Math 3280, Differential Equations with Linear Algebra

Prof. Bruce Peckham, Instructor, Spring 2014

Brief Topic Summary for Test 2

Differential Equations:

- 1. Analytic Solutions (Sections 5.1, 5.2)
 - (a) Structure of general solution to y' + p(x)y = q(x): $y(x) = y_c(x) + y_p(x) = c_1y_1(x) + y_p(x)$.
 - (b) Structure of general solution to y'' + p(x)y' + q(x)y = r(x): $y(x) = y_c(x) + y_p(x) = c_1y_1(x) + c_2y_2(x) + y_p(x)$.
 - (c) Finding $y_1(x)$ and $y_2(x)$ for ay'' + by' + cy = 0 (constant coefficient linear, homogeneous if the characteristic polynomial has real distinct or real repeated roots).
 - (d) Using initial conditions, solve for c_1 and c_2 for second order linear differential equations.
 - (e) Linear independence of y_1 and y_2 . Use of Wronskian as a shortcut. More generally, linear independence of n functions.
- 2. Qualitative Solutions / Numerical Solutions (labs not on test)
- 3. Models (labs one question might be on test)
 - (a) Exponential growth (population), decay (radioactive decay)
 - (b) Heating/Cooling
 - (c) Falling object/parachute
 - (d) Mixing
 - (e) Exponential population growth/decay and logistic growth

Linear Algebra (Secs 3.1-3.6, 4.1-4.4, 4.7)

- 1. Solve Ax = b (Row reduction, row echelon form, reduced row echelon form and interpretation of row reduced matrices for no solution, unique solution, infinity of solutions, number of free parameters)
- 2. For A an $n \times n$ matrix: Compute Det(A), A^{-1} using row reduction
- 3. $Det(A) \neq 0 \Leftrightarrow A^{-1}$ exists \Leftrightarrow there is a unique solution to $A\mathbf{x} = \mathbf{b}$
- 4. Vector Space/subspace, basis, linearly independent/dependent including formal equations that must be satisfied to be dependent, span including formal equations that must be satisfied for a given set of vectors to to span a (sub)space, dimension
- 5. Vector space examples: $\Re^2, \Re^3, \Re^n, M_{m \times n}, F$.
- 6. Vector subspace examples:
 - (a) in \Re^n : origin, lines through origin, (hyper)planes through the origin, solutions to $A\mathbf{x} = \mathbf{0}$.
 - (b) in F: solutions to y'+p(x)y = 0 (1 dimensional) or y''+p(x)y'+q(x)y = 0 (2 dimensional).
 - (c) in $M_{n \times n}$: Diagonal matrices, ...
 - (d) in any vector space: linear combinations of any set of vectors
 - (e) Proof of a subset being a subspace, especially (a) and (b) (closed under vector addition and scalar multiplication) vs. example showing a subset is not a subspace
 - (f) Proof that differences of solutions to $A\mathbf{x} = \mathbf{b}$ are solutions to $A\mathbf{x} = \mathbf{0}$. Analogous statement for solutions to linear differential equations, at least first and second order.
 - (g) Shortcuts if you know the dimension of a vector (sub)space is n: any set of more that n vectors must be linearly dependent; no set of fewer than n vecors can span the space. Any set of n vectors that either is linearly independent or spans the space also has the other property.