Math 3280 Practice Test 3
B. Peckham

1. (5 pts) From Calculus II, you know the solution to $y^{\prime}=x^{2}$ is $y(x)=\frac{x^{3}}{3}+C$. Identify in this solution y_{c} (the solution to the corresponding homogeneous differential equation) and y_{p}, the particular solution.
2. (5 pts) Find one particular solution to $y^{\prime}+3 y=2 e^{4 x}$. (You need not find the general solution.)
3. (5 pts) Find the general solution to the constant coefficient linear homogeneous differential equation which has the following auxillary polynomial: $\left(r^{2}+1\right)^{2}(r+1)^{3}$ (obtained by trying a solution of the form $\left.y(x)=e^{r x}\right)$.
4. (5 pts) What differential operator annihilates $5 e^{3 x}$? Verify your answer.
5. (5 pts) Use the fact that $e^{3 x}$ and $\cos (2 x)$ are both known to be solutions to

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+4 y^{\prime}-12 y=0
$$

to write down the general solution to the differential equation.
6. (5 pts) What is the Laplace transform of $g(t)=3 t^{2}-5 e^{4 t} \cos (3 t)$? (You may use the tables. You need not simplify your answer.)
7. (5 pts) Use the definition of the Laplace transform to show that if $F(s)$ is the Laplace transform of $f(t)$, then the transform of $e^{2 t} f(t)$ is $F(s-2)$.
8. (10 pts) Define $g(t)=\left\{\begin{array}{cc}0 & 0 \leq t<3 \\ (t-3)^{2} & 3 \leq t .\end{array}\right.$ Use step functions to write $g(t)$ as a single line formula.

Find the Laplace transform of $g(t)$ either directly from the definition or from tables.
9. (7 pts) Solve using the method of Laplace transforms: $y^{\prime}(t)+5 y(t)=0, y(0)=3$.
10. (8 pts) Compute the Laplace transform of the solution of the initial value problem:

$$
y^{\prime \prime}-3 y^{\prime}+y=3 \cos (4 t) ; \quad y(0)=2, y^{\prime}(0)=0 .
$$

(Find only $Y(s)$, not $y(t)$.) You need not simplify your answer.
11. (8 pts) Find the inverse Laplace transform of $F(s)=\frac{3 s-5}{s^{2}+2 s+37}$.
12. (5 pts) Find the form of a particular solution to $y^{\prime \prime}+4 y=\sin (2 t)$. Do not include extraneous terms and do not evaluate the "undetermined coefficients."
13. (7 pts) Write the differential equation $y^{\prime \prime}+y^{\prime}-2 y=0$. as a system of first order differential equations. Write the system in vector form.
14. (5 pts) Is $\binom{e^{-3 t}}{-2 e^{-3 t}}$ a solution to $\mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & 2 \\ 2 & -2\end{array}\right) \mathbf{x}$? Justify.
15. (9 pts) Let $A=\left(\begin{array}{cc}-2 & -4 \\ -1 & 1\end{array}\right)$. One eigenvalue-eigenvector pair is $\left(-3,\binom{4}{1}\right.$). Find the other eigenvalue and a corresponding eigenvector. Use this to find the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$.
16. (6 pts) Consider the system of differential equations

$$
\dot{x}=-\frac{1}{2} x, \quad \dot{y}=y-y^{2}
$$

(a) Find all equilibrium points.
(b) Assume the initial conditions $x(0)=1, y(0)=2$. Determine the velocity vector of the solution $(x(t), y(t))$ at $t=0$.
17. Extra Credit (5pts) Solve $\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{cc}2 & -4 \\ 4 & 2\end{array}\right)\binom{x}{y}$

