximum of a week.   

ZigBee, designed for remote control and sensor monitoring applications, uses a basic 
master-slave configuration best suited for mesh networks of thousands of devices. Basic ZigBee 
devices operate at 1mW radio frequency (RF) power and can sleep when not involved in 
transmission. Because this makes battery-powered devices more practical than ever, wireless 
devices are free to be placed without power cables and can last hundreds of days on a single 
battery. 

ZRs can operate as both input devices and repeaters in a WMSN. If two network nodes 
are unable to communicate as intended, transmission is dynamically routed from the blocked 
node to a router with a clear path to the data’s destination making WMSN self-healing. This 
happens automatically, so that communications continue even when a link fails unexpectedly. 
The use of low-cost routers can also extend the network’s effective reach. When the distance 
between the ZC and a ZR or a ZED exceeds the devices’ range, an intermediate node or nodes 
can relay transmission, eliminating the need for separate repeaters. As a result, WMSNs are 
easily scalable. 

The typical ZigBee devices are cost-effective. Chipset prices can be as low as $12 each in 
quantities as few as 100 pieces. While the IEEE 802.15.4-2003 and ZigBee stacks are typically 
included in this cost, crystals and other discrete components are not; design-in modules fall in the 
neighborhood of $25 in similar quantities. This pricing provides an economic justification for 
extending wireless networking to even the simplest of devices. 

Finally, as an open standard, ZigBee provides customers with the ability to choose 
vendors as needed. ZigBee Alliance working groups define interoperability profiles to which 
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ZigBee-certified devices must adhere. A ZigBee-certified device will interoperate with any other 
ZigBee-certified device adhering to the same profile. This promotes compatibility and 
competition, which allows the end users to choose the best device for each particular network 
node, regardless of manufacturer. 
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CHAPTER 3: NODE HARDWARE DESIGN  

 
  In order to build a WMSN for the proposed vehicle tracking system in a T-intersection, 
one ZC and six ZRs nodes are needed.  The ZC is used to establish the network, allow other 
nodes to join, and log the data collected from ZRs. The ZC in this vehicle tracking system does 
not run a vehicle detection application. The ZR nodes are placed in the middle of each traffic 
lane in an intersection and run the vehicle detection application. There are no ZEDs in this 
WMSN. 
 The EM250 SoC manufactured by Ember Inc. was selected as the hardware solution to 
the wireless needs of the vehicle tracking system. The EM250 combines a 2.45GHz IEEE 
802.15.4 compliant radio transceiver with a programmable 16-bit microprocessor (XAP2b), and 
128kB of memory into a small, single-chip solution. To support the design of wireless nodes 
with the EM250, a development kit was purchased from Ember Inc. which includes three ZigBee 
SoC breakout boards. These breakout boards include a prototyping area, buttons, LEDs, RS-232 
transceiver, DC and battery pack power sources, and interfaces to the EM250 and Insight 
Desktop for downloading data and monitoring the serial port.  

The ZC is not placed in the actual intersection, it is only used to log the data collected 
from the ZRs in the intersection. This allows the ZC used in this vehicle tracking system to be 
one of the Ember’s EM250 SoC connected to a breakout board. On the other hand, the ZRs will 
be placed in the middle of traffic lanes and need to have a minimum footprint, eliminating all the 
added components of a breakout board. Each ZR built consists of an anisotropic 
magnetoresistance (AMR) circuit for detecting vehicles, a PAN4570 Radio Communications 
Module (RCM) containing the EM250, Low Dropout (LDO) voltage regulator, a lithium-ion 
rechargeable battery, and a few passive components.  The following sections will describe the 
design and functionality of this hardware.     

 
3.1 Anisotropic Magnetoresistance Sensor 
 

Anisotropic magnetoresistance occurs in ferrous materials and can be applied as a thin 
strip to become a resistive element. The AMR sensor used, HMC1001, manufactured by 
Honeywell, uses a ferrous material called Permalloy (nickel-iron) and forms four resistive 
elements to become a 4-element Wheatstone bridge sensor. Each magnetoresistive strip element 
possesses an ability to change resistance in a cos2θ relationship where θ is the angle between the 
magnetic moment (M) vector and the current flow (I) [17]. Figure 3 shows the Permalloy 
element with field and current applied as well as the 4-element Wheatstone bridge.   

In the presence of an applied magnetic field, a change in the bridge resistance causes a 
corresponding change in output voltage.  When an external magnetic field applied normal to the 
side of the film causes the magnetization vector to rotate and change θ. This in turn will cause 
the resistance value to vary and produce a voltage output (Vs) change in the Wheatstone bridge.  
This change in the Permalloy resistance is termed the magnetoresistive effect. The Permalloy 
element in the HMC1001 is capable of detecting magnetic fields as low as 30 µguass with a 
sensitivity of 3.2 mV/V/gauss [18].  
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Figure 3: AMR element (left) 4-element Wheatstone bridge (right) (source ref [17]). 

 
The applied magnetic field in this case is Earth’s magnetic field, which has a relatively 

weak strength, 0.1 – 0.001 guass. To get an idea of the shape of the Earth’s magnetic field, think 
of Earth itself as a giant magnet with one pole near the geographic North Pole and the other pole 
at the geographic South Pole. An imaginary line connecting the two poles is approximately 11.5° 
off from the planet’s axis of rotation. 

Ferrous metal, metal that contains iron or steel, is a main component of a vehicle’s 
chassis. This makes an AMR sensor very effective in detecting the presence of a vehicle.  
Consider a small area of the Earth’s surface (10 ft. x 10 ft.).  In this area, the Earth’s magnetic 
field appears uniform resulting from the small size of the area compared to the large surface area 
of Earth.  As a vehicle travels through this uniform magnetic field occupied by an AMR sensor, 
the Earth’s magnetic field is deformed and the density is changed (Figure 4). This change in 
density is detected by the AMR sensor and a corresponding voltage increase or decrease can be 
detected at the output. Using thresholding techniques via software (discussed in Chapter 4), a 
detection of a vehicle can be achieved. 

 

            
               Figure 4: Uniform magnetic field (left) magnetic field disturbance (right). 

 
 The AMR circuit used on the ZRs was designed by Prof. Taek Kwon. The circuit is built 
on a 1.0” x 0.5” 2-layer printed circuit board (PCB) consisting of the AMR sensor, a 555 timer, 
an amplifier, and several passive components. Table 3 shows the AMR circuit Bill of Materials 
(BOM). In all, 21 components were used totaling a price of $27.07.   
 The AMR circuit was originally designed for a 5V supply voltage. The AMR circuit used 
on the wireless node needs to operate at a 3.3V supply voltage. The AD622AR instrumentation 
amplifier used has a minimum supply voltage of 5V. This amplifier needs to be replaced in order 
for the AMR circuit to work with a 3.3V supply. The INA118 low-power instrumentation 
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amplifier, manufactured by Burr-Brown ($8.43), was used in its place. This amplifier has a 
minimum supply voltage of 2.7V and is specifically designed for low-power, battery operated 
devices. All other components meet the specification for a 3.3V supply voltage. 

Since a different instrumentation amplifier is being used in the AMR circuit, the gain of 
the amplifier had to be adjusted. Originally, the AMR circuit using the AD622 amplifier was 
designed for a gain of 118 with RG = 430Ω in the following gain equation: 

 
 1 (50.5 / )GGain k R= +        (1) 
 

This gain proved to be too small when the INA118 amplifier and a 3.3V supply voltage is 
used. The gain was changed to 199 using a 255Ω resistor. Also, to increase the sensitivity of the 
AMR sensor, the position of the HMC1001 was changed. Originally, the HMC1001 was 
positioned to lay flat on the PCB. To expose the entire sensor to the Earth’s uniform magnetic 
field and thus increase sensitivity, the HMC1001 was positioned to extend vertically above the 
PCB. 

 

Table 3: AMR Circuit Bill of Materials 
Quantity Reference Package Description Manufacturer Part Number Cost 

1 U1 SOIC-8 555 Type, Timer/Oscillator (Single) Texas 
Instruments 

TLC555CD 
 

$0.68 

1 U2 SOIC-8 Instrumentation Amplifier Analog Devices AD622AR 
 

$6.95 

1 U3 SIP-8 Linear Magnetic 1 Axis Sensor Honeywell HMC1001 
 

$17.00 

1 Q1 SOIC-8 MOSFET, N/P-CH, 30V, 4.1/3.4A 
 

Fairchild 
Semiconductor 

FDS8333C 
 

$0.21 

1 D1 SOD-123 Diode Switch 100V On 
Semiconductor 

MMSD4148T1G 
 

$0.42 

1 R1 SMD603 1.0kΩ, 1/16W, 5% tolerance resistor Panasonic ERA-3YEB102V $0.16 
1 R2 SMD603 330kΩ, 1/16W, 5% tolerance resistor Susumu Co Ltd RR0816P-334-D $0.14 
1 R3 SMD603 24kΩ, 1/16W, 5% tolerance resistor Panasonic ERA-3YEB243V $0.16 
1 R4 SMD603 432Ω, 1/16W, 1% tolerance resistor Panasonic ERA-3YEB431V $0.16 
2 R5, R6 SMD603 51kΩ, 1/16W, 5% tolerance resistor Susumu Co Ltd RR0816P-513-D $0.14 
6 C1,C2,C4, 

C5, C7,C9 
 

SMD603 0.1uF, 16V, 10% tolerance ceramic 
capacitor 

Yageo 
 

06032R104K7B20
D 
 

$0.11 

1 C3 SMD603 0.01uF, 50V, 10% tolerance ceramic 
capacitor 

Murata 
 

GRM188R71H10
3KA01D 

$0.04 

1 C6 SMD1206 0.22uF, 16V, 10% tolerance ceramic 
capacitor 

Venkel X7R160224KNE 
 

$0.04 

2 C8, C10 SMD805 4.7uF, 10V, 10% tolerance ceramic 
capacitor 

Kemet C475K8PACTU 
 

$0.17 

 
When manufactured, the HMC1001 preferred direction of magnetic field is set to one 

direction along the length of the Permalloy resistive strip. This allows the maximum change in 
resistance for an applied magnetic field. However, the influence of a strong magnetic field of 10 
guass or more along this axis could upset, or flip, the polarity of film magnetization, thus 
changing the sensor characteristics. Following such an upset field, a strong restoring magnetic 
field must be applied momentarily to restore, or set, the sensor characteristics. A combination of 
the 555 timer and the MOSFET transistor applies a 215kHz, 0.5A, 2µs pulse to the Set/Reset pin 
of the HMC1001. This pulse realigns the magnetic domains of the Permalloy strip to one 
direction to ensure high sensitivity and repeatable readings. 
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3.2 Panasonic PAN4570 Module 
 
 The Panasonic PAN4570 module is one of the first products to employ Ember’s EM250 
ZigBee SoC technology. The PAN4570 module contains the single chip EM250 from Ember 
Inc., a 24MHz reference crystal, chip antenna, and RF front-end circuitry optimized for best RF 
performance. The PAN4570 is packaged in a 48-pin quad flats no (QFN) leads and its 
dimensions are 20mm x 26.5mm x 3.0mm.  Figure 5 shows the PAN4570 module. 
 

 
Figure 5: PAN4570 module (source ref [19]). 

 
The PAN4570 is powered by a supply voltage in the range of 2.1 – 3.6 VDC applied on 

the VBAT pin. In order to program the PAN4570 module, an Ember Insight Adapter is required. 
The PAN4570 contains a Serial Programming Interface; known as a SIF, to facilitate the 
software programming and debugging of the EM250 chip. SIF is a synchronous port which 
operates in a similar command/response manner as JTAG connections. The SIF is accessed by 
the Insight Adapter through a 10-pin header, manufactured by Samtec, connected to the 
PAN4570 module. Table 4 describes the 10 pins used for programming and debugging software 
in the PAN4570 module.  

 
Table 4: Description of Used PAN4570 Pins 

Pin No. Pin Name Pin Type Description 
1 VBAT Input Module DC supply voltage 
3 RESET Input Reset of the module 
10 PTI_EN Output Frame Signal of Packet Trace Interface (PTI) 
11 PTI_DATA Output Data Signal of PTI 
13 GND Input/Output Ground 
25 SIF_CLK Input Serial Interface, clock  
26 SIF_MISO Output Serial Interface, master in/slave out 
27 SIF_MOSI Input Serial Interface, master out/slave in 
28 SIF_LOADB Input/Output Serial Interface, load strobe 
 
A 10kΩ pull-down resistor is attached to pin 27, SIF_MOSI, in order to tie it to ground 

and achieve the low quiescent current specified in Chapter 12 of the PAN4570 datasheet [19]. 
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In addition to the 10 pins used for programming the PAN4570 module, two additional 
pins are used as inputs. Pin 14, General Purpose Input/Output (GPIO) 7, of the PAN4570 module 
is used as an input to the analog-to-digital (ADC) converter.  The output of the AMR circuit is 
connected to this pin.  The software functionality of the ADC is described in Chapter 4.  Pin 21, 
GPIO14, of the PAN4570 module is connected to a 511Ω resistor and a red LED.  When the 
PAN4570 module is transmitting or receiving, GPIO14 goes high, turning on the LED.  

 
3.3 Low Dropout Voltage Regulator 
 

To power the AMR circuit and the PAN4570 module, a 3.7V Lithium-ion (Li-ion) 
battery is used.  The supply voltage range of the PAN4570 module is 2.1 – 3.6V.  That means 
that the 3.7V Li-ion battery must be regulated down to a voltage level in this range.  The 
LK115D33-TR 3.3V LDO voltage regulator, manufactured by ST Microelectronic, is used. LDO 
regulators use a transistor, operating in its linear region, to subtract excess voltage from the 
applied input voltage, producing a regulated output voltage. Dropout voltage is the minimum 
input to output voltage differential required for the regulator to sustain an output voltage within 
200mV of its nominal value. The very Low Drop voltage (200mV) and the very low quiescent 
current (0.01µA in OFF MODE, 280µA in ON MODE) make LDO regulators particularly 
suitable for low noise, low power applications, specially in battery powered systems.  Figure 6 
shows the circuit diagram for the LDO.  A 0.1µF capacitor acts as a bypass capacitor to smooth 
the supply voltage.  A 2.2 µF capacitor is used for stability of the output voltage. 

 

 
Figure 6: LDO voltage regulator circuit (source ref. [20]). 

 
3.4 Lithium-Ion Rechargeable Battery 
 
 Nickel-based rechargeable battery chemistries such as nickel-cadmium (Ni-Cd) or nickel 
metal hydride (Ni-MH) have been the rechargeable battery chemistry of choice in consumer 
electronics since their introductions. In 1991, Sony Corporation commercialized the first Li-ion 
battery. Since then, the advantages of Li-ion rechargeable batteries have made it the most 
popular choice for consumer electronics today. 
 Li-ion batteries contain a higher power density than nickel-based batteries. This results in 
a longer battery life in a lighter package, as lithium is the lightest metal. Li-ion batteries produce 
3.7 volts, which is approximately three times the voltage of nickel-based batteries.  Li-ion 
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batteries have none of the memory effects that are seen in Ni-Cd batteries. Memory effect is the 
phenomenon where the apparent discharge capacity of a battery is reduced when it is repetitively 
discharged incompletely and then recharged. This allows recharging of a Li-ion battery 
whenever convenient, without the full charge or discharge cycle necessary to keep nickel-based 
batteries at peak performance. Finally, Li-ion batteries have a lower self discharge rate than 
nickel-based batteries. Nickel based batteries can lose anywhere from 1-5% of their charge per 
day (depending on the storage temperature) even if they are not connected to a load. Li-ion 
batteries can hold most of their charge even after months of storage. One disadvantage of Li-ion 
batteries is that the life span of the battery is dependent upon time of manufacturing regardless if 
the battery was charged. Also, Li-ion batteries are one of the most expensive battery chemistries 
on the market. 
 The battery selected to power a ZR is the 3.7V Li-ion battery manufactured by UltraLife.  
This battery has a capacity of 950mAh. Battery capacity and size are directly related; the larger 
the capacity the larger the physical size of the battery. This battery was selected because of its 
small size (1.42” x 2.13” x 0.24”), which aides with the requirement of a small footprint each ZR 
must have. But more importantly, the capacity is large enough to support the power requirements 
of a ZR. There are two components on the ZR that consume power; the AMR sensor and the 
PAN4570 module. The AMR draws a steady state current of 8mA. When the PAN4570 is 
transmitting or receiving data, the current draw is 35.5mA. The total current consumption of a 
ZR is the addition of the current draw of these two devices:  43.5mA. The life of the battery (BL) 
in hours is then: 
 
   ( ) _ / _ 950 / 43.5 21.8hoursBL Battery Capacity Current Draw mAh mA hours= = =            (2) 

 
This means that if the wireless node is continuously detecting a vehicle and transmitting 

or receiving data, the battery would last 21.8 hours. In an actual intersection, traffic usually 
peaks for a 2 or 3 hour period in the morning and afternoon corresponding with people traveling 
to and from work. The rest of the time, specifically late evening and early morning, intersection 
occupancy is very low. The wireless node would remain mostly idle during these low traffic 
times.  As a result, a battery capacity of 950mAh is more than enough to support a wireless node 
for several days under normal traffic conditions.  

The battery leads are connected to a female, rectangular housing using crimp contacts.  
Attached to the wireless node and the battery charger circuit is a male, through-hole, 3-pin 
header. This allows the battery to be easily connected and disconnected from either the wireless 
node or the battery charger circuit (Section 3.8).  

 
3.5 PADS Software 
 

The five components mentioned above:  AMR sensor, PAN4570 module, 3.3V LDO 
voltage regulator, Li-ion rechargeable battery and connector, and the Samtec 10-pin header are 
all needed to build a prototype wireless node. To build a prototype wireless node, several circuit 
design steps need to be completed. First, logic schematic and layout files are created using 
Mentor Graphics PADS software. Next, the layout file is imported into a PCB manufacturing 
editor, LPKF CircuitCAM PCB software. From CircuitCAM, a LPKF S62 prototyping machine 
is used to create the physical prototypes of the wireless node.  
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3.5.1 PADS Logic 
The first step in designing a wireless node is creating a PADS logic schematic.  

Individual part blocks of the components used in the wireless node design are created. This 
includes part blocks for the PAN4570 module, AMR circuit, LDO regulator, 10-pin header, and 
battery connector. After the part blocks are created, individual resistors, capacitors, and LEDs 
are inserted. Finally, the logical connections between the part blocks and components are made.  
Figure 7 shows the PADS logic schematic for the wireless node. 

 

 
Figure 7: Wireless node PADS logic schematic. 

 

3.5.2 PADS Layout 
The next step in creating a prototype PCB is creating a PADS layout file. PADS layout 

provides the PCB layout for the wireless node along with tools for routing and automatic design-
rule checking. After creating individual part blocks for the components in PADS logic, 
individual decals need to be created for each component in PADS layout. These decals represent 
the actual physical shape of the components including solder pads and through-holes. Once the 
PADS logic file is created, a connection to PADS layout is made. Using this connection, the 
decals are automatically transferred to the layout with temporary connections, prior to routing. 
Figure 8 shows the PADS layout file of the wireless node before routing. The dimensions of the 
board are 2.2” x 1.65”. 
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Figure 8: Wireless node PADS layout before routing. 

 
After setting the design-rules for minimum distance between pads, vias, through-holes, 

and traces; a built-in auto-router tool in PADS layout can be used to automatically create the 
routes. After the auto-routing is complete, individual routes can be edited, moving traces to 
different positions and layers. PADS layout supports multi-layer boards. In the wireless node, 
only two layers are used, so routes and components can be present on either the top or bottom 
layer of the PCB. In the design of the wireless node, all components are located on the top layer. 
This is because the battery must be placed flat against the backside of the wireless node. Since all 
components are on the top layer, routing can be very difficult. Vias are used to help with 
simplifying the routing process.  A via is a pad with plated hole that connects the copper traces 
from one layer of a board to another. Figure 9 shows the PADS layout file of the wireless node 
after routing. The red traces are located on the top layer. The blue traces are located on the 
bottom layer.  

 

 
Figure 9: Wireless node PADS layout after routing. 

 
3.6 Wireless Node Prototype 
 

After the routing is completed in the PADS layout file, there is one more software 
program that needs to be used to prepare the PCB for the manufacturing. 
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3.6.1 CircuitCAM 
CircuitCAM is a PCB software package created by LPKF to aid in the manufacturing of 

PCBs. This software processes the same data that would be sent to a PCB manufacturer. Once a 
design is created in PADS layout, Gerber files need to be created and imported into CircuitCAM. 
Gerber files are a standard file format used by PCB fabrication machines that contain 
information necessary for computer controlled machines to draw exact patterns for circuit 
boards. From PADS layout, seven Gerber files need to be created:  Top.pho, Bottom.pho, 
Plated.drl, Unplated.drl, Silkscreen.pho, PasteMaskTop.pho, and PasteMaskBottom.pho. The 
Top.pho and Bottom.pho files are images of the top and bottom layers including pads, through-
holes, vias, and routes. The Plated.drl file contains locations of holes that need to be through-
hole plated such as vias. The Unplated.drl file conations the locations of holes that do not need 
to be through-hole plated such as mounting holes. The Silkscreen.pho is an image of the names 
and outlines of the components on the top layer. The PasteMaskTop.pho, and 
PasteMaskBottom.pho are images of the only the solder pads of top and bottom layers. The 
solder pads are where component pins will be hand soldered after the PCB is created. 

After these seven files are imported into CircuitCAM, there are a few tasks that need to 
be completed. First, insulating of both the top and bottom layers need to be completed.  
Insulating is done around terminals, pads, traces, and vias in order to separate them from the 
copper layer on the board.  Next, the board cut-out and breakout tabs are created. This allows the 
PCB to be removed from the copper sheet. Finally, mounting holes and copper rubout can be 
added if needed. Figure 10 shows the completed wireless node CircuitCAM file. 

 

 
Figure 10: Wireless node CircuitCAM file. 

 

3.6.2 LPKF ProtoMat S62 Plotter 
After the CircuitCAM file has been created, it needs to be exported to an .lmd file. This 

file is used by the LPKF ProtoMat S62 plotter. The LPKF ProtoMat S62 is a circuit board plotter 
for in-house rapid PCB prototyping. This plotter provides the ability for quickly and easily 
milling and drilling circuit board prototypes in a single day. The LPKF ProtoMat S62 can mill 
and drill all types of PCBs with extremely fine traces, with a precision as fine as 0.25µm. Its 
main features include a 10-position tool changer that automatically replaces milling and drilling 
tools while the board is being produced. This significantly reduces setup time, and allows for 
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unattended operation. In-house PCB prototyping eliminates production delays and the high cost 
of outside vendors, reducing a product's development time.  

 

3.6.3 LPKF ProConduct and LPKF ProMask 
After the PCB is milled and drilled on the LPKF ProtoMat S62 plotter, the next step is to 

through-hole plate the vias defined in the Plated.drl file. The LPKF ProConduct system produces 
conductive through-holes without chemical electroplating tanks or potentially hazardous 
chemical processing. The LPKF ProConduct uses a conductive polymer to quickly and easily 
plate vias in just a few minutes. This four-step process lends itself well to parallel processing and 
results in smoothly plated through-holes in a fraction of the time and cost of chemical 
electroplating. The LPKF ProConduct system plates vias as small as 0.4mm in diameter. The 
basic process requires only a few minutes for double-sided boards. The electrical resistance of 
LPKF ProConduct results in extremely low – approximately 19.2mΩ, depending on the material 
thickness. 

The final step in creating a PCB prototype is creating the solder mask using the LPKF 
ProMask finish.  The LPKF ProMask is a cost-effective solution for producing professionally 
masked PCBs in an in-house prototyping environment. The LPKF ProMask is an easy-to-apply 
green solder resist mask. This professional finish, ideal for all rapid PCB projects, is especially 
important for Surface Mount Technology (SMT) projects where traces are very close and circuit 
isolation and insulation are critical. The LPKF ProMask finishes prototype PCBs professionally 
and helps protect traces and prevent short circuits from soldering conventional though-hole or 
SMT components. 

 

3.6.4 Final Wireless Node Prototype 
After several designs and prototypes, a final wireless node was created. Figure 11 shows 

a photo of the final wireless node prototype.  The dimensions of the wireless node are 2 3/16” x 1 
5/8”. All the components were hand soldered. A 2” braided-wire antenna was added at the base 
of the supplied chip antenna on the PAN4570 module to improve the wireless range.  
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Figure 11: Wireless node prototype. 

 

3.6.5 Wireless Node Bill of Materials 
Table 5 shows the wireless node BOM. In all, 11 components were used totaling a price 

of $74.05. Originally, a RCM from Ember was considered being used for the wireless nodes. 
This RCM alone costs $109 to purchase from Ember. Using the LPKF ProtoMat S62 proved 
beneficial in both the ability to customize the design of the wireless node as well as reduces the 
total cost of a wireless node.  

   
Table 5: Wireless Node Bill of Materials  

Quantity Reference Package Description Manufacturer Part Number Cost 
1 U1 48-pin 

QFN 
PAN4570 2.4GHz ZigBee Ember 
Module w/ chip antenna 

Panasonic ENW-C9A02A3E $34.52 

1 U2 NA Anisotropic Magnetoresistive 
(AMR) Sensor 

Milwaukee 
Electronics 

NA $27.07 

1 U3 SOIC-8 3.3V LDO Regulator ST 
Microelectronic 

LK115D00 series $1.01 

1 U4 3-pin Through-hole, side-mount 3-pin 
header (Male) 

JST S3B-PH-K-
S(LF)(SN) 

$0.11 

Rectangular Housing (Female) JST PHR-3 $0.04  
Crimp Contacts JST SPH-002T-P0.5S $0.03 

1 NA 24 AWG 3.7V (950mAH) Lithium-Ion 
Rechargeable Battery 

UltraLife UBP053450/PCM $8.72 

1 J1 SMD 10-pin Header for connecting 
Insight Adapter 

Samtec FTSH-105-01-
FDVK 

$1.56 

1 C1 SMD1206 0.1uF, 50V, 10% tolerance ceramic 
capacitor 

Murata GRM series $0.15 

1 C2 SMD1206 2.2uF, 16V, 20% tolerance ceramic 
capacitor 

Murata GRM series $0.35 

1 D1 SMD1206 Red LED  Lumex SML-LX1206IW-
TR 

$0.28 

1 R1 SMD1206 510Ω, 1/4 W, 5% tolerance resistor Panasonic ERJ-8GEYJ511 $0.09 
1 R2 SMD1206 10k Ω, 1/4W, 5% tolerance resistor Panasonic ERJ-8GEYJ103 $0.09 
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3.7 Wireless Router Prototype 
 
 In order to extend the range of the WMSN, wireless routers are needed. If a wireless node 
is out of the range of the ZC, placing an intermediate router in between the ZC and the out of 
range node will allow messages to and from that node to be routed through the router. This 
allows the WMSN to be scalable, adding wireless router nodes along the edge of the network 
range in order to increase the distance the network can reach. This is the main feature of the 
proposed WMSN for vehicle tracking that differentiates it from the commercially available 
Sensys Networks Inc.’s vehicle sensing system. 
 Distances between the ZC and the ZRs deployed in an intersection can vary depending on 
the location of the ZC and the positions of the ZRs. To assure that all wireless nodes whose 
responsibility is to detect vehicles are within range of the ZC, separate wireless routers were 
built. These wireless routers contain all the components of a wireless node except for the AMR 
circuit. Therefore, they do not contain vehicle detection functionality. The only responsibility of 
a router node is to be part of the network and help route messages between a ZC and other ZRs. 
Figure 12 shows a photo of a wireless router.  
 

 
Figure 12: Wireless router prototype. 

 
 Since there is no AMR circuit, the size of the wireless router is much smaller than a 
wireless node. The dimensions of the wireless router are 1 1/8” x 1 5/8”. The absence of the 
AMR circuit also reduces the cost to build a wireless router, which is $46.98.  
 
3.8 Battery Charger Circuit 
 

When the battery voltage level becomes low, a method of recharging the battery is 
needed. In order to recharge a battery, a separate battery charger circuit was built. The bq24002 
single-cell Li-ion charge management IC manufactured by Texas Instruments was chosen as the 
device to control the charging of the batteries. This device combines high accuracy current and 
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voltage regulation, battery conditioning and temperature monitoring, charge termination, charge-
status indication, and a charge timer into a 20-lead Thin Shrink Small-Outline Package (TSSOP) 
PowerPad (PWP).  The bq24002 measures battery temperature using an external thermistor. The 
bq24002 then charges the battery in three phases: preconditioning, constant current, and constant 
voltage. If the battery voltage is below the internal low-voltage threshold, the bq24002 uses low-
current precharge to condition the battery. A preconditioning timer is provided for additional 
safety. Following preconditioning, the bq24002 applies a constant-charge current to the battery. 
An external sense-resistor (RSNS) sets the magnitude of the current. The constant-current phase is 
maintained until the battery reaches the charge-regulation voltage. The bq24002 then transitions 
to the constant voltage phase. The accuracy of the voltage regulation is better than ±1% over the 
operating junction temperature and supply voltage range. Charge is terminated by maximum 
time or minimum taper current detection. The bq24002 automatically restarts the charge if the 
battery voltage falls below an internal recharge threshold. 

 

 
Figure 13: Li-ion battery charger circuit (source ref. [21]). 

 
Figure 13 shows the circuit diagram of the battery charger circuit. The first step in 

designing the battery charger circuit is to design the temperature sensing circuit. The bq24002 
continuously monitors temperature by measuring the voltage between the adapter power 
good/thermistor (APG/THERM) pin and ground. For temperature, a negative-temperature 
coefficient thermistor (NTC) and an external voltage divider develop this voltage.  The following 
equations are used to calculate the values of the resistors (RT1 and RT2) in the voltage divider. 
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First calculate RT2: 

 RT2 = 

1 1

1 1

B H C
C H

B B
H C

H C

V R R
V V

V VR R
V V

⎡ ⎤
−⎢ ⎥

⎣ ⎦
⎛ ⎞⎛ ⎞

− − −⎜ ⎟⎜ ⎟
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       (3) 

 
Then use the resistor value of RT2 to calculate RT1: 

 RT1 = 
1

1 1
2

B

C

C

V
V

RT R

−

+
        (4) 

 
 where: 
 VB = VCR (bias voltage) = 2.85V [21] 
 RH = resistance of the thermistor at the desired hot trip threshold = 4.917kΩ  (Table 
6) 
 RC = resistance of the thermistor at the desired cold trip threshold = 27.219kΩ  (Table 
6) 
 VH = lower APG trip threshold = 0.558V [21] 
 VC = upper APG trip threshold = 1.498V [21] 
 RT1 = top resistor in the divider string 
 RT2 = bottom resistor in the divider string 
 

The normal charging temperatures for the Li-ion battery should be in the range of 0° - 
45° C (32° - 113° F). Charging out of this temperature range is harmful to the Li-ion battery and 
must be avoided. If the battery temperature is outside this range, the temperature sensing circuit 
will detect this and enter a thermal shutdown and suspend charging until the battery temperature 
returns within the normal charging temperature range. Using these ends values of temperature 
and the temperature characteristics of the thermistor in Table 6, resistances of the thermistor at 
the desired hot (RH) and cold (RC) trip thresholds can be found.  
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Table 6: Temperature Characteristics of the NTC Thermistor (source ref. [21]) 

 
 
Using the values found above, RT2 and RT1 can be calculated. 
 

 RT2 = 
( )( )( ) 1 12.85 4.917 27.219

1.498 0.558
2.85 2.854.917 1 27.219 1

0.558 1.498

V k k
V V

V Vk k
V V

⎡ ⎤Ω Ω −⎢ ⎥⎣ ⎦
⎛ ⎞ ⎛ ⎞Ω − − Ω −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 = 98.217kΩ (5) 

  

 RT1 = 

2.85 1
1.498

1 1
98.217 27.219

V
V

k k

−

+
Ω Ω

 = 19.245kΩ     (6) 

 
The second step in designing the battery charger circuit is to design the current regulation 

circuit.  The bq24002 provides current regulation while the battery-pack voltage is less than the 
regulation voltage. The current regulation loop effectively amplifies the error between a 
reference signal, ViLIMIT, and the drop across the external sense resistor, RSNS. Charge current 
feedback, applied through pin ISNS, maintains regulation around a threshold of ViLIMIT. The 
following formula calculates the value of the sense resistor: 

 
 RSNS = ViLIMIT / IREG         (7) 
 
 where: 
 IREG = 950mA 
 ViLIMIT = 0.1V [21] 
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 RSNS = 0.1V / 950mA = 0.105Ω      (8) 
 

The bq24002 continues with the charge cycle until termination by one of the two possible 
termination conditions; maximum charge time or minimum current. The bq24002 sets the 
maximum charge time through pin TMRSEL. The TMRSEL pin allows the user to select 
between three different total charge-time timers (3, 5, or 6 hours).  In this battery charger circuit, 
the TMRSEL pin is left floating with a 10pF capacitor to set the charge-time timer to 3 hours. 
The charge timer is initiated after the preconditioning phase of the charge and is reset at the 
beginning of a new charge cycle. In the case of a thermal shutdown, the bq24002 suspends the 
timer. The bq24002 monitors the charging current during the voltage regulation phase. The 
bq24002 initiates a 22-minute timer once the current falls below the trip threshold. Fast charge is 
terminated once the 22-minute timer expires. The bq24002 incorporates two LEDs (red and 
yellow) for charge status display. Table 7 summarizes the operation of the LEDs. 

 

Table 7: LED Status (source ref. [21]) 

Charge State Stat1 (Red LED) Stat2 (Yellow LED) 
Pre-charge ON (LOW) OFF 
Fast Charge ON (LOW) OFF 
Fault Flashing (1Hz, 50% duty cycle) OFF 
Done (>90%) OFF ON (LOW) 
Sleep-mode OFF OFF 
APG/Therm invalid OFF OFF 
Thermal Shutdown OFF OFF 
Battery Absent OFF OFF 

 

3.8.1 Final Battery Charger Circuit 
The battery charger circuit was designed and built using PADS logic, PADS layout, 

CircuitCAM, and LPKF ProtoMat S62 plotter in the same method as the wireless node 
prototype. Figure 14 shows the final battery charger circuit with the Li-ion rechargeable battery. 
All the components were hand soldered. The battery is connected underneath the charger.  The 
battery is recharged using power supplied by a 5V AC/DC wall transformer. A 50% discharged 
3.7V battery takes approximately 3 hours to fully charge to 4.2V.  The completion of a recharge 
is signified by the yellow LED turning on.  
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Figure 14: Battery charger circuit and li-ion rechargeable battery. 

 

3.8.2 Battery Charger Circuit Bill of Materials 
For a total of $9.14, a battery charger circuit can be built.  This cost does not include the 

price of the AC/DC wall transformer, which is $7.16. There are a total of 16 components in the 
battery charger circuit that were all hand soldered. Table 8 shows the battery charger circuit 
BOM.   

 
Table 8: Battery Charger Circuit Bill of Materials  

Quantity Reference Package Description Manufacturer Part Number Cost 
1 U1 20-

HTSSOP 
Single Cell Li-Ion Charge 
Management IC 

Texas 
Instruments 

BQ24002PWP $3.60 

1 D3 SMD1206 Yellow LED Lumex SML-LX1206SYC-
TR 

$0.66 

1 D2 SMD1206 Red LED  Lumex SML-LX1206IW-TR $0.28 
1 U3 3-pin Through-hole, side-mount 3-pin 

header (Male) 
JST S3B-PH-K-

S(LF)(SN) 
$0.11 

1 R1 SMD1206 0.1Ω, 1/4W, 5% tolerance 
resistor 

Panasonic ERJ-L08KJ10CV $0.77 

2 R2, R3 SMD1206 510Ω, 1/4W, 5% tolerance 
resistor 

Panasonic ERJ-8GEYJ511 $0.09 

1 R5 SMD1206 RT1, 19.1kΩ, 1/4W, 1% 
tolerance resistor 

Panasonic ERJ-8ENF1912V $0.12 

1 R6 SMD1206 RT2, 97.6kΩ, 1/4W, 1% 
tolerance resistor 

Panasonic ERJ-8ENF9762V $0.12 

1 R4 Molded 
Bead 

10kΩ, NTC Thermistor Murata NTSD1XH103FPB3
0 

$0.59 

1 C5 SMD1206 10pF, 50V, 5% tolerance 
ceramic capacitor 

AVX 12065A100JAT2A $0.42 

1 C2 SMD1206 0.1uF, 50V, 10% tolerance 
ceramic capacitor 

Murata GRM31CR71H105K
A16L 

$0.15 

1 C3 SMD1206 1.0uF, 50V, 10% tolerance 
ceramic capacitor 

Murata GRM31CR71H105K
A61L 

$0.45 

1 C1 SMD1206 10uF, 25V, 10% tolerance 
ceramic capacitor 

Murata GRM31CR61E106K
A12L 

$1.02 

1 C4 SMD1206 0.22uF, 50V, 10% tolerance 
ceramic capacitor 

Panasonic ECJ-3YB1H224K $0.23 

1 NA NA 5V DC @ 1.0A AC/DC Wall 
Transformer, 12mm long plug 

CUI Inc. EPS050100-P6P $7.16 

1 U2 4-Contact 
SMD 

16V DC @ 2.5A, 2.1mm ID, 
5.5mm OD Male Jack 

CUI Inc. PJ-002A-SMT $0.81 
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3.9 Wireless Node Housing 
 

An important part of the wireless node hardware is its housing. The six wireless nodes 
used in this vehicle tracking system must be placed in the middle of traffic lanes in order to 
detect vehicles. This exposes the nodes to the chance of getting run over by a vehicle. In order to 
protect the wireless node circuitry, it must be housed in a strong, durable, and low-profile 
enclosure.  
 The wireless node housing shape is modeled after a raised pavement marker. Raised 
pavement markers are commonly used as a safety device on roads, usually contain reflective 
material, and are made from plastic. The housings used to protect the wireless nodes are made 
from fiberglass.  Fiberglass was the material chosen because of its strong composition and will 
not interfere with the detection of vehicles or the transmitting and receiving of the wireless 
nodes. Fiberglass housings were purchased from a company in Milwaukee, Wisconsin. These 
housings came as solid pieces and needed to be milled in order for the wireless node to fit inside. 
    The dimensions of the housing are 4 ¾” x 4 ¾” x 1”.  The sides of the housing are 
angled. Using a JET milling machine, a 2 3/8” x 1 7/8” x 9/16” space was milled out from the 
bottom of the housing in order to place the wireless node inside. A 3/8” x 1/4” x 1/8” and a 1/8” 
x 1/2” x 1/8” hole were milled out for the 10-pin header and HMC1001 components because 
they extend beyond the PCB. These holes assure a tight fit of the wireless node in the housing, 
minimize the removal of material from the housing, and help to maximize the housing strength. 
A 1/8” diameter hole was drilled to through the top of the housing for the antenna. The antenna 
extends 1.5” above the top of the housing so a 1/8” x 1 ½” slit was milled on the top of the 
housing so the antenna can be positioned against the housing and is not sticking straight up. 
Also, a 1” x 3/8” x ¼” slit was milled on the bottom of the housing from one edge. This slit is 
used for prying the housing off the pavement after it has been installed.  Complete dimensions of 
the housing can be seen in Figure 15. 
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Figure 15: Top, bottom, front, and side views of the wireless node housing. 

 
Installing the housings in the traffic lane requires very little time.  First, the battery needs 

to be connected to the wireless node. A piece of foam is then placed inside the housing to 
cushion the wireless node’s components from the fiberglass. The wireless node and battery are 
then placed inside the housing and another piece of foam is placed on top.  A piece of black duct 
tape is placed over the wireless node and battery to hold it in the housing. Then a multipurpose 
adhesive spray manufactured by 3M is sprayed on the bottom of the housing as well as the 
location in the roadway where the wireless node is to be placed.  The housing is firmly placed on 
the roadway. The drying time of the adhesive is approximately 30 seconds. The housings are 
painted black in order to blend in with the asphalt. This helps to hide the wireless node from the 
driver’s of vehicles to facilitate normal driving through the intersection where the WMSN is 
deployed. Figure 16 shows images of the actual wireless node housing and Figure 17 shows a 
wireless node placed inside a sensor housing. 
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Figure 16: Wireless node housing. 

 

 
Figure 17: Wireless node inside a sensor housing. 
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CHAPTER 4: NODE SOFTWARE DESIGN  

 
Included in the Ember EM250 development kit is the EmberZNet 3.0 software package.  

Released in January 2007, EmberZNet is a complete ZigBee protocol software package 
containing all the elements required creating mesh networking applications on Ember’s EM250 
SoC. EmberZNet offers the ability for developers to customize peripherals such as ADC, 
Universal Asynchronous Receiver/Transmitter (UART), and GPIO available on the EM250 SoC 
through the Hardware Abstraction Layer (HAL). Larger networks potentially consisting of 
thousands of nodes in a single network are enabled by stochastic addressing, multicast, 
broadcast, and many-to-one routing, and asymmetric link handling. Denser networks are enabled 
by Ember’s intelligent table management system that assures network stability even when many 
routing nodes are within close proximity. More secure networks are enabled by implementing 
many of the optional ZigBee security extensions for advanced network encryption and device 
security. These features are all included in the source code and will not be discussed in detail.  
For further information on these topics, please refer to [10, 23].  

Included with the development kit is xIDE, a development environment for the EM250.  
xIDE provides a compiler and debugger that can be used to program the XAP2b microprocessor 
on the EM250 SoC using the C/C++ language. EmberZNet includes several sample projects for 
the EM250 that can be used to start custom applications. The provided sink/sensor application is 
an example application that shows how a single device collects data from multiple devices. This 
application was used as the base for creating the software for the ZC and ZRs in this vehicle 
tracking system. There are two separately compiled application workspaces, sink and sensor.  
The sink application will run on the ZC node. The sensor application will run on the six ZR 
nodes. Each application runs a similar main program loop shown in Figure 18.  

 

 
Figure 18: Main event loop (source ref. [10]). 
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In the Initialization state, the serial ports and HAL are initialized, interrupts are turned on, 
and a request for reset is checked. If the node was already a member of an existing network, it 
then joins that network if present.  The event loop is then entered. First, the watchdog timer is 
reset. The watchdog timer is a hardware timing device that triggers a system reset if the main 
event loop encounters a fault. If the watchdog timer is not reset every 2 seconds, a reset of the 
device will occur. Next, the function emberTick() is called. Here, any pending ZigBee stack work 
is done. This includes managing input and output stack buffers and processing any stack 
callbacks. If the device’s network state is “joined” then the function processSerialInput() is 
called. Here, the device monitors the serial port. Characters can be sent to a device through either 
the Insight Desktop or a Hyper Terminal connection. Depending on what characters are read by 
the device, specific tasks are executed. Next, the function applicationTick() is called. Here, 
services are provided for the application such as checking for timeouts, control inputs, and 
changing any indicators (like an LED). If the device is not “joined” to a network and it is a ZC, it 
will form a network. If the device is not “joined” to a network and it is a ZR, it will then try to 
rejoin an existing network or attempt to join a new network if one is present. In both cases, the 
processSerialInput() and applicationTick() functions are passed over until a device has created or 
joined a network. In the function applicationTick(), software functionality was added in order to 
customize the source code for a vehicle tracking WMSN.  

The added functionality of the ZC includes updating its address table, synchronizing the 
local clocks of the ZRs, receiving vehicle detection messages from the ZRs, and forwarding this 
data through a serial port connection. The added functionality of the ZRs are to continuously 
calculate a moving average based on the static level of the AMR sensor, sample the ADC and 
recognize a vehicle detection, sending a timestamp when a vehicle detection occurs, and 
acknowledging the ZC when a “sink advertise” message is received. The following sections will 
describe this added software functionality.  

 
4.1 Sink Advertise 
 

Once a ZC is powered on, it scans the 16 available channels on the 2.45GHz band, finds a 
clear channel, and establishes a network. In the ZC applicationTick() function, a “sink advertise” 
multicast message is sent out over the selected network channel. This message is used to identify 
ZRs that wish to join the network. When a ZR requests to join a network and is allowed, the ZC 
adds the ZR to its address table. Each ZR contains a unique 64-bit extended unique identifier 
(EUI).  This EUI is stored in the ZC address table along with its associated index, inuse boolean 
value, node ID, and age. Table 9 shows an example of a ZC address table with 4 ZRs joined to 
the network. 
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Table 9: ZC Address Table 

Index Inuse Node ID EUI64 Age 
00 TRUE 0x0AC7 11 7F 0A 00 00 6F 0D 00 0x000D 
01 TRUE 0x2F00 1E AA 0A 00 00 6F 0D 00 0x000D 
02 TRUE 0x6D77 1A AA 0A 00 00 6F 0D 00 0x000C 
03 TRUE 0x0864 50 7F 0A 00 00 6F 0D 00 0x000C 
04 FALSE UNUSED FF FF FF FF FF FF FF FF 0xFFFF 
05 FALSE UNUSED FF FF FF FF FF FF FF FF 0xFFFF 
06 FALSE UNUSED FF FF FF FF FF FF FF FF 0xFFFF 
07 FALSE UNUSED FF FF FF FF FF FF FF FF 0xFFFF 
08 FALSE UNUSED FF FF FF FF FF FF FF FF 0xFFFF 
09 FALSE UNUSED FF FF FF FF FF FF FF FF 0xFFFF 
10 FALSE UNUSED FF FF FF FF FF FF FF FF 0xFFFF 

 
The index of each ZR refers to the location in the address table. The number of ZRs in an 

address table depends on the maximum number of children a parent is allowed to have and the 
maximum number of routers that can be children. These values are set by the ZC upon formation 
of the network. The node ID of a ZR is just a short 16-bit ID the ZC assigns to each ZR when 
added to the network. The Inuse column identifies the ZR as being either active (TRUE) or 
inactive (FALSE). This inactivity depends on the age of each node. Every time a ZR sends any 
kind of message (alive, clock synchronization, or vehicle detection) to the ZC, its age is reset to 
zero. If the ZC hasn’t received a message from a ZR for more than 5 minutes, its age reaches its 
maximum value of 0xFFFF and it is considered inactive (Inuse = FALSE).  The ZR must request 
to rejoin the network after it becomes inactive. 

To keep each ZRs status as active, a ZC sends a multicast “sink advertise” message every 
60 seconds. When a ZR receives a “sink advertise” message, it responds with an “alive” 
message. This allows the ZC to reset the age of each ZR and keep them active. If a ZR powers 
down or is out of range, it will not be able to respond the “sink advertise” message, its inuse 
value will be set to FALSE, and it must request to rejoin the network when powered back up or 
returns within range.  A ZC will ignore its own multicast “sink advertise” message.  

 
4.2 Clock Synchronization 

 
Clock synchronization is an integral part of this vehicle tracking system. When a wireless 

node detects a vehicle, it sends its node EUI along with a timestamp of when the detection 
occurred. The vehicle tracking algorithm then uses the position of the nodes along with the 
timestamps of each detection to accurately track vehicles through an intersection. The timestamp 
is derived from the physical clock of a wireless node and can differ from node to node. This 
difference in physical clocks can be a result of when each node was powered on, clock skew, or 
clock jitter. If there is a single wireless node in WMSN whose clock is not synchronized with the 
rest of the nodes, the vehicle tracking algorithm will not be as effective as when all wireless 
nodes are synched. The Mock et al. clock synchronization protocol [24] is used in this vehicle 
tracking WMSN.  
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4.2.1 Mock et al. Clock Synchronization Protocol 
The Mock et al. clock synchronization protocol exploits the broadcast property of the 

master (ZC) by assuming that message reception between master and slaves (ZRs) is tight. If two 
slaves receive the same message, it can be assumed that they receive it at approximately the 
same time. Based on this property, the time-critical path is shown in Figure 19.  

 

 
Figure 19: Mock et al. timing diagram (source ref. [24]). 

 
The time-critical path is the path of a message that contributes to non-deterministic errors 

in the protocol. Usually, non-deterministic errors of clock synchronization include the send, 
access, and propagation times. The send time is the time from the master clock reading to the 
sending of the broadcast message. The access time is the time between slaves receiving the 
broadcast message and adjusting their local clocks. The propagation time is the time between the 
broadcast message being sent and when the slaves receive the message. The propagation time is 
usually much smaller than both the send and access times. Because the Mock et al. protocol 
utilizes the broadcast property in wireless networks, the send and access times can be eliminated 
from the time-critical path. Therefore, the time-critical path in the Mock et al. protocol is the 
time between t3 to tS, or the propagation time. The protocol uses two messages for 
synchronization between a master and a group of slaves, a multicast indication message followed 
by a multicast confirmation message. The main steps in the synchronization protocol of Mock et 
al. are shown below. 

 
• The master prepares an indication message (t1) and broadcasts it (t2). 
• The message is delivered to a number of slave nodes with negligible delay, assuming 

tight message reception. 
• Each slave and the master receive the message (t3) and take a local timestamp (tS). 
• The master sends its own timestamp in the confirmation broadcast message (t5). 
• Each slave compares the master timestamp with its own timestamp for the reception of 

the last indication message, computes the difference t5 − t3, and adjusts its local clock (t6). 
 

 In the Mock et al. protocol, continuous clock synchronization is used by implementing a 
rate-based algorithm to either speed up or slow down the virtual clock. Instead of continuous 
clock synchronization, instantaneous clock synchronization is used in the in the WMSN. In the 
case of instantaneous clock synchronization, a slave computes a local clock error and adjusts its 
clock using this computation. This results in abrupt changes in local clock time, which can cause 
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time discontinuity. Time discontinuity can lead to serious faults in distributed systems, such as a 
slave missing important events. Continuous clock synchronization avoids such discrepancies by 
spreading the correction over a finite interval. Since each slave in the WMSN only uses its local 
clock to assign a timestamp to a vehicle detection and not to trigger events, continuous clock 
synchronization is not needed. 

The local clock of a slave is its physical clock. The physical clock consists of an 
oscillator, whose frequency is fixed. The physical clock can not be adjusted in any way. A virtual 
clock uses a function that transforms physical clock values to virtual clock values. A virtual 
clock is intended to correct the skew rate of the physical clock of the slave such that it resembles 
the physical clock of the master. Here, the virtual clock is calculated at t6 by adding a clock offset 
to the physical clock value. The clock offset is calculated by computing the difference t5 − t3. 
The goal is to match the virtual clock of a slave to the physical clock of the master as closely as 
possible.  

 

4.2.2 Mock et al. Examples 
There are two different cases that the Mock et al. protocol must handle.  The first is when 

the ZC is powered on before a ZR. This means that the ZC’s physical clock (5000ms) will have a 
higher value than the ZR’s physical clock (3000). Figure 20 illustrates this example using the 
Mock et al. clock synchronization protocol. 

 

 

ZC ZR
ZC Physical Clock = 5000ms ZR Physical Clock = 3000ms

Transmit data = 0

Save ZR Physical Clock
ZR Physical Clock = 3010ms

Save ZC Physical Clock 
ZC Physical Clock = 5010ms

TX = 0

TX = 0

TX = 5010

Clock Offset = ZC Physical Clock – ZR Physical Clock
                     = 5010 – 3010 = 2000ms

ZR Virtual Clock = Physical Clock + Clock Offset
                              = 3000 + 2000 = 5000ms

Transmit data = 5010

 
 

Figure 20: Mock et al. clock synchronization protocol, example 1. 
 
The ZC initiates the protocol by sending a multicast indication message containing data = 

0. This indication message is received by both the ZC and the ZRs joined to the network after 
10ms (the worst case latency for 1 hop). When a ZR receives this indication message with the 
data = 0, it saves its physical clock value (3010ms) at that time. When the ZC receives its own 
indication message with a data = 0, it transmits a multicast confirmation message containing its 
physical clock value at the time of the reception of the indication message (5010ms). When the 
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ZR receives this confirmation multicast message, it calculates the difference between the ZC 
physical clock and its own physical clock (5010ms – 3010ms). This difference equals the value 
of the clock offset (2000ms). This clock offset value is then added to its physical clock (2000ms 
+ 3000ms), matching the physical clock of the ZC (5000ms). A ZC will ignore the confirmation 
message. 

The second case is when a ZC is powered on after a ZR. This means that the ZC’s 
physical clock will have a lower value than the ZR’s physical clock. Figure 21 illustrates this 
example using the Mock et al. clock synchronization protocol. The difference is that the clock 
offset value will now be negative.  

 
ZC ZR

ZC Physical Clock = 1000ms ZR Physical Clock = 3000ms

Transmit data = 0

Save ZR Physical Clock
ZR Physical Clock = 3010ms

Save ZC Physical Clock 
ZC Physical Clock = 1010ms

TX = 0

TX = 0

TX = 1010

Clock Offset = ZC Physical Clock – ZR Physical Clock
                     = 1010 – 3010 = -2000ms

ZR Virtual Clock = Physical Clock + Clock Offset
                              = 3000 + (-2000) = 1000ms

Transmit data = 1010

 
Figure 21: Mock et al. clock synchronization protocol, example 2. 

 
4.3 Simple Moving Average 
 

The AMR circuit produces an analog output voltage signal depending on the strength of 
the Earth’s magnetic field surrounding the sensor. When the AMR circuit is present in a uniform 
magnetic field, there is an associated “static level” analog output voltage signal depending on the 
strength of the uniform magnetic field. This static level continually changes by a few millivolts, 
even if the sensor is stationary. It also changes if the sensor is moved just a few feet, and is 
different from sensor to sensor.  If the static level of every AMR circuit was identical, a global 
threshold could be used to determine if a vehicle was detected. If the AMR output voltage 
increased or decreased above or below this threshold, vehicle detection would occur. But 
because of this changing static level, the threshold has to change along with the static level. This 
is done using a simple moving average (SMA) for the static level. 

SMA works as follows. At any time t, the algorithm first averages a sequence of samples 
(k) , 1 ,,...,i t k i tx x− +  at each sensor i, and gets:  

 
 , 1 ,( ... ) /i t k i tx x x k− += + +        (9) 
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 The oldest sample, , 1i t kx − + , is replaced by a new sample ,i tx at every time t. In each ZR, the 
sample size k = 10 and the sample set is updated every second.  

The SMA is only used in ZRs. When a ZR is powered on, a 30 second initialization 
period is used to set the SMA. During this initialization period, the ZR should be stationary in its 
intended position in the intersection. The ZR is not allowed to detect vehicles during this time. 
Once the SMA is set, it is continuously updates every second (1 Hz) in the applicationTick() 
function. If a vehicle is about to be detected, the static level of the AMR circuit will increase or 
decrease. This change in the static level due to a vehicle detection should not be part of the SMA. 
To assure this, another sample of the AMR circuit is taken at 100Hz. If a value of this 100Hz 
sample is above the threshold, the next SMA value will be skipped until the AMR circuit output 
voltage falls back underneath the threshold.  

 

 
Figure 22: Simple moving average example. 

 
Figure 22 shows an example of an output signal (red) from the AMR circuit. When the 

output signal voltage level is between the threshold values, the SMA is updated every 1 Hz. 
After four updates, the 100Hz ADC sample detects the output voltage signal level above the 
threshold. The next value of the SMA value is skipped. The SMA update is skipped a total of 
four times because the ADC sample either detects the AMR sensor voltage to be above or below 
the threshold value. When the ADC sample detects that the AMR signal level has fallen back 
with the threshold range, the SMA is allowed to update itself again.  

 
4.4 Sampling the Analog-to-Digital Converter 
 

The AMR circuit produces an analog output voltage signal depending on the strength of 
the Earth’s magnetic field that surrounds the sensor. To work with this signal in software it must 
be digitized. The GPIO7 pin on the PAN4570 is used to convert the analog signal to a numbered 
value. The resolution of the ADC is set for 12-bits. The number of quantization levels for the 
ADC with a 12-bit resolution is:  

 
122 4096Quantization Levels levels  =  =       (10) 
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The output of the AMR sensor has a voltage range from 0 – 1.2V. The voltage resolution is then: 
 
 1.2 0 ) / 4096 mV/levelVoltage Resolution V V level  = (  −     = 0.29    (11) 
 

After the 30 second initialization period of the SMA, a ZR is allowed to sample the ADC 
input every 100Hz in the applicationTick() function. Once a sample is taken, it is subtracted from 
the SMA and the absolute value of the result is computed. The absolute value is taken because a 
vehicle can be detected by either being above the threshold (SMA + threshold) or below the 
threshold (SMA – threshold). This is illustrated in Figure 20. The threshold value selected for 
each ZR is 500 levels. The corresponding voltage threshold is then:  

 levels x 0.29mv/level =145mVVoltage Threshold  = 500         (12) 

If the AMR circuit output voltage is 145mV above or below the SMA, a vehicle detection 
will occur. To eliminate noise, there must be three successive vehicle detections before an actual 
vehicle detection occurs. Once this happens, a timestamp of when the detection occurs is 
recorded. This timestamp is the value of the physical clock plus the value of the clock offset 
configured in the clock synchronization protocol (Section 4.2). The physical clock is a 32-bit 
number that increments every one millisecond. The physical clock will not overflow for almost 5 
days. The ZR will send a unicast message to the ZC with the timestamp as its data. Also, to 
assure that a vehicle hovering over a sensor or a slow moving vehicle is not detected more than 
once, the ADC must read 100 consecutive samples within the threshold range after a vehicle 
detection before another vehicle detection can occur. 

 
4.5 Logging of Vehicle Detections 
 

The ZC is responsible for logging vehicle detection data. When a ZC receives a vehicle 
detection message from a ZR, it writes a comma separated line of data to the serial port. An 
example of a line of data written to the serial port after vehicle detection data is received from a 
ZR is *,000D6F00000A7F11,0000032450. 

The asterisk (*) designates that this is vehicle detection data. The first number is the ZRs 
EUI. The second number is the timestamp, in milliseconds, of when the vehicle detection 
occurred. A Real-time Data Collector (RtDC) graphical user interface (GUI) was coded using 
Visual Basic in Microsoft Visual Studio.NET 2005 to log vehicle detections. The ZC 
development board has a RS-232 interface which is connected to a laptop computer by a serial 
cable. The laptop runs the RtDC GUI (Figure 23). 
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Figure 23: Real-time data collector GUI. 

 
First, the COM port of the laptop that is connected to the ZC must be selected and 

opened. To receive a list of ZRs that are connected to the network, the “Update Active Nodes” 
button is pressed. The ZC responds to the button press by sending a list of the active nodes in its 
address table. The list is a comma separated line starting with the pound (#) character. This is so 
the RtDC can distinguish between vehicle detection data (*) and an active node list (#). These 
are the only types of data that the RtDC will display from the ZC. The user has the option of 
recording a start time of data collection. When data collection is finished, the user can record a 
stop time. The vehicle detection data that was collected is logged in a text file. The name of the 
text file is the date when data collection occurred. Figure 24 shows an example of data that was 
collected on October 4, 2008.  

 

 
Figure 24: Vehicle detection data collected on 10/4/08. 

 
This logged data is then used by the vehicle tracking algorithms to provide an accurate 

trajectory count of the direction of vehicles through an intersection. The details of the vehicle 
tracking algorithm are discussed is Chapter 6. 
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4.6 Debugging and Testing Serial Port Commands 
 

Along with the software functionality added to the sink and sensor workspaces mentioned 
in this chapter, there are several serial port commands that the sink application uses for 
debugging and testing the wireless nodes. These commands can be sent to the ZC through a 
serial port connection using either the Insight Desktop or a Hyper Terminal application. If the 
command “Rxx” is written to the serial port, the ZC coordinator will send a unicast message 
requesting the device at the xx location in its address table to reset itself. By writing the 
command “Txx0100” to the serial port of the ZC will send a unicast message requesting the 
device at the xx location to change its global threshold value to 100. The device will respond 
with a unicast message sent back to the ZC containing its present SMA value. The command 
“Hxx0010” will send a unicast message requesting the device change the number of successive 
ADC samples above or below the threshold before an actual vehicle detection occurs to 10. The 
command “Zxx0200” will send a unicast message to the device requesting it to change the 
number of consecutive samples in the threshold range to 200.  

 

4.6.1 Over-the-Air Passthrough Bootloading 
Over-the-Air (OTA) bootloading is a way to upload source code wirelessly from a ZC to 

a device that is connected to a network. When using OTA passthrough bootloading, the source 
node (ZC) is connected to a PC via a serial cable. The uploaded source code originates from the 
PC, which sends the source code to a network device over a serial line and then passes the source 
code to the target node over the air. The source of OTA passthrough bootloading must be within 
range of the ZC and within one hop.  
 

 
Figure 25: Over-the-air passthrough bootloading (source ref. [10]). 

 
The source device uses a simplified MAC-based protocol to communicate with the target. 

This protocol is based on XModem CRC but uses 64-byte data blocks that can fit in a single 
IEEE 802.15.4 packet. During OTA upload, only the target device actually runs the bootloader. 
The source device and any intermediary devices that participate in the upload process continue to 
run an application. Figure 25 illustrates the OTA passthrough bootloading process. 
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CHAPTER 5: INTERSECTION SIMULATOR 

 
Before we do any actual testing of the WMSN in an intersection, the vehicle tracking 

algorithm needs to be tested. A software simulation of an intersection has been created using 
Visual Basic programming language in Microsoft Visual Studio.NET 2005 environment. This 
intersection simulation allows a real intersection to be recreated and vehicle movements through 
the intersection to be simulated. The movements of vehicles through the intersection will 
produce logged data that is similar to the logged data of the actual WMSN. This logged data can 
then be used by the vehicle tracking algorithm to verify that the algorithm is tracking vehicles 
correctly before any actual data is collected. Along with verifying that the vehicle tracking 
algorithm works, the intersection simulator will help us determine the minimum number of nodes 
that need to be deployed in an intersection, as well as the position of each node. 

A single lane T-intersection has been chosen as the configuration of the intersection 
where data will be collected. This configuration was chosen to simplify the intersection 
simulator, tracking algorithms, and collection of real-time data. Once we have verified that 
vehicle movements through a T-intersection can be successfully tracked, the system can be 
expanded to more difficult intersection configurations.    

 
5.1 Cellular Division of an Intersection  
 

To obtain spatial traffic information from a WMSN, a cellular approach is used. The 
intersection is divided into individual cells in which wireless nodes could be placed. The 
dimensions of the cells are designed based on the spatial resolution needs of the WMSN. Each 
wireless node contains a wireless node including an AMR sensor that detects disturbances by 
vehicles in the Earth’s magnetic field. The range of the AMR sensor is about 3 feet. This means 
that an AMR sensor needs to be driven over by a vehicle for a detection to occur. If a vehicle 
were to pass by an AMR sensor more than 3 feet away from the sensor, it would not be detected. 
This small range will not allow a wireless node to detect a vehicle traveling in an adjacent lane. 
Wireless nodes can then be placed in the middle of traffic lanes and are allowed to be side by 
side in adjacent lanes. 

Figure 26 shows two examples of a cellular division of an intersection. The width of the 
cells in these two images are 12’ x 12’. These dimensions were chosen because the width of a 
traffic lane in Minnesota is 12’ [25]. Having a much larger width of a cell compared to the range 
of an AMR sensor (3 feet) assures that if sensors are placed in neighboring cells, a single vehicle 
will not be detected by more than one sensor. 
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Figure 26: Current (left) and original (right) intersection cellular configuration. 

 
The first image (left) is the current configuration of position and number of nodes used 

for vehicle tracking in a T-intersection. There are a total of six nodes, one for each traffic lane. 
Each node is placed in a cell one cell away from the middle of the intersection. In an actual 
intersection, each traffic lane is defined by a white boundary line on the right side of the lane and 
a dashed yellow line on the left side of the lane. These lines give the driver of a vehicle a limited 
space in which to drive. The space in the middle of an actual intersection does not contain any 
boundary lines. Depending on the driver of the vehicle, the trajectory of a vehicle through the 
middle of an intersection can differ slightly from vehicle to vehicle. If a node were to be placed 
in the middle of the boundary lines, there is a good chance that it might be run over by a vehicle. 

The second image (right) was the original configuration of nodes. There are a total of 12 
nodes. After developing the tracking algorithms, it was concluded that this configuration 
contains an excess amount of nodes. The same tracking algorithm results could be obtained by 
reducing the number of nodes from 12 to 6. Not only could the tracking algorithms be simplified, 
but the reduction in the number of nodes reduced the time to build the prototypes as well as 
reduced the testing time. 

 
5.2 Intersection Simulator Design  
 
 In Figure 26 (left) there are three entrance nodes (nodes 1, 4, and 5) and three exit nodes 
(nodes 2, 3, and 6). A vehicle can then travel through the intersection on six different trajectories. 
These trajectories are North-to-East (NE), North-to-West (NW), East-to-West (EW), East-to-
North (EN), West-to-East (EW), and West-to-North (WN). Table 10 summarizes the entrance 
and exit nodes associated with each trajectory. 
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Table 10: Trajectory Entrance and Exit Nodes 

Entrance Node Exit Node Trajectory 
Node 1 Node 3 NW 
Node 1 Node 6 NE 
Node 4 Node 2 WN 
Node 4 Node 6 WE 
Node 5 Node 2 EN 
Node 5 Node 3 EW 

 
 The intersection simulator GUI is shown in Figure 27. The six nodes in the intersection 
need to be assigned EUIs. A node can be assigned a EUI by either drag-and-dropping EUIs from 
the Active Node list or by pressing the “Automatic Assign” button. The intersection is 
represented by a 19x12 array. Vehicles are represented by red squares. Vehicle trajectories can 
be simulated in two ways, by pressing individual trajectory buttons or by starting a random 
simulation. 
 

 
Figure 27: Intersection simulator GUI. 

 
 When an individual trajectory button is pressed, a vehicle is placed in the intersection 
array in the cell at the start of the corresponding entrance lane. The vehicle square is drawn, 
erased, and moved to the next cell. This process is repeated until the vehicle has moved through 
all cells on its trajectory. As a vehicle passes through a cell that contains a node, that node’s EUI 
and a timestamp in milliseconds is recorded in the “Recorded Data” textbox. The timestamp 
value is calculated from the system clock. This data is also written to a text file. The name of the 
text file is the date when the simulated data was collected. The text file is identical to the logged 
data collected in Section 4.5 and shown in Figure 24.   

The second way to record simulated intersection data is to start a random simulation. This 
random simulation uses a shifted negative exponential (SNE) distribution function [26] to 
calculate headway distribution between vehicles. The vehicle-per-hour (VPH) values can be 
changed by the user before a simulation is started and should be specific to the actual intersection 
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that is being simulated. The random simulation generates and logs data in the same fashion as 
describe above. During a random simulation, the number of nodes that generated a vehicle 
detection and the total number of tracks that were simulated are recorded. Also, a table keeps 
track of the 6 individual trajectory counts as well as the headway between vehicle releases 
calculated by the SNE distribution function. 

 

5.2.1 Shifted Negative Exponential Distribution Function 
At the outset of a simulation run, the intersection array is empty. Vehicles are generated 

at entrance points according to a SNE distribution function based on VPH volumes. The SNE 
distribution will yield the following expression:   
 
 min minh ln(1-R)] + H hh = (Η − )[−    −        (13) 
 
 where: 
 h = headway (seconds) separating vehicle emissions 
 H = mean headway = 3600/VPH 
 hmin = specified minimum headway (seconds) 
 R = random number in the range 0–1.0 
 

The SNE distribution function is commonly used for low-volume, single-lane headway 
calculations. This distribution is based on the assumption that vehicles arrive at random without 
any dependence on the time the previous vehicle arrived and that there is a minimum headway 
between vehicles, hmin. A possible range of headways is calculated using the SNE. The value 
selected in this range depends on the VPH and the random number, R, generated by a pseudo-
random number generator. A larger VPH value results in a smaller calculated headway. A larger 
random number results in a larger calculated headway. 
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CHAPTER 6: VEHICLE TRACKING ALGORITHM 

 
The tracking algorithm used in the WMSN for vehicle tracking in an intersection uses a 

form of multiple target tracking (MTT). MTT, a discipline first developed in 1955, is essential 
for surveillance systems employing multiple sensors, together with a computer subsystem, to 
interpret an environment [27].  Typical sensor systems in MTT include radar, infrared, and sonar. 
The MTT objective is to partition the sensor data into sets of observations, or tracks, produced by 
the same source. Once tracks are formed and confirmed, the number of targets can be estimated 
and target velocity, future predicted position, and target classification can be computed for each 
track. Originally developed for military applications such as radar, air-to-air and air-to-land 
defense, and battlefield intelligence, MTT has made its way into commercial applications due 
technology advances allowing cost-effective wireless sensor networks to be deployed. 

MTT incorporates a discipline called multisensor data fusion. Multisensor data fusion 
attempts to combine data from multiple sensors to perform inferences that may not be possible 
from a single sensor [28]. Data fusion is analogous to the cognitive process used by humans to 
integrate data continuously from their senses to make inferences about the external world. 
Humans receive and process data from their five senses – sight, sound, smell, touch, and taste – 
which are then assessed to draw conclusions about the environment. 

 
6.1 Elements of a Multiple Target Tracking System  
 

Figure 28 shows a block diagram of a simple recursive MTT system. There are five 
elements that represent this system:  sensor data processing, gating equations, correlation, track 
initiation, confirmation, and deletion, and filtering and prediction. 

 

 
Figure 28: MTT block diagram (source ref. [27]). 

 
First, input data is received from a node. This input data is often preprocessed before 

being passed to the gating equations. Pre-processing is specific to individual nodes and data 
types. Examples of pre-processing include image processing, signal processing, and filtering. 
Next, gating is used to decide if an observation belongs to a previously established track or to a 
new target track. If an observation satisfies the gate of one more existing tracks, it becomes a 
candidate to be associated with that track. Note that more than one observation may satisfy the 
gate of a single track. Also note that an observation that satisfies the gate of an existing track 
might not be used to update that track. In this case the observation will be a candidate for the 
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initiation of a new target track. Next, the correlation function takes the output of the gating 
function and makes a final observation-to-track assignment. In the case where a single 
observation is within the gate of a single track, the association can be made immediately. 
However, for closely spaced targets, a correlation conflict arises when multiple observations fall 
within the same gate and when observations fall within the gates of multiple tracks. Observations 
not associated to an existing track are used to form new tentative tracks. Once a tentative track is 
formed, it is usually required that at least one other observation be associated to the tentative 
track before the track is confirmed. A track that is not updated is deleted. The final step is the 
filtering and prediction function. After the inclusion of the new observations, tracks are predicted 
ahead of the arrival time for the next set of observations. Gates are placed around these predicted 
positions and the MTT processing cycle repeats.  
 
6.2 Modified Multiple Target Tracking System  
 

There are few differences between the MTT systems described above and the one that is 
used in the presented vehicle tracking system. The first is that MTT tracks real-time targets. 
Target tracks are updated as a target moves through the area occupied by the node network. As a 
node detects a target, it uses gating functions to associate it to an existing track or to create a 
tentative new target track. The proposed vehicle tracking algorithm tracks vehicles through an 
intersection using logged data. This logged data is a compilation of all vehicle detections 
resulting from vehicles that traveled through the intersection in a specific period of time. Second, 
the correlation function in MTT is broken into two separate functions:  Track Initiation and 
Track Association. These two functions are entered according to what type a node (entrance or 
exit) was outputted from the Gating Function. Finally, MTT uses filtering and prediction to 
create gating functions that predict the next move of a target. In MTT, a target can travel 
anywhere in the node field. Filtering and prediction is usually done using a Kalman filter [29]. 
The proposed vehicle tracking algorithm does not use any filtering or prediction functions. Once 
a vehicle has entered the intersection it has only two options for leaving the intersection. With 
such a small range of options, predicting a vehicles path is not necessary.  

Figure 29 shows the modified MTT system used in the development of the vehicle 
tracking algorithm. Each block is discussed in detail in the following sections. 

 

 
Figure 29: Modified MTT block diagram for the vehicle tracking algorithm. 
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6.2.1 Logged Vehicle Detections 
Vehicle detections are recorded by each node in a WMSN. Magnetic field disturbances 

around a wireless node are converted from an analog signal to a digital signal. Three successive 
detections above or below the threshold offset verify that a vehicle is present. After a vehicle is 
detected, the wireless node sends its EUI and a timestamp of when the detection occurred. The 
ZC of the WMSN receives this detection data from all nodes in the WMSN. When vehicle 
detection data is received, the ZC writes the source of the detection along with the timestamp 
into a text file. This text file is a log file containing all the vehicle detections from a WMSN over 
an arbitrary time period. Figure 24 shows an example of a log file.  

The vehicle tracking algorithm reads the data from the log file and places each line of the 
text file into an array list. Vehicle detections are not guaranteed to be logged in order they were 
detected. When a vehicle detection occurs, it is time stamped and sent to the ZC. Because of 
routing and that failed messages are retried, a vehicle detection of a node that occurred after a 
vehicle detection on another node might reach the ZC first. The array list that each line of the 
text file is stored in must be sorted according to each line’s timestamp. Each item of the list array 
is then split into a two-dimensional string array. The first item in the string array is the 16-bit 
node EUI. The second item is the 32-bit timestamp in milliseconds. The string array is then 
passed to the gating function of the vehicle tracking algorithm. This process is repeated until 
every line of the logged data has been placed in an array list, split, and sent to the gating 
function.   

 

6.2.2 Gating and Track Initiation 
When actual data is being collected in an intersection, the position and EUI of each node 

in the WMSN must be recorded. When the vehicle tracking algorithm reads through the data of 
the log file, it records and lists the EUIs of all wireless nodes that produced vehicle detections.  
Before the vehicle tracking algorithm can began, each EUI listed must be dragged-and-dropped 
to its corresponding node position on the vehicle tracking GUI (Figure 30). 

  The gating function compares the node EUI of each string array it receives to the 
entrance and exit nodes of the intersection. Nodes 1, 4, and 5 are entrance nodes. Nodes 2, 3, and 
6 are exit nodes. As a vehicle passes through the intersection, it travels over one entrance node 
and one exit node. If the node EUI is an entrance node, a new track is initiated. Tracks are stored 
in Current Track array and contain the node EUI and timestamp of each node. Both incomplete 
and complete tracks are stored in the array list. A count of the current number of tracks is 
recorded. The gating function is then re-entered and the next line of data from the logged data 
text file is read. If the node EUI is an exit node, the string array is then passed to the Track 
Association function.    
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Figure 30: Vehicle tracking GUI. 

 

6.2.3 Track Association 
The goal of this function is to associate an exit node with its corresponding entrance 

node, i.e. complete a track. In the Track Association function, the array of tracks is looped 
through until an incomplete track is found that contains an entrance node that the exit node could 
be assigned to. For example, exit node 2 could be assigned to an incomplete track if the entrance 
node in that track is either node 5 (East – North trajectory) or node 4 (West – North Trajectory). 
If the timestamp of the entrance node is smaller than the timestamp of the exit node, the exit 
node is associated with that track. If the timestamp of the entrance node is greater than or equal 
to the exit node, the entrance node produced a vehicle detection after the exit node, which cannot 
be considered a valid track. In this case, this track is skipped and the next incomplete track that is 
valid is searched for.  

When an entrance node is associated to a track, it is also kept in Last Node Added array 
that stores the last node associated to a track. This is because there are certain cases where the 
tracking algorithm fails to associate the correct exit node with an entrance node. When one of 
these cases occurs, an association error is encountered. An association error is when there are 
one or more incomplete tracks but the exit node is not a valid association to the entrance nodes. 
Figure 31 illustrates this association error. 

 



   
   
   

49 
 

 
Figure 31: Example of an association error and solution. 

 
The next node that enters the Track Association function is Node 6, 72986. The only 

track in the Current Track array that is incomplete is track 137. The entrance node to this track is 
node 5. The association node is exit node 6. It is not possible for a track to have an entrance node 
of 5 and an exit node of 6. This means that there was an association error in one of the previous 
completed tracks. To fix the association error, the vehicle tracking algorithm must go back to the 
last node associated with a track located in the Last Node Added array. The last node associated 
with a track is Node 3, 72288 (circled in red). This node is deleted from track 136 and the Last 
Node Added array. The Track Association function is then executed with Node 6, 72986 as the 
associated node. This node is associated with track 136 and added to the Last Added Node array. 
The replaced node, Node 3, 72288, becomes the next associated node. It is associated with track 
137 and added to the Last Node Added array. The vehicle tracking algorithm continues on with 
the Gating function. A new entrance node (Node1, 73405) was used to initiate track 138. The 
next Association Node is Node 6, 74089. This node will be associated with track 138, and the 
vehicle tracking algorithm continues. If replacing the last node added does not allow the vehicle 
tracking algorithm to continue, it will try and replace the second to last node added. If this fails, 
it will replace the third to last node added. Through experimentation, going back a maximum of 
three added nodes is sufficient to fix any association error. 

The vehicle tracking algorithm must also deal with sensors detecting a vehicle more than 
once. This usually occurs with large vehicles such as five axle trucks or vehicles that are 
hovering over a sensor while stopped at a stop sign. Section 4.4 discusses software functionality 
of the wireless nodes that deals with these cases. If an extra vehicle detection occurs on an exit 
node, a node association will occur where there are no incomplete tracks for this node to be 
assigned to. In this case, it is added to the Extra Node array and the vehicle tracking algorithm 
continues. If an extra vehicle detection occurs on an entrance node, the vehicle tracking 
algorithm cannot determine if this was an error or not, it will always initiate a new track. The 
result is an incomplete track when the vehicle tracking algorithm completes.  
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 After completion of the vehicle tracking algorithm, the completed tracks are looped 
through, displayed in the Tracks text box, and trajectory counts are recorded and displayed. Also, 
the number of entrance nodes, the number of exit nodes, and which exit nodes were not 
associated with a track are displayed in the Tracks text box. Trajectory counts are counted by 
looking at the entrance and exit nodes of each track and comparing the node EUIs to the position 
of the nodes arranged on the Vehicle Tracking GUI. If there are incomplete tracks, the vehicle 
tracking algorithm randomly chooses a trajectory to count depending on the location of the 
incomplete tracks entrance node. For example, if the incomplete track contains a vehicle 
detection by node 1, it will randomly choose between either updating the NW or NE trajectory.  
 
6.3 Vehicle Tracking Algorithm Limitations 
 

In some cases, the vehicle tracking algorithm incorrectly associates an exit node with an 
entrance node. This happens when the two successive trajectories enter the intersection 
approximately at the same time. Although an incorrect association occurs, the trajectories are 
still counted correctly. There are a total of three cases where this occurs, summarized in Table 
11. 

 
Table 11: Vehicle Tracking Algorithm Incorrect Associations – Correct Trajectories 

Successive 
Trajectories 

Tracking Algorithm 
Association 

Tracking 
Algorithm 

Trajectories 

Actual 
Trajectories 

 
Error 

EW – NW Track 1 = (EW, NW) 
Track 2 = (NW, EW) 

EW = 1 
NW = 1 

EW = 1 
NW = 1 

EW = 0 
NW = 0 

WN – EN Track 1 = (WN, EN) 
Track 2 = (EN, WN) 

WN = 1 
EN = 1 

WN = 1 
EN = 1 

WN = 0 
EN = 0 

NE – WE Track 1 = (NE, WE) 
Track 2 = (WE, NE) 

NE = 1 
WE = 1 

NE = 1 
WE = 1 

NE = 0 
WE = 0 

  
 Take for example the two successive vehicle trajectories of EW and NW in Table 11. In 
this case (Figure 32 left), the EW vehicle is traveling ahead of the NW vehicle towards the 
intersection. The EW vehicle crosses node 5 at 500ms and the NW vehicle crosses node 1 at 
550ms. After each vehicle pauses at the stop sign, the EW vehicle crosses its exit node (node 6) 
at 1,800ms, before the NW vehicle crosses its exit node (node 6) at 2,500ms. In this case, the 
vehicle tracking algorithm will correctly associate each entrance node with its corresponding exit 
node and the correct trajectories will be counted. In Figure 32 (right) the EW vehicle is again 
traveling ahead of the NW vehicle. But the NW vehicle crosses its exit node at 1,800ms, before 
the EW vehicle crosses its exit node at 2,500ms. When this happens, the vehicle tracking 
algorithm will make an incorrect association. Even though an incorrect association has occurred, 
the correct trajectories are counted. Because Track 1’s entrance node is Node 5 and its exit node 
is Node 6, its trajectory is EW. And Track 2’s entrance node is Node 1 and its exit node is Node 
6, its trajectory is NW. 
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Figure 32: Example 1 of a correct association (left) and an incorrect association (right).  

  
The case of an incorrect association but a correct trajectory count happens in two other 

closely spaced trajectory combinations listed in Table 11. The similar problem of two successive 
trajectories reaching the intersection at approximately the same time and the trailing trajectory 
crosses its exit node before the leading trajectory, causes the incorrect association to happen. 
Even though there is an incorrect association recorded in the vehicle tracking algorithm, the 
correct trajectories are counted. Take note that these three cases do not occur if the time between 
the two successive trajectories is large. 
 In three other cases, the vehicle tracking algorithm incorrectly associates exit nodes with 
entrance nodes, resulting in a miscount of vehicle trajectories. This occurs when three successive 
trajectories reach the intersection at approximately the same time. Table 12 summarizes these 
three cases. 
 

Table 12: Vehicle Tracking Algorithm Incorrect Associations – Incorrect Trajectories 

Successive 
Trajectories 

Tracking  
Algorithm 
Association 

Actual 
Trajectories 

Tracking 
Algorithm 

Trajectories 

 
Error  

 
 

NE – EW – WN 

 
Track 1 = (NE, EW) 
Track 2 = (EW, WN) 
Track 3 = (WN, NE) 

NE = 1 
NW = 0 
EW = 1 
EN = 0 
WE = 0 
WN = 1 

NE = 0 
NW = 1 
EW = 0 
EN = 1 
WE = 1 
WN = 0 

NE = -1 
NW = +1 
EW = -1 
EN = +1 
WE = +1 
WN = -1 

 
 

WN – NE – EW 

 
Track 1 = (WN, NE) 
Track 2 = (NE, EW) 
Track 3 = (EW, WN) 

NE = 1 
NW = 0 
EW = 1 
EN = 0 
WE = 0 
WN = 1 

NE = 0 
NW = 1 
EW = 0 
EN = 1 
WE = 1 
WN = 0 

NE = -1 
NW = +1 
EW = -1 
EN = +1 
WE = +1 
WN = -1 

 
 

WE – EN – NW 

 
Track 1 = (WE, EN) 
Track 2 = (EN, NW) 
Track 3 = (NW, WE) 

NE = 0 
NW = 1 
EW = 0 
EN = 1 
WE = 1 
WN = 0 

NE = 1 
NW = 0 
EW = 1 
EN = 0 
WE = 0 
WN = 1 

NE = +1 
NW = -1 
EW = +1 
EN = -1 
WE = -1 
WN = +1 
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Using the three successive trajectories of NE, EW, and WN in Table 12, Figure 33 
illustrates incorrect associations resulting in incorrect trajectory counts. Correct associations 
occur (left) when the trajectory that reaches the intersection first (NE) crosses its exit node 
before both the EW and WN trajectories cross their respective ext nodes. In this case, the NE 
vehicle crosses its entrance node, Node 1, at 500ms. The EW vehicle crosses its entrance node, 
Node 5, at 550ms and the WN vehicle crosses its entrance node, Node 4, at 700ms. All three 
vehicles pause at their stop signs and continue on into the intersection. The NE vehicle is the first 
to travel through the intersection and reach its exit node, Node 6, at 1625ms. Next, the EW 
vehicle travels through the intersection and reaches its exit node, Node 3, at 1800ms. Finally, the 
WN vehicle is the last vehicle to travel through the intersection and reaches its exit node, Node 
2, at 1900ms. These three trajectories traveled through the intersection in the order they all 
reached the intersection, resulting in a correct association by the vehicle tracking algorithms. 
 In Figure 33 (right), the NE vehicle is still the first vehicle to cross its entrance node 
followed by the EW and WN vehicles. But the EW vehicle is the first to travel through the 
intersection and it reaches its exit node, Node 3, at 1625ms. It is followed by the WN vehicle 
reaching its exit node, Node 2, at 1875 ms, and the NE vehicle reaching its exit node, Node 6, at 
1900ms. Since the vehicle that crossed its entrance node first (NE) does not cross its exit node 
before the EW or WN vehicles, an incorrect association occurs for all three tracks. 
 

   
Figure 33: Example 2 of a correct association (left) and an incorrect association (right). 

 
 Of the three cases listed in Table 12, two of them (NE – EW – WN, WN – NE – EW) 
cause the NE, EW, and WN trajectories to not be counted (they should be), causing an error of -1 
for each. The NW, EN, and EW are counted, causing an error of +1 for each. The third case, 
(WE – EN – NW) causes the NE, EW, and WN trajectories to be counted, causing an error of +1 
for each. The trajectories of NW, EN, and EW are not counted (they should be), causing an error 
of -1 for each. Say for example during an intersection simulation or collection of real-time data, 
the two cases of three successive trajectories NE – EW – WN and WE – EN – NW happen. The 
vehicle tracking algorithm will cause incorrect associations to occur, but the trajectory count will 
be accurate because the error for the six trajectories will cancel each other out. 
 The case of incorrect associations and miscounted trajectories occurs in two other 
trajectory combinations listed in Table 12. These incorrect associations occur when the leading 
trajectory does not cross its respective exit node before the other two trajectories. Similar to the 
cases listed in Table 11, these three cases do not occur if the time between the two successive 
trajectories is large. 
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CHAPTER 7: EXPERIMENTAL RESULTS 

 
This chapter presents two sections of experimental results. First, the vehicle tracking 

algorithm was tested using simulated data produced by the intersection simulator. Several sets of 
simulated data are used to test the accuracy of the vehicle tracking algorithm. The intersection 
that is used for testing the WMSN for vehicle tracking is a 6-lane T-intersection in Duluth, MN. 
The two roadways that form this test-site intersection are Wallace Avenue and East 4th Street. 
This intersection is controlled by stop signs. A T-intersection configuration was chosen for its 
simplicity. Using average annual daily traffic (AADT) values for each roadway, the intersection 
simulator can be adjusted to generate similar VPH values in order to replicate the test-site 
intersection. The AADT values are obtained by placing automatic tube counters at the analysis 
location for a 24-hour period. Figure 34 shows the test-site intersection.  

 

 
Figure 34: Test-site intersection of Wallace Avenue and East 4th Street (source ref. [30]). 

 
Second, actual data was collected from the test-site intersection using the WMSN for 

vehicle tracking. Six wireless nodes are placed in the intersection and collect vehicle detection 
data for several different time periods. The vehicle tracking algorithm was then used on this 
actual data to count the trajectories of the vehicles through the intersection. The results of the 
vehicle tracking algorithm are compared to trajectory counts acquired by a video camera and 
hand counted. 

 
7.1 Intersection Simulator Testing 
 

Peak-hour traffic can be calculated from AADT values. Typically, peak hour traffic 
volumes are approximately 8-11 percent of the AADT values on roadways [31]. 2007 Duluth 
AADT values for the three legs of the test-site intersection were attained from the Mn/DOT 
Traffic Forecasting and Analysis website [32]. The AADT of Wallace Avenue is 3650 vehicles 
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per day (VPD). For East 4th Street, the AADT for the west roadway is 5800 VPD and 3600 VPD 
for the east roadway. To obtain peak-hour values, the following equation must be used: 

 
 Peak-hour / 2) 11.0%AADT x = (          (14) 
 

These AADT values are for both lanes of each roadway, so the corresponding AADT 
value needs to be divided by 2 to get a peak-hour value for each lane of the roadway. Table 13 
summarizes the AADT and peak-hour values for each roadway of the test-site intersection. 
 

Table 13: Summary of Test-Site Intersection Roadway ADDT and Peak-Hour Values 

Intersection Roadway AADT Peak-Hour 
Wallace Avenue 3650 200 
East 4th Street – West Leg 5200 319 
East 4th Street – East Leg 3600 198 

 
In order to model the intersection simulator after the test-site intersection, VPH values for 

each trajectory through the intersection need to be calculated. There is no equation to calculate 
turning trajectories of each lane of the roadway from peak-hour values. Using the assumption 
that most vehicles (75%) on the east roadway of East 4th Street travel straight through the 
intersection to the west roadway of East 4th Street towards downtown Duluth, the trajectory East 
– West than has a VPH count of 149 (198 x 75%). The VPH counts for the remaining trajectories 
can then be calculated from this value. Table 14 shows the VPH counts for the test-site 
intersection that will be used for the intersection simulator. 

 
Table 14: Simulated Test-Site Intersection VPH Trajectory Counts  

Trajectory VPH 
North – East 30 
North – West 170 
East – West 149 
East – North 51 
West – East 168 
West - North 151 

 
 These VPH trajectory counts were used in the intersection simulator. Three different 
simulations were conducted at time periods of 15, 30, and 60 minutes. Table 15 summarizes the 
results of the intersection simulator. For all three durations, the vehicle tracking algorithm 
correctly tracked all vehicles through the intersection.  
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Table 15: Vehicle Tracking Algorithm Testing Using Simulated Intersection Data 

Duration 
(minutes) 

 
Trajectory

Simulated 
Trajectories

Tracking 
Algorithm 

Trajectories

 
Error 

NE 7 7 0 
NW 38 38 0 
EW 42 42 0 
EN 15 15 0 
WE 41 41 0 

 
 

15 

WN 36 36 0 
Total  179 179 0 (0%) 

NE 14 14 0 
NW 75 75 0 
EW 74 74 0 
EN 27 27 0 
WE 84 84 0 

 
 

30 

WN 72 72 0 
Total  346 346 0 (0%) 

NE 27 27 0 
NW 157 157 0 
EW 144 144 0 
EN 49 49 0 
WE 167 167 0 

 
 

60 

WN 140 140 0 
Total  685 685 0 (0%) 

 
In these time durations, none of the three cases listed in Table 12 occurred, which would 

lead to association errors and cause incorrect trajectory counts. Since there were no association 
errors, the accuracy of the vehicle tracking algorithm is 100%. This 100% accuracy, both in 
individual trajectories and an overall vehicle count, is a result of the low VPH values. These low 
values allow the vehicle trajectories to be spaced far apart, not allowing an association error to 
occur. A better test of the vehicle tracking algorithm would be to increase the VPH values of the 
intersection simulator, therefore decreasing the space between trajectories, resulting in one or 
more of the association error cases to occur. In order to increase the VPH values, the VPH for all 
six trajectories are doubled. Table 16 shows the increased VPH counts that will be used for the 
intersection simulator. 

Table 16: Increased VPH Values 

Trajectory VPH 
North – East 60 
North – West 340 
East – West 298 
East – North 102 
West – East 336 
West - North 302 
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 Again, three different simulations were conducted at time periods of 15, 30, and 60 
minutes. Table 17 summarizes the results of the intersection simulator.  
 

Table 17: Vehicle Tracking Algorithm Testing Using Increased VPH Values 

Duration 
(minutes) 

 
Trajectory

Simulated 
Trajectories 

Tracking 
Algorithm 

Trajectories 

 
Error 

NE 16 15 -1 
NW 84 85 +1 
EW 80 79 -1 
EN 25 26 +1 
WE 80 81 +1 

 
 

15 

WN 70 69 -1 
Total  355 355 6 (1.69%) 

NE 31 30 -1 
NW 169 170 +1 
EW 153 152 -1 
EN 52 53 +1 
WE 157 158 +1 

 
 

30 

WN 144 143 -1 
Total  706 706 6 (0.85%) 

NE 60 59 -1 
NW 339 340 +1 
EW 303 302 -1 
EN 92 93 +1 
WE 310 311 +1 

 
 

60 

WN 293 292 -1 
Total  1397 1397 6 (0.43%) 

  
 In all three time durations, a similar overall trajectory error occurred. The NE, WE, and 
WN trajectories were off by -1 each and the NW, EN, and WE trajectories were off by +1 each. 
This could result from either a single case of the three successive trajectories of NE – EW – WN 
or WN – NE – EW occurring, or a combination of all three cases in Table 12. Take note that 
several events of the two successive trajectories listed in Table 11 occurred in all three time 
durations, but these cases do not result in a miscount of trajectories. Also, even though individual 
trajectories were miscounted, the overall vehicle count for all three time durations was correct.  
 Overall, the counted trajectory errors generated by the vehicle tracking algorithm for each 
time duration are very small. In the 15-minute duration, a total of 355 vehicles passed through 
the intersection. The vehicle tracking algorithm miscounted 6 of these vehicles, which resulted in 
an error of 1.62%. The time duration was doubled to 30 minutes. A total of 706 vehicles passed 
through the intersection. Again, the vehicle tracking algorithm miscounted 6 of these vehicles. 
This error is same as the error for the 15-minute interval, but more than twice as many vehicles 
were counted. This same error and an increase in vehicles results in a smaller error of 0.85%. 
Finally, the time duration was doubled once more to 60 minutes. A total of 1397 vehicles passed 
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through the intersection. Again, 6 trajectories were miscounted resulting in a total error of 
0.43%.   
 
7.2 Testing at the Real T-Intersection 
 
 Data collection at the test-site intersection of Wallace Avenue and East 4th Street 
occurred on October 4, 2008 at 2:24 pm. Figure 35 shows the WMSN layout used to collect data 
in the test-site intersection. The ZC is shown in blue and the ZRs are shown in red. ZRs are 
labeled with the last 5 digits of their EUI and the distances from each ZR to the ZC are shown in 
parenthesis. The ZC was positioned in the grass on the west side of Wallace Avenue. All six ZRs 
in the intersection are positioned in the second cell away from the middle of the intersection. 
Notice that the positions of each wireless node are not in the middle of their respective cells. This 
is because before the nodes were placed in the intersection, vehicle behavior was observed. 
Vehicles traveling on East 4th Street tend to drive closer to the middle boundary line then the side 
boundary lines. Therefore, all four ZRs on East 4th Street were placed 3 feet from the middle 
boundary line. This will give a higher chance of a vehicle passing directly over the sensor, 
resulting in better vehicle detection data. Also, it was observed that when vehicles are traveling 
towards the intersection, they stay close to the middle boundary line. When they reach the 
intersection, they deviate from this position depending if they are going to turn or go straight. To 
counter this affect, all four sensors were placed on the back edge of their respective cells.   
 It was observed that most vehicles traveling southbound on Wallace Avenue take a right 
turn to travel west on East 4th Street. When vehicles are making this turn, they tend to hug the 
white boundary line in anticipation of turning. Therefore, the ZR AAA1E was placed 3 feet from 
the white side boundary line to increase the number of vehicles that travel directly over the 
nodes. 
 

 
Figure 35: Test-site intersection WMSN  layout. 
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 Figure 34 also shows the presence of one wireless router, AAA15, in the WMSN layout. 
This wireless router was need because the two ZRs on the east leg of East 4th Street, A7F11 and 
AAA11, were out of the range of the ZC. It was determined that the distance between the ZC and 
the two ZRs (96 and 102 feet) was greater then the range of the network. The wireless router was 
placed just off the sidewalk on the north-east corner of the intersection. This wireless router 
helped extend the range of the ZC in the east direction, allowing messages to be routed to and 
from the ZC and the two ZRs. The four other nodes in the WMSN were within the range of the 
ZC. Figure 36 shows an image of myself placing a node in the east bound lane of East 4th Street. 
Figure 37 shows an image of two deployed sensors on East 4th Street. 
  

 
Figure 36: Deploying a wireless node in the test-site intersection. 
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Figure 37: Two deployed wireless nodes in the test-site intersection. 

  
 After all ZRs were deployed and verified that they were working properly and data 
logging of vehicle detections could begin. A laptop computer running the RtDC was connected 
to the ZC via a serial cable. All vehicle detection data collected from the WMSN was written in a 
text file. There were two sets of vehicle detection data collected. The first was a 30 minute time 
period from 2:46 pm to 3:16 pm. The second was a 15 minute time period from 3:18 pm to 3:33 
pm. A video camera was set up north of the west leg of East 4th Street to record the vehicles 
traveling through the intersection. The video would be viewed at a later time so vehicle 
trajectories could be hand counted and compared to the results of the vehicle tracking algorithms. 
 Table 18 summarizes the results of observed trajectories hand counted using the video 
camera and the results of the tracking algorithm. 
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Table 18: Vehicle Tracking Results Using Original Test-Site Intersection Data 

Duration 
(minutes) 

 
Trajectory 

Observed 
Trajectories 

Tracking 
Algorithm 

Trajectories

 
Error 

NE 1 6 +5 
NW 25 28 +3 
EW 7 7 0 
EN 2 2 0 
WE 20 19 -1 

 
 

15 

WN 24 25 +1 
Total  79 87 10 (12.7%) 

NE 6 10 +4 
NW 46 46 0 
EW 12 17 +5 
EN 9 7 -2 
WE 44 42 -2 

 
 

30 

WN 42 45 +3 
Total  159 167 16 (10.1%) 

  
 For the 15 minute time duration, a total of 79 vehicles were observed with the video 
camera. The vehicle tracking algorithm counted a total of 87 trajectories. Of these 87 trajectories, 
there were 10 miscounted trajectories compared to the observed, resulting in an error of 12.7%. 
This error was calculated by dividing the observed total vehicle counted by the number of 
miscounted trajectories. For the 30 minute time duration, a total to 159 vehicles were observed 
using the video camera. A total of 167 trajectories were counted by the tracking algorithm. There 
were a total of 16 miscounted trajectories, resulting in an error of 10.1%. 
 The main reason the vehicle tracking algorithm produces error is incorrect vehicle 
detections. The incorrect vehicle detections can be caused by four scenarios. First, if a vehicle 
was not detected when it traveled over an entrance node or an exit node. Second, a vehicle was 
detected more than once when it traveled over a single node.  Third, if a node detected a vehicle 
when there was not one present. Finally, a vehicle that cuts a corner and travels over an exit node 
instead of the intended exit node can cause two entrance nodes detections and not the intended 
one entrance node and one exit node detection. 
 While observing the video and the logged data simultaneously, it was noted that vehicles 
traveling in the WN trajectory have the tendency to severely cut the corner. When a vehicle cuts 
this corner, they were detected by the AAA1E node and not the AA948 node. This happened 5 
times in the 15 minute data collection duration and 4 times in the 30 minute data collection 
duration. When this happens, the NW vehicle then travels over two entrance nodes, instead of 
one entrance node and one exit node. The tracking algorithm has the ability to determine if there 
was an extra exit node detection but not if there was an extra entrance node detection. This 
limitation will cause an excess in the total number of vehicles counted by the tracking algorithm. 
This is evident when comparing the total vehicle counts for both the observed and tracking 
algorithm trajectories in Table 18. Also, by detecting extra entrance nodes, incorrect associations 
of exit nodes to their entrance nodes can occur later on in the vehicle tracking algorithm, 



   
   
   

61 
 

resulting in a miscount of trajectories in the final totals. Figure 38 shows an example of a NW 
trajectory cutting the corner. 
 

AAA1E

 
Figure 38: NW trajectory cutting the corner. 

 
 The white vehicle in this image is traveling in a NW trajectory. After it stopped at the 
stop sign on the west leg of East 4th Street, it continues through the intersection, cutting the 
corner to travel north on Wallace Avenue. It cuts the corner so severely, that the vehicles left-
front tire is inches away from the entrance node AAA1E (circled in red). A detection of this node 
incorrectly occurred and no detection on the exit node AA948 (behind the vehicle) occurred. 
This could be avoided by placing the nodes AAAIE and AA948 farther north on Wallace 
Avenue by one or more cells. This would allow enough space for the NW trajectories that cut the 
corner to position themselves in between the lane boundaries before it crosses the exit node 
AA948. If the vehicle is positioned between the boundary lines, it then would not be detected by 
the entrance node AAA1E. 
  The occurrences of vehicles cutting the corner can be found by comparing the logged 
data to the video camera images of the intersection. The logged data was then modified by 
deleting any NW traveling vehicles that were found cutting the corner. The vehicle tracking 
algorithm was used to track vehicles using this modified logged data. Table 19 summarizes the 
results.  
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Table 19: Vehicle Tracking Results Using Modified Test-Site Intersection Data 

Duration 
(minutes) 

 
Trajectory 

Observed 
Trajectories 

Tracking 
Algorithm 

Trajectories

 
Error 

NE 1 4 +3 
NW 25 24 -1 
EW 7 6 -1 
EN 2 3 +1 
WE 20 19 -1 

 
 

15 

WN 19 19 0 
Total  74 75 7 (9.46%) 

NE 6 10 +4 
NW 46 42 -4 
EW 12 16 +4 
EN 9 8 -1 
WE 44 42 -2 

 
 

30 

WN 38 41 +3 
Total  155 159 18 (11.6%) 

 
 Notice that the WN total observed trajectories for the 15 minute duration has been 
reduced from 24 to 19. This is because 5 cases of the NW vehicle cutting the corner occurred in 
this time duration. This also reduces the total observed trajectories for the 15 minute duration 
from 79 to 74. The WN total observed trajectories for the 30 minute duration was reduced from 
42 to 38 and the total observed trajectories reduce from 159 to 155. 
 For the 15 minute time duration, the total vehicle count of the tracking algorithm was 
reduced to within 1 of the total observed trajectories. Also, the overall miscounted trajectory 
error was reduced from 10 to 7, resulting in an overall error of 9.46%. For the 30 minute time 
duration, the total vehicle count was reduced to within 4 of the total observed trajectories. The 
miscounted trajectory actually increased from 16 to 18, for an overall error of 11.6%.  
 For the two previous results of the tracking algorithm, a 50% probability was used to 
count incomplete tracks. From the observed trajectories it is clear the NW trajectory occurs more 
frequently than the NE trajectory, about 90% more often, especially in the 15 minute duration. If 
this probability is changed in the tracking algorithms, better results can be achieved. Table 20 
shows the results of the tracking algorithm by using the modified data and changing the 
probability of counting incomplete tracks in the NW and NE directions.   
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Table 20: Vehicle Tracking Results Using Modified Data and Incomplete Track Probability 

Duration 
(minutes) 

 
Trajectory 

Observed 
Trajectories 

Tracking 
Algorithm 

Trajectories

 
Error 

NE 1 2 +1 
NW 25 26 +1 
EW 7 6 -1 
EN 2 3 +1 
WE 20 19 -1 

 
 

15 

WN 19 19 0 
Total  74 75 5 (6.76%) 

NE 6 9 +3 
NW 46 43 -3 
EW 12 16 +4 
EN 9 8 -1 
WE 44 42 -2 

 
 

30 

WN 38 41 +3 
Total  155 159 16 (10.3%) 

 
 For both the 15 and 30 minute time durations, the total vehicle count is unchanged. For 
the 15 minute time duration, the overall miscounted trajectory error was reduced from 7 to 5, 
resulting in an overall error of 6.76%. For the 30 minute time duration, the miscounted trajectory 
was reduced from 18 to 16, for an overall error of 10.3%. 
 In conclusion, the vehicle tracking algorithms work very well on the simulated 
intersection data. There are a total of 6 cases where the tracking algorithm makes an incorrect 
association between an entrance node and an exit node. Of these 6 cases, 3 resulted in a miscount 
of trajectories. Several simulations were run and tracked using the vehicle tracking algorithm, 
resulting in a total trajectory error of less than 2% in each case. The simulated data represents 
perfect detection by the WMSN. In reality, this perfect data is difficult to achieve. Actual data 
was collected for two time durations. By examining the logged data and the video of the testing, 
it was clear that some vehicles were not detected by a wireless node, detected more than once by 
a sensor, or traveled over an unintended sensor (cutting the corner). Also, motorcycles were apart 
of the observed trajectories and most of the time were not detected by a wireless node. These 
factors increase the error of the vehicle tracking algorithm. Using the original data, the overall 
tracking error was 12.7% and 10.1% for the 15 and 30 minute time durations. Also, the total 
vehicle count counted by the vehicle tracking algorithm was higher than the observed total count. 
This was due in part to NW vehicles cutting the corner and traveling over a second entrance node 
instead of an exit node. These cases were removed from the logged data and the vehicle tracking 
algorithm was run again. The results were a much closer total vehicle count to the observed 
vehicle count. The overall trajectory error was reduced for the 15 minute duration but increased 
slightly in the 30 minute duration. Finally, it was noticed from observing the traffic flow, that 
90% of the vehicle traveling from Wallace Avenue turn west instead of east on East 4th Street. 
The probability of counting incomplete tracks in the vehicle tracking algorithm was changed to 
account for this. The results of the vehicle tracking algorithm improved. Again, the total vehicle 
count was much closer to the observed vehicle count. The total miscounted trajectory error was 
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reduced from 9.46% to 6.76% for the 15 minute duration and reduced from 11.6 to 10.3% in the 
30 minute duration.  
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 

 
8.1 Conclusions 
 

This report described a portable cellular wireless mesh sensor network for vehicle 
tracking in an intersection. The WMSN and vehicle tracking algorithm created can significantly 
improve the accuracy of intersection trajectory counts. Presently, the traditional approach to 
obtaining intersection counts is done by human operators using hand-held devices. This 
technique exposes the operators to the elements of weather and the danger of being struck by a 
vehicle, which leads to loss of focus by the operator and a significant amount of error in 
trajectory counts. Present research involving video cameras and image processing proves to be 
computationally too expensive and its accuracy is limited by object recognition accuracy, 
weather elements (snow, rain, and fog), and occlusion. The proposed vehicle tracking system 
solves the difficulties of obtaining accurate trajectory counts by utilizing AMR sensors to detect 
vehicles. These sensors perform under all weather conditions. Using a WMSN, the logging and 
tracking of vehicle detections becomes portable: can easily be installed or taken down in a few 
minutes, and is cost-effective.     

To verify the proposed vehicle tracking theory, various simulations and actual site tests 
were conducted and verified. The vehicle tracking algorithms were tested using an intersection 
simulator. Using simulated data, the vehicle tracking algorithms successfully tracked vehicles 
with less than a 2% error. Actual site data was collected at an intersection in Duluth, MN. Using 
the initial data, the vehicle tracking algorithm tracked vehicle trajectories with an error of 12.7% 
for a 15 minute time duration and an error of 10.1% for the time duration of 30 minutes. After 
reviewing the video footage of the data collection process, it was noticed that the layout of the 
WMSN could be changed to improve vehicle detection by repositioning two wireless nodes 
farther away from the intersection. Also, it was observed that 90% of traffic coming from the 
north turned west instead of east. After the logged data was modified to account for this change 
in layout, and the vehicle tracking algorithm incomplete track probability was changed, the 
results improved. Based on the experimental results and the theory presented, we conclude that 
WMSN for vehicle tracking in an intersection is a practical tool for accurately tracking vehicles 
and can significantly save time and resources.  

 
8.2 Future Recommendations 

 
The vehicle tracking algorithm implemented in this project yielded some error. One of 

the improvements that could be done is to further research the tracking algorithm to handle all 
cases of vehicle movements where an error might be produced. After developing the hardware 
and conducting field tests, a few improvements in the design were noted. First, the proposed 
system uses a separate battery charging circuit to recharge depleted batteries. This circuit could 
be implemented into the wireless node circuit so battery charging could be accomplished without 
disconnecting the battery. Second, a wireless node is powered on and off by connecting or 
disconnecting the battery. A toggle switch would prove very helpful in controlling power to the 
wireless node circuit. The PAN4570 module proved to be very difficult to hand-solder to the 
prototype boards because of its 48-pin QFN package. ZigBee technology is rapidly growing as 
companies continue to adopt this new technology into their products. During the development of 
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this vehicle tracking system, several companies have adopted ZigBee technology into their 
products, providing many options for ZigBee SoC that can be used to replace the PAN4570 
module. Finally, the application of a sleepy ZED could be used in this system to decrease power 
consumption, reducing the size of the battery, and in turn the size of the node. 

By using an AMR sensor for detecting vehicles in the wireless nodes, wireless nodes 
must be placed in the middle of traffic lanes. A vehicle detection occurs when a car travels over 
the node. If a vehicle does not pass over the sensor, a vehicle detection is not guaranteed. If an 
infrared sensor was used, the nodes could be placed on the lane boundaries, a vehicle anywhere 
with the boundaries of the traffic lane could be detected, and the number of nodes in the network 
could be reduced.  

In this project, the WMSN for vehicle tracking was only implemented using a T-
intersection. By increasing the number of nodes deployed in an intersection and making changes 
to the vehicle tracking algorithms, several intersection configurations could become candidates 
to use the portable WMSN for vehicle tracking.   
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