Math 1297, Calculus II

Lecture Section 8

Proofs (and hints) to know for Test 1

- 1. Show $\vec{a} \times \vec{b}$ is perpendicular to \vec{a} . (Hint: Dot $\vec{a} \times \vec{b}$ with \vec{a} and show it equals zero. See p. 810.)
- 2. Show the inverse derivative formula (7.1): $f^{-1'}(x) = \frac{1}{f'(f^{-1}(x))}$. (Hint: start with $f(f^{-1}(x)) = x$ and take the derivative of both sides, using the chain rule on the left side: $f'(f^{-1}(x))f^{-1'}(x) = 1$. Solve for the term $f^{-1'}(x)$.)
- 3. Show $\frac{d}{dx}e^x = e^x$, assuming you know that $\frac{d}{dx}\ln(x) = \frac{1}{x}$. (Hint: Special case of 2. Start with $\ln(e^x) = x$, differentiate, simplify.)
- 4. Show $\frac{d}{dx}\arctan(x) = \frac{1}{1+x^2}$. (Hint: Special case of 2. Start with $\tan(\arctan(x)) = x$, differentiate, simplify using the appropriate triangle...)
- 5. Show $\log_a(x) = \frac{\ln(x)}{\ln(a)}$. (Hint: $y = \log_a(x) \iff a^y = x$. Now take \ln of both sides.)
- 6. Show $\frac{d}{dx}a^x=a^x\ln(a)$, assuming you know that $\frac{d}{dx}e^x=e^x$. (Hint: Rewrite a^x as $(e^{\ln(a)})^x=e^{x\ln(a)}$. Differentiate.)
- 7. Show $\ln(ab) = \ln(a) + \ln(b)$ directly from the definition of $\ln(x) = \int_1^x \frac{1}{t} dt$. (Hint: $\ln(ab) = \int_1^{ab} \frac{1}{t} dt = \int_1^a \frac{1}{t} dt + \int_a^{ab} \frac{1}{t} dt$. Show using a u-substitution that the last integral is equal to $\int_1^b \frac{1}{t} dt$.
- 8. Use the natural log property of $\ln(ab) = \ln(a) + \ln(b)$ to show that $e^{a+b} = e^a e^b$. (Hint: Show $\ln(e^{a+b}) = \ln(e^a e^b) : \ln(e^{a+b}) = (a+b)\ln(e) = a+b = a\ln(e) + b\ln(e) = \ln(e^a) + \ln(e^b) = \ln(e^a e^b)$.
- 9. Show $\frac{d}{dx}\cosh(x) = \sinh(x)$ (or vice versa). (Hint: Direct computation using the definition of $\sinh(x)$ and $\cosh(x)$.)