1. Obtain the general solutions to the following differential equations.
(a) (7 pts) $y^{\prime \prime}-2 y^{\prime}-3 y=0$.
(b) (9 pts$) y^{\prime \prime}-2 y^{\prime}+2 y=2 x$. Hint: Use the fact that one solution is $y_{p}(x)=x+1$.
2. (6 pts) Given that $y(x)=c_{1} \cos (2 x)+c_{2} \sin (2 x)$ is the general solution to $y^{\prime \prime}+4 y=0$. Find the specific solution to the differential equation which satisfies the initial conditions $y(0)=1$ and $y^{\prime}(0)=1$.
3. Evaluate the following determinants. Show your work.
(a) (3 pts) $\left|\begin{array}{cc}3 & -2 \\ -3 & -2\end{array}\right|$ (7 pts) $\left|\begin{array}{cccc}0 & 3 & -1 & 2 \\ 1 & 4 & 3 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 2 & -2 & 2\end{array}\right|$
4. (8 pts) Solve the following linear system USING GAUSSIAN ELIMINATION. Leave your answers as exact fractions - not calculator approximations.

$$
\left(\begin{array}{lll}
2 & 1 & 3 \\
0 & 3 & 2 \\
4 & 1 & 7
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)
$$

5. (10 pts) Find a basis for the space of solutions to $\left(\begin{array}{ccccc}1 & 0 & 1 & 2 & 0 \\ 3 & 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & 1 & 2\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
6. (8 pts) Let $A=\left(\begin{array}{cc}3 & 9 \\ -1 & 1\end{array}\right)$. Find A^{-1} using the Gauss-Jordan (row reduction) technique. Check your answer.
7. TRUE-FALSE. Justify your answer briefly. A formal proof is not required.
(a) $(5 \mathrm{pts})\left\{\binom{1}{2},\binom{2}{5}\right\}$ is a basis for \Re^{2}.
(b) (5 pts) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right)\right\}$ is a basis for \Re^{3}.
(c) $(7 \mathrm{pts})\left\{1+x, x, x^{2}\right\}$ is a basis for $\mathcal{P}_{2} \equiv\left\{a_{0}+a_{1} x+a_{2} x^{2}: a_{i} \in \Re\right\}$?
8. (7 pts) Let $S=\left\{\mathbf{x}=\left(x_{1}, x_{2}\right) \in \Re^{2}: x_{2}=x_{1}^{2}\right\}$. Is S a vector subspace of \Re^{2} ? Justify briefly.
9. (6 pts) Write down the system of equations needs to be solved in order to show DIRECTLY FROM THE DEFINITION of linear independence that the set of vectors $\left\{\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{c}-1 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{l}2 \\ 2 \\ 2\end{array}\right)\right\}$ is linearly independent in \Re^{3}. DO NOT SOLVE the system, but state what properties of the solution would determine whether the three vectors are lineaerly independent in \Re^{3}.
10. (12 pts) Consider the following subset T of \Re^{3}. PROVE that T is a vector subspace of \Re^{3}.

$$
T=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{2}=x_{3}\right\}
$$

