Math 3280 Differential Equations with Linear Algebra Practice Test 2 B. Peckham

- 1. Obtain the general solutions to the following differential equations. If initial conditions are given, **also** find the solution that satisfies the initial value problem
 - (a) y'' + 2y' + 3y = 0, y(0) = 2, y'(0) = 0.
 - (b) $y'' + 2y' + y = 5e^{3x}$. Hint: Try $y_p(x) = Ae^{3x}$.

2. Let
$$A = \begin{pmatrix} 0 & 1 & 3 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 3 & 1 & -5 \\ 2 & -1 & 2 \\ 0 & 1 & 3 \end{pmatrix}$$
. Show your work to compute (4 pts) $AB - 2I + 3A$

3. Evaluate the following determinants. Show your work.

(a)	$\frac{3}{6}$	$\frac{1}{2}$		
(b)	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$-1 \\ 0 \\ 1$	3 1 4	
(c)	$egin{array}{c} 1 \\ 2 \\ 0 \\ 0 \end{array}$	${3 \atop {4} \atop {1} \atop {2}}$	$-1 \\ 3 \\ -1 \\ -2$	$2 \\ 1 \\ -1 \\ 2$

4. Solve the following linear system USING GAUSSIAN ELIMINATION: $\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

- 5. Find a basis for the space of solutions to $\begin{pmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \\ 4 & 3 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
- 6. Assume you are trying to solve the linear system $A\mathbf{x} = \mathbf{b}$ where A is a 3×3 matrix. Assume the augmented matrix has been row reduced to row echelon form.
 - (a) Write down a form for which you could conclude that the original system had no solutions.
 - (b) Is it easier to determine the solution to the system of equations if the augmented matrix has been reduced to row echelon form (REF) or reduced row echelon form (RREF). Explain briefly.
- 7. TRUE-FALSE. The following sets of vectors are bases for \Re^3 . Justify your answer briefly. A formal proof is not required.

(a)
$$\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 2\\4\\7 \end{pmatrix} \right\}$$

(b)
$$\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\2\\2 \end{pmatrix} \right\}$$

- 8. Let $A = \begin{pmatrix} 3 & 1 \\ 6 & 1 \end{pmatrix}$. Find A^{-1} using the Gauss-Jordan (row reduction) technique. Check your answer.
- 9. Let $\Re^2 = \{ \mathbf{x} = (x_1, x_2) : x_1 \in \Re, x_2 \in \Re \}.$
 - (a) Let $S = {\mathbf{x} = (x_1, x_2) \in \Re^2 : x_1 = 0}$. Is S a vector subspace of \Re^2 ? Justify briefly.

(b) Let
$$T = \{\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \Re^2 : A\mathbf{x} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}\}$$
. Is T a vector subspace of \Re^2 ? Justify briefly.

- 10. Write down a basis for $\mathcal{P}_2 \equiv \{a_0 + a_1x + a_2x^2 : a_i \in \Re\}.$
- 11. Write down the system of equations needs to be solved in order to show that the set of vectors $\left\{ \begin{pmatrix} 1\\0\\2 \end{pmatrix}, \begin{pmatrix} -1\\1\\3 \end{pmatrix}, \begin{pmatrix} 2\\2\\2 \end{pmatrix} \right\}$ spans \Re^3 . DO NOT SOLVE the system, but discuss what properties of the solution would determine whether the three vectors span \Re^3 .
- 12. Prove that the set of solutions to $A\mathbf{x} = \mathbf{0}$ is a subspace of \Re^n (A is an $m \times n$ matrix.)