Math 3280: DE+LA. Test 2 partial answers. Prof. Bruce Peckham

1. (a) Plug and check

(b)
$$y(x) = c_1 e^x + c_2 e^{-3x} + (-x+1)$$

2.
$$y(x) = c_1 e^{-3x} + c_2 x e^{-3x}$$

- 3. Start with $c_1 1 + c_2 x + c_3 x^2 = 0$. Show all three constants must equal zero. Several ways to do this. The two most used ways are
 - (a) Use the original equation along with two more equations obtained by differentiating the starting equation. The determinant of the coefficient matrix is the "Wronskian determinant" of $\{1, x, x^2\}$.
 - (b) Get three equations by choosing 3 different x values, for example 0, 1, 2. Each x determines an equation. The three equations can be solved to show all three constants are zero.
- 4. (a) $y(x) = c_1 1 + c_2 x + c_3 x^2$ (b) $y(x) = 1 + 2x + \frac{3}{2}x^2$
- 5. Lots of answers. Any system with two equations and 5 unknowns will usually work. If you use a system whose matrix is in row echelon form, you will guarantee that the two equations do not reduce to one equation.
- 6. 5

_

7. The x axis in the plane.

8.
$$\begin{bmatrix} -1 & 3 & 3\\ 2 & 1 & 1\\ 3 & 0 & -2 \end{bmatrix} \begin{bmatrix} r\\ s\\ t \end{bmatrix} = \begin{bmatrix} 4\\ 2\\ 1 \end{bmatrix}$$

9.
$$(x_1, x_2) = (-3/7, 5/7)$$

- 10. (a) $\left\{ t \begin{bmatrix} -2\\ 1 \end{bmatrix} \right\}$ (*t* is any real number)) (b) 1 (one free variable)
- 11. Basis: $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$ (or any two vectors along with the given vector for which the three are linearly independent)

12. (a)
$$A^{-1} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

(b) Multiply A times A^{-1} to show you get I.

13.
$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

- 14. True. $\begin{bmatrix} 1\\3\\2 \end{bmatrix} = 1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + 2 \begin{bmatrix} 0\\1\\1 \end{bmatrix}$ by inspection, or solve the system $c_1 \begin{bmatrix} 1\\1\\0 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\3\\2 \end{bmatrix}$ for c_1 and c_2 using, for example, row reduction. It should turn out that $c_1 = 1$ and $c_2 = 2$.
- 15. You must show T is closed under vector addition and scalar multiplication:

16. Since y_1 and y_2 are solutions, then $y_1'' + x^2y_1' + y_1 = 0$ and $y_2'' + x^2y_2' + y_2 = 0$. Now plug $y_1 + y_2$ into the differential equation: $(y_1 + y_2)'' + x^2(y_1 + y_2)' + (y_1 + y_2) = (y_1'' + x^2y_1' + y_1) + (y_2'' + x^2y_2' + y_2) = 0 + 0 = 0$.