Math 3280, Differential Equations with Linear Algebra Prof. Bruce Peckham, Instructor, Fall 2010 Brief Course Summary

Differential Equations:

1. Analytic Solutions

. Analytic solutions			
Order	Dim	Type	Solution Technique
1	1	Simplest nontrivial: $y' = ay$	Exponential solutions!!
		Separable (nonlinear) $y' = f(x)g(y)$	Separation of Variables
		linear: $y' + p(x)y = q(x)$	integrating factor
		not sep or linear: $y' = f(x, y)$	Substitutions
$n \ge 1$	1	Linear const coeff homogeneous	Try e^{rx} ; 3 cases for 2nd order
		y'' + ay' + cy = 0 or $L[y] = 0$	Laplace transforms
			Convert to 1st order system
		-nonhomogeneous: add y_p	Lucky guess/undet. coeffs/Annihilators
		y'' + ay' + by = g(x) or L[y] = g	variation of parameters $(y_1,, y_n \to y_p)$
			Laplace transforms - esp. g discontin.
n > 1	1	Linear nonconst coeff: $a(x), b(x)$	No general technique (but $y_1 \rightarrow y_2 = vy_1$)
$n \ge 2$	1	Nonlinear: $y^{(n)} = f(y^{(n-1)},, y, x)$	No general technique
1	n	Linear const coeff homog systems	Eigenvalues/eigenvectors;
		$\mathbf{x}' = A\mathbf{x}$	2 cases for 2D (rep roots not covered)
1	n	Nonlinear systems: $\mathbf{x}' = f(\mathbf{x}, t)$	No general technique
	Order 1 $n \ge 1$ n > 1 $n \ge 2$	OrderDim11 $n \ge 1$ 1 $n \ge 1$ 1 $n \ge 1$ 1 $n \ge 2$ 11 n	$\begin{array}{c cccc} \hline \text{Order} & \text{Dim} & \text{Type} \\ \hline 1 & 1 & \text{Simplest nontrivial: } y' = ay \\ \text{Separable (nonlinear) } y' = f(x)g(y) \\ \text{linear: } y' + p(x)y = q(x) \\ \text{not sep or linear: } y' = f(x,y) \\ \hline n \geq 1 & 1 & \text{Linear const coeff homogeneous} \\ y'' + ay' + cy = 0 \text{ or } L[y] = 0 \\ \dots \\ -\text{nonhomogeneous: add } y_p \\ y'' + ay' + by = g(x) \text{ or } L[y] = g \\ \hline n \geq 1 & 1 & \text{Linear nonconst coeff: } a(x), b(x) \\ \hline n \geq 2 & 1 & \text{Nonlinear: } y^{(n)} = f(y^{(n-1)}, \dots, y, x) \\ \hline 1 & n & \text{Linear const coeff homog systems} \\ \mathbf{x}' = A\mathbf{x} \end{array}$

- 2. Qualitative Solutions
 - (a) 1D Automomous (y' = f(y)): Equilibria, phase line, vector field, direction field
 - (b) 1D ANY (y' = f(y, x)): Slope field
 - (c) 2D Automomous ($\mathbf{y}' = f(\mathbf{y})$): Equilibria, phase plane, vector field, direction field
- 3. Numerical Solutions
 - (a) ANY!!!!: Euler's method (not covered: Runge-Kutta, ...)
- 4. Models construct given verbal information ("X is proportional to Y")
 - (a) Exponential growth (population), decay (radioactive decay)
 - (b) Heating/Cooling
 - (c) Falling object
 - (d) Mixing
 - (e) Logistic population growth
 - (f) Spring/mass system horizontal or vertical
 - (g) Population models (predator-prey)

Linear Algebra

- 1. Solve $A\mathbf{x} = \mathbf{b}$ (Row reduction, echelon forms, $(0, 1, \infty$: free params.))
- 2. For $n \times n$: Det(A), A^{-1} (if $Det(A) \neq 0$)
- 3. Vector Space/subspace, basis, linearly independent, span, dimension
- Linear transformation "kernel" or "null space" Examples: D, integration, L (for lhs of linear differential equation), Laplace transform, multiply by matrix A, Annihilators
- 5. Theorems: The following are vector subspaces:
 - (a) Solutions to $A\mathbf{x} = \mathbf{0}$ (Dimension depends on form of reduced matrix.)
 - (b) Solutions to L[y] = 0 (Dimension depends on order of L.)