Practice problems for the Final Exam from Sections 15.2.

1. Let \(f(x, y) = \frac{2x^2 + 3y^2}{x^2 + y^2} \). Compute \(\lim_{(x,y) \to (0,0)} f(x, y) \) along the following paths:

 (a) the positive x-axis
 (b) the negative y-axis
 (c) along any line \(y = mx \)

 What can you conclude about \(\lim_{(x,y) \to (0,0)} f(x, y) \)?

2. Let \(f(x, y) = \frac{x^2 y}{x^4 + y^2} \). Compute \(\lim_{(x,y) \to (0,0)} f(x, y) \) along the following paths:

 (a) along any line \(y = mx \)
 (b) along the parabolas \(y = cx^2 \)

 What can you conclude about \(\lim_{(x,y) \to (0,0)} f(x, y) \)?

Answers:

1. (a) 2 (In fact, \(f(x,0) = 2 \) for any \(x \).)

 (b) 3

 (c) \(\frac{2+3m^2}{1+m^2} \)

 The limit does not exist. (As soon as limits along any two paths are not equal, the limit cannot exist. So parts a and b are enough to conclude the limit does not exist.)

2. (a) zero, no matter what \(m \) is (Replace \(y \) with \(mx \), divide numerator and denominator by \(x^2 \), and take the limit as \(x \to 0 \).

 (b) \(\frac{c}{1+c^2} \) (Replace \(y \) with \(cx^2 \), cancel \(x^4 \). No \(x \)'s remain, so \(f \) is “constant along parabolas.”)

 The limit does not exist (even though the limit along any straight line is zero!!)