1. \(\frac{\ln(\log_{10}(2))}{10} \)

2. (a) \(e^{x^2 + 1} \cdot 2x \)
 (b) \(\frac{1}{\sqrt{1 - (10^x)^2}} \cdot 10^x \cdot (\ln(10)) \)
 (c) \(\left(\frac{\sin(x)}{x} + \cos(x) \cdot \ln(x) \right) \cdot (x \sin(x)) \)

3. Partial answer: the angle between the vectors should be more than 90°.

4. \(\sqrt{50} \)

5. \(\frac{x-3}{4} = \frac{y+2}{4} = \frac{z-1}{6} \)

6. D

7. reflect across the line \(y = x \).

8. C

9. \(< -13, -7, 3 > \cdot < x - 2, y, z > = 0 \)

10. (a) True
 (b) True
 (c) False
 (d) False
 (e) False
 (f) False
 (g) True
 (h) True

11. \(\frac{1}{2} \ln |r^2 - 5| + C \)

12. See p. 465, or start with \(\tan(\arctan(x)) = x \), differentiate, solve for \(\arctan'(x) \), and draw a triangle to substitute \(x^2 + 1 \) for \(\sec^2(\arctan(x)) \).

13. See p. 453

14. The line of intersection is perpendicular to both normal vectors, so a direction vector for the line can be obtained by taking the cross product of the two normal vectors.