1. (a) separable, linear
(b) separable but not linear
2. (a) $y(x)=\frac{3}{4} x^{2}+\frac{5}{4}$
(b) $P(s)=4 e^{\frac{3}{2} s}$
(c) $x(t)=t e^{-t^{3}}+C e^{-t^{3}}$
(d) $-y^{-1}=\frac{x^{4}}{4}+\frac{x^{2}}{2}+x+C=\frac{x^{3}}{3}$ (implicit solution)
3. (a) $\dot{W}=-2 W$
(b) i. $W(t)=C e^{-2 t}$
ii. $T(t)=70-\frac{C}{2} e^{-2 t}\left(\frac{C}{2}\right.$ could be replaced with just C.)
4. Sketch not provided. (All solutions should approach the line $y=\frac{x}{4}-\frac{1}{2}$ as time increases.)
5. $\phi(1.1)=-0.8, \phi(1.2)=-0.599$
6. $m=-\frac{1}{3}$ OR $A=0$.
7. Sketch not provided. $P(0$ must be greater than 1 in order for the population to survive.
8. Let $M(t)$ be the number of mathematicians alive at time t.

$$
\dot{M}=k_{1} M-k_{2} M^{3}-100
$$

k_{1} and k_{2} are both positive constants.

