MIDTERM 3 (Thursday, April 21 2016, 5:15-6:45pm in MWAH 195) TOPIC LIST (as of April 18, 2016) Linear Algebra, Math 4326 Bruce Peckham

Test 3 will cover sections 5.5, 6.1-6.5, 6.7, 7.1, 7.2, 7.4 in the text. Excluded topics are listed along with the homework assignments on the course webpage.

- 1. Definitions and Notation
 - (a) Dot product in $\mathbb{R}^n : \vec{a} \bullet \vec{b} = \vec{a}^T \vec{b}$
 - (b) Length of a vector: $||\vec{a}|| = \sqrt{\vec{a} \bullet \vec{a}}$; unit vector
 - (c) Distance from vector \vec{a} to \vec{b} : $||\vec{a} \vec{b}||$
 - (d) Orthogonal vectors (\vec{a} is orthogonal to \vec{b} if $\vec{a} \bullet \vec{b} = 0$)
 - (e) Orthogonal set of vectors (each vector in the set is orthogonal to every other vector in the set)
 - (f) Orthonormal set (orthogonal set and each vector has unit length)
 - (g) Orthogonal/orthonormal basis for a vector space or subspace
 - (h) The orthogonal complement to a subspace $W \subset V$: $W^{\perp} = \{ \vec{v} \in V : \vec{v} \bullet \vec{w} = 0 \ \forall \vec{w} \in W \}$
 - (i) Angle between two vectors (defined by $\vec{a} \bullet \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos(\theta)$)
 - (j) The projection of a vector onto a subspace
 - (k) Linear transformation
 - (l) Null space of a matrix
 - (m) Column space of a matrix
 - (n) Matrix of a linear transformation from \mathbb{R}^n to \mathbb{R}^m .
 - (o) Eigenvalues and eigenvectors of a square matrix
 - (p) Orthogonal matrix $(A^{-1} = A^T)$, that is, columns (and therefore also rows) of A form an orthonormal set)
 - (q) Diagonal matrix; diagonalizable matrix; orthogonally diagonalizable matrix
- 2. Examples, results and constructions to know:
 - (a) Compute (real and/or complex) eigenvalues and eigenvectors for a given square matrix; find bases for the eigenspaces.
 - (b) Find a change of coordinates to diagonalize a matrix. That is, find a matrix P such that $P^{-1}AP$ is diagonal. (Choose the columns of P to be eigenvectors of A.)
 - (c) Find a change of coordinates to convert a 2×2 matrix with complex eigenvalues and eigenvectors into the "canonical" form. That is, find a matrix P such that $P^{-1}AP = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$. (Choose the columns of P to be the real and imaginary parts of any complex eigenvector of A.)
 - (d) Orthogonally diagonalize a given symmetric matrix. (That is, find an orthogonal matrix P such that $P^T A P$ is diagonal.)
 - (e) Give an example of a matrix which is not diagonalizable. (Note: it must have at least one repeated eigenvalue.)
 - (f) Give an example of a matrix with repeated eigenvalues which IS diagonalizable.
 - (g) If V and W are vector spaces, $T: V \to W$ is a linear transformation, and you are given $T(\vec{v})$ for all \vec{v} in a basis for V, determine $T(\vec{v})$ for any $\vec{v} \in V$. Special case: If V and W are both \mathbb{R}^2 , $\vec{v_1}$ and $\vec{v_2}$ are linearly independent vectors in \mathbb{R}^2 , and $\vec{x} \mapsto A\vec{x}$, where A is an unknown 2×2 matrix; if you are given $A\vec{v_1}$ and $A\vec{v_2}$, then determine A.

- (h) Compute length of a vector, dot products of vectors, inner products of (abstract) vectors, angles between vectors using dot/inner products
- (i) Determine whether a given set of vectors is orthogonal/orthonormal.
- (j) Compute an orthogonal or orthonormal basis from a given basis (Gram-Schmidt)
- (k) Compute the projection of a given vector onto another vector, or onto a subspace spanned by a set of vectors (if the spanning set is not orthogonal, first create an orthogonal spanning set using Gram-Schmidt); decomposition of a vector into a projection onto a subspace W and its orthogonal complement W^{\perp} (notation: $\vec{y} = \hat{y} + \vec{z}$, where $\hat{y} \in W$ and $\vec{z} \in W^{\perp}$).
- (1) Find a least squares solution to an inconsistent system $A\vec{x} = \vec{b}$ and the least squares error (the distance from $A\hat{x}$ to \vec{b}) using one or both of these methods:
 - i. Let W = col(A), decompose $\vec{b} = \hat{b} + \vec{z}$ where $\hat{b} \in W, z \in W^{\perp}$, solve $A\vec{x} = \hat{b}$ for \hat{x} .
 - ii. Solve $A^T A \vec{x} = A^T \vec{b}$ for \hat{x} ; then $\hat{b} = A \hat{x}$.
- (m) Rewrite a quadratic form as $Q(\vec{x}) = \vec{x}^T A \vec{x}$. Find a change of coordinates $\vec{x} = P \vec{y}$ to eliminate "mixed" terms. (That is orthogonally diagonalize the matrix of the quadratic form.)
- (n) Find the singular values of a given $m \times n$ matrix (the square root of the eigenvalues of $A^T A$).
- (o) Find the maximum of $||A\vec{x}||$ for \vec{x} with restricted have norm 1 (the maximum singular value)
- (p) Given a matrix A, find the vector \vec{x} with norm 1 that maximizes $||A\vec{x}||$. (This is the unit eigenvector of $A^T A$ corresponding to its maximum eigenvalue.)

3. Proofs to know:

- (a) The law of cosines (assuming the Pythagorean theorem)
- (b) $\vec{a} \bullet \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos(\theta)$ (assuming the law of cosines)
- (c) If W is a vector subspace of V, then so is W^{\perp} . (Prob. 30, sec. 6.1 or Quiz 6 solutions on course webpage)
- (d) If $W = span\{\vec{v}_1, ..., \vec{v}_p\}$, and \vec{v} is orthogonal to every vector \vec{v}_i , then \vec{v} is orthogonal to every vector in W.
- (e) $Col(A)^{\perp} = Nul(A^T)$. (Theorem 3, Sec. 6.1)
- (f) The columns of the matrix U are orthogonal if and only if $U^T U = I$.
- (g) If U is an orthogonal matrix, then $||U\vec{x}|| = ||\vec{x}||$.
- (h) If A is a symmetric matrix, and \vec{v}_1 and \vec{v}_2 are eigenvectors corresponding to *different* eigenvalues, then \vec{v}_1 and \vec{v}_2 are orthogonal. (Theorem 1, Sec. 7.1, p. 397-8)
- (i) $A^T A$ is symmetric.
- (j) If a square matrix A is orthogonally diagonalizable, then it is symmetric. (That is, if $A = P^T D P$, where $P^T P = I$, then $A^T = A$.) See the bottom of p. 398, just before Theorem 2.
- (k) The eigenvalues of $A^T A$ are real and nonnegative. Pf: See the top of p. 418, Section 7.4.
- (1) If $Q(\vec{x}) = \vec{x}^T A \vec{x}$, and $\vec{x} = P \vec{y}$, then $Q(\vec{x}) = \vec{y}^T P^T A P \vec{y}$. (NOTE: this becomes especially important when A is symmetric because then P can be chosen to be orthogonal and $P^T A P$ is a diagonal matrix.)
- (m) (possible Extra Credit question only) Consider the system $A\vec{x} = \vec{b}$ which is assumed to be inconsistent. Derive the "normal equations" $A^T A \vec{x} = A^T \vec{b}$ for \hat{x} assuming $A \hat{x} = \hat{b}$ where \hat{b} is the orthogonal projection of \vec{b} onto the Col(A).
- 4. (Parts of) problems similar to HW problems assigned for Sec. 5.5 and Chapters 6-7 might be asked on the test. This includes problems assigned but not to be turned in.
- 5. Quiz questions from chapters 6 and 7.
- 6. Anything else we've covered that I think is easy.