Math 3280, Differential Equations with Linear Algebra

Prof. Bruce Peckham, Instructor, Spring 2014
Brief Course Summary
Differential Equations:

1. Analytic Solutions

Order	Dim	Type	Solution Technique
1	1	Simplest nontrivial: $y^{\prime}=a y$ Separable (nonlinear) $y^{\prime}=f(x) g(y)$ linear: $y^{\prime}+p(x) y=q(x)$ Nonlinear, not sep.: $y^{\prime}=f(x, y)$	Every technique in the course!! Separation of Variables integrating factor No general techniquie; maybe substitutions
2	1	Linear, const coeff, homogeneous $y^{\prime \prime}+a y^{\prime}+c y=0 \text { or } L[y]=0$ Linear, const coeff, nonhomogeneous: $y^{\prime \prime}+a y^{\prime}+b y=g(x) \text { or } L[y]=g$	Try $e^{r x} ; 3$ cases for 2 nd order Laplace transforms Convert to 1st order system $y=c_{1} y_{1}+c_{2} y_{2}+y_{p}$ y_{p} : -Lucky guess/undet. coeffs/Annihilators -Variation of parameters: $y_{p}=v_{1} y_{1}+v_{2} y_{2}$ Laplace transforms - esp. for g discts.
k	1	Linear, const coeff, homog Linear, const coeff, nonhomog	Extend techniques for $k=2$ Extend techniques for $k=2$
1	n	Linear const coeff homog systems $\mathrm{x}^{\prime}=A \mathrm{x}$	Eigenvalues/eigenvectors: use $e^{\lambda t} \mathbf{v}$; 2 cases for 2D (dbl roots not covered)
2	1	Linear nonconst coeff: $y^{\prime \prime}+a(x) y^{\prime}+b(x) y=0$	No general technique (but $y_{1} \rightarrow y_{2}=v y_{1}$) and y_{p} from var of pars
k	1	Nonlinear: $y^{(k)}=f\left(y^{(k-1)}, \ldots, y^{\prime}, y, x\right)$	No general technique
1	n	Nonlinear systems: $\mathbf{x}^{\prime}=f(\mathbf{x}, t)$	No general technique
k	n		Convert to first order system

2. Qualitative Solutions
(a) 1D Automomous only $\left(y^{\prime}=f(y)\right)$: Equilibria, phase line, vector field; sketch solutions consistent with phase line
(b) 1D ANY $\left(y^{\prime}=f(y, x)\right)$: Slope field
(c) 2D Automomous only $\left(\mathrm{x}^{\prime}=f(\mathbf{x})\right)$: Equilibria, phase plane, fieldvector/direction/slope field; sketch $x_{1}(t)$ and/or $x_{2}(t)$ from curve in phase plane
3. Numerical Solutions
(a) ANY!!!!: Euler's method (not covered: Runge-Kutta, ...)
(b) ANY!! In Mathematica: NDSolve, Streamplot
4. Models/applications - construct given verbal information (for example, "X is proportional to $\mathrm{Y}^{\prime \prime}$)
(a) Exponential growth (population), decay (radioactive decay)
(b) Heating/Cooling
(c) Falling object: $m v^{\prime}=F_{\text {gravity }}+F_{\text {friction }}$
(d) Mixing $x^{\prime}=$ rate in - rate out.
(e) Logistic population growth: $y^{\prime}=a y-a y^{2}$
(f) Spring/mass system - horizontal or vertical: comes from $F=m a=m y^{\prime \prime}$.
(g) Population models (predator-prey systems)

Linear Algebra

1. Solve $A \mathbf{x}=\mathbf{b}$ (Row reduction, echelon forms, ($0,1, \infty$: free params.))
2. For $n \times n: \operatorname{Det}(A), A^{-1}$ (if $\left.\operatorname{Det}(A) \neq 0\right)$, eigenvalues, eigenvectors
3. Vector Space/subspace, basis, linearly independent, span, dimension
4. Linear transformation - "kernel" or "null space"

Examples: D, integration, L (for lhs of linear differential equation), Laplace transform, multiply by matrix A, Annihilators
5. Theorems: The following are vector subspaces:
(a) Solutions to $A \mathbf{x}=\mathbf{0}$ (Dimension is number of free variables after row reduction.)
(b) Solutions to $L[y]=0$ (dimension depends on order of L.)
(c) The set of eigenvectors for a specific eigenvalue of a matrix A (dimension is often one, never zero)

