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1. (6 pts) Let P, be the set of polynomials of degree n or less. Let W = {p € B, : p(0) = 1}.
Is W a vector subspace of P,?7 Justify briefly. A formal proof is not required.
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obtained your answers.

] . Determine the rank and nullity of A. Explain briefly how you
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(a) (3 pts) Find a vector @ € R3 for which the set {#, 7, @} is linearly independent. Justify
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(b) (3pts) Find a vector ¥ € R® for which the set {i, ¥, %]} is linearly dependent, Justify
briefly. c r
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4. Let B ={1+t¢,t}. Let P, be the vector space of polynomials of degree less than or equal to
1.

(a) (6 pts) Show that B is a basis for P;. _ [-7)
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(b) (3 pts) Find the polynomial r(¢) in P; given the coordinates [r]p = [__1] & besig
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(c) (3 pts) What are the coordinates of the polynomial ¢{t) = 2+t with respect to the basis
B? (That is, what is [¢]g?)
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5. (6 pts) Let v, = [_3], vy = [—8]’ Uy = [ 73]. Find any two different ways to express E]
as a linear combination of ¥}, ¥, and #3. Show your work
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6. (8 pts) Find the elgenva ues and

s for the corresponding eigenspaces for the matrlx A=
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7. (6 pts) Assume that A and B are both 5 x 5 matrices. %lonsider the 5 x 10 matrix [A4 : B]

Assume you do row operations on [A : B] to convert it into [C : I], where I is the 5 x 5
identity matrix. Express what the C' matrix is in terms of A and B. Explain briefly
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8. (6 pts) Give an example of a 2 x 2 matrix which has an eigenvalue of algebraic multiplicity
2, but geometric multiplicity 1. Justify briefly.
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9. (6 pts) Diagonalize the matrix A = 0 3]. (That is, find a matrix P such that P~ AP is
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diagonal.) L
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10. (6 pts) Find a matrix A such that [§]¢c = A[g]p for any vector 7 € ®%. (That is, find the
change of basis matrix from basis B to basis C, where B and C are given by B = { [H , [—llJ },
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11. Let T : P, — IP3 be a transformation that maps a polynomial p(t) to the polynomial p(t) + ~ ‘f J{m
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(a) (3 pts)Find T(2 — t?). = é.

(b) (6 pts) Show that T is a linear transformation.
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(c) (6 pts) Find the matrix for T relative to the respective bases {1,t,t%}, and {1,t,t2,13}
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12. (7 pts) Assume that A, B, and P are n x n matrices, where P is invertible, and B = P~1AP.
Show that the characteristic equation of A is the same as the characteristic equation of B.
You may assume that, for any two n x n matrices X and Y, det(XY) = det(X) det(Y).
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13. (8 pts) Let A be JQ x 3 matrix. Consider the following subset W of ®3:
W= {ze®: a7 =0}

Prove that if W is a vector subspace of V.
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14. (8 pts) Assume that A is a 2 x 2 matrix with eigenvalues of 2 and 3. Assume ¥ is a nonzero

eigenvector for eigenvalue 2, and 0 is a nonzero eigenvector for the eigenvalue 3. Show that
the set {7, w} is linearly independent.
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