MIDTERM 2 TOPIC LIST: For midterm Fri. Dec. 2, 2011
(as of November 30, 2011)
Real Variables, Math 5201
Bruce Peckham

1. Definitions
(a) Basic metric space definitions, including convergence of a sequence, open, closed, limits of a subset, interior, closure, boundary
(b) Sub(metric)space topology; inheritance principle for open and closed sets
(c) Four equivalent definitions for \(f : M \rightarrow N \) to be continuous.
(d) homeomorphism (1-1, onto, continuous, continuous inverse)
(e) Sequentially compact
(f) Open cover of a subset; subcover; finite subcover
(g) Covering compact
(h) Connected space, connected subspace (subset), disconnected subset/subspace
(i) Path connected
(j) Component, path component
(k) Diameter of a set: diam\((A) \)
(l) Bounded, totally bounded
(m) In \(\mathbb{R} \):
 i. \(f \) is differentiable at \(x \) (definition of derivative)
 ii. Mean value theorem
 iii. convergence/divergence of a sequence
 iv. Infinite series, convergence/divergence of a series
 v. Conditional convergence vs absolute convergence (using partial sums)
 vi. Rearrangement of a series

2. Proofs to know:
(a) Sequentially compact sets are closed and bounded.
(b) Covering compact sets are closed and bounded.
(c) Closed subsets of (sequentially/covering) compact sets are (sequentially/covering) compact. Know the proof in both settings.
(d) Prove that continuous maps take sequentially compact sets to sequentially compact sets.
(e) Prove that continuous maps take covering compact sets to covering compact sets.
(f) Prove that continuous maps take connected sets to connected sets.
(g) Prove that \(f : M \rightarrow N \) a homeomorphism implies that \(f : M \setminus A \rightarrow N \setminus f(A) \) is a homeomorphism.
(h) Prove path connected implies connected.
(i) Prove covering compact implies sequentially compact.
(j) Calculus:
 i. Geometric series: Prove that \(\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \) for \(|x| < 1 \).
 ii. \(p \)-series.
A. Prove that \(\sum_{n=1}^{\infty} \frac{1}{n} \) converges by using the integral test, or by grouping terms.

B. Prove that \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) converges using the integral test.

C. Know that \(\sum_{n=1}^{\infty} \frac{1}{n^p} \) converges iff \(p > 1 \).

iii. Prove the ratio test: \(\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \) implies absolute convergence.

iv. Prove the basic comparison test in the special case that all terms in both series are nonnegative. However, treat the case that the comparison is valid only from \(n \) beyond some \(N \).

v. Prove the Calculus I Max-min theorem for continuous \(f : [a, b] \to \mathbb{R} \) (OK to quote results for compact and connected sets).

vi. Prove the Calculus I Intermediate value theorem for continuous \(f : [a, b] \to \mathbb{R} \) (OK to quote results for compact and connected sets).

vii. Mean Value Theorem (assuming the proof of Rolle’s theorem). Know the function to write down on which you can apply Rolle’s theorem.

3. Miscellaneous results and techniques to know:

(a) Convergence/divergence tests. Know how to apply all.
 i. nth term test
 ii. Basic comparison test
 iii. Limit comparison test
 iv. Ratio test using \(\limsup \) or \(\liminf \)
 v. Root test using \(\limsup \)
 vi. Alternating series test

(b) Characterization of \(\sum b_n, \sum c_n \) when \(\sum a_n \) is absolutely convergent, conditionally convergent, or divergent. \(\{b_n\} \) is the subsequence of nonnegative terms in \(\{a_n\} \), \(\{c_n\} \) is the subsequence of negative terms in \(\{a_n\} \).

(c) Decide whether given series converge or diverge.

(d) Series examples: conditionally convergent; alternating, terms converging to zero but the series diverges, \(\limsup a_{n+1}/a_n > 1 \) but the series converges.

(e) Characterization in \(\mathbb{R}^1 \) of all connected sets, compact connected sets, open connected sets.

(f) Example of a set that is connected but not path connected

(g) Example of an open cover (of a noncompact set) with no finite subcover

(h) Example of a (noncompact) set which has a sequence with no convergent subsequence

(i) Identify (non)homeomorphic sets

(j) Examples of functions that are \(C^0 \) but not \(C^1 \), \(C^k \) but not \(C^{k+1} \), differentiable but not \(C^1 \), \(C^\infty \) but not analytic, discontinuous everywhere, continuous on the irrationals but not the rationals.

4. Easy HW problems. Especially: Ch 2: 6,7,8,47, 48, 54, 55; Ch 3: 56, 69

5. Anything else we’ve covered that I think is easy.