MIDTERM 2 TOPIC LIST: For midterm Fri. Nov. 22, 2013 (as of November 15, 2013) Real Variables, Math 5201 Bruce Peckham

1. Definitions

- (a) Basic metric space definitions, including convergence of a sequence, open, closed, limits of a subset, interior, closure, boundary
- (b) Sub(metric)space topology; inheritance principle for open and closed sets
- (c) Four equivalent definitions for $f: M \to N$ to be continuous.
- (d) homeomorphism (1-1, onto, continuous, continuous inverse)
- (e) Sequentially compact
- (f) Open cover of a subset; subcover; finite subcover; Lebesgue number of a cover of a set.
- (g) Covering compact
- (h) Connected space, connected subspace (subset), disconnected subset/subspace
- (i) Path connected
- (j) Component, path component
- (k) Diameter of a set: diam(A)
- (l) Bounded, totally bounded
- (m) In \Re :
 - i. f is differentiable at x (definition of derivative)
 - ii. convergence/divergence of a sequence
 - iii. Infinite series, convergence/divergence of a series
 - iv. Conditional convergence vs absolute convergence (using partial sums)
 - v. Rearrangement of a series

2. Proofs to know:

- (a) $A \subset M$ open implies A^c closed; A closed implies A^c open.
- (b) $A \subset M$ totally bounded implies A bounded.
- (c) Sequentially compact sets are closed and bounded.
- (d) Covering compact sets are closed and totally bounded, and bounded.
- (e) Closed subsets of (sequentially/covering) compact sets are (sequentially/covering) compact. Know the proof in both settings.
- (f) Prove that continuous maps take sequentially compact sets to sequentially compact sets.
- (g) Prove that continuous maps take covering compact sets to covering compact sets.
- (h) Prove that continuous maps take connected sets to connected sets.
- (i) Prove that $f: M \to N$ a homeomorphism implies that $f: M \setminus A \to N \setminus f(A)$ is a homeomorphism.
- (j) Prove path connected implies connected.
- (k) Prove covering compact implies sequentially compact.
- (l) Product space theorem: Prove any of 4 convergence notions implies any other: convergence in each component, convergence in product space using Euclidean, sum, or max metric
- (m) Prove that if no subsequence of a given sequence (a_n) converges to $m \in M$, then there exists an r > 0 such that $a_n \in M_r m$ for only finitely many n.

- (n) Calculus results:
 - i. (TEST 1) Geometric series: Prove that $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ for |x| < 1.
 - ii. (TEST 1) *p*-series.
 - A. Prove that $\sum_{n=1}^{\infty} \frac{1}{n}$ (show partial sums are not bounded by using the integral test, or by grouping terms).
 - B. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges using the integral test. C. know that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges iff p > 1.
 - iii. (TEST 1) Prove the the ratio test: $\limsup_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} < 1$ implies absolute convergence.
 - iv. (TEST 1) Prove the basic comparison test in the special case that all terms in both series are nonnegative. However, treat the case that the comparison is valid only from n beyond some N.
 - v. Prove the Calculus I Max-min theorem for continuous $f : [a, b] \to \Re$ (OK to quote results for compact and connected sets)
 - vi. Prove the Calculus I Intermediate value theorem for continuous $f : [a, b] \to \Re$ (OK to quote results for compact and connected sets)
- 3. Miscellaneous results and techniques to know:
 - (a) Characterization of $\sum b_n$, $\sum c_n$ when $\sum a_n$ is absolutely convergent, conditionally convergent, or divergent. ($\{b_n\}$ is the subsequence of nonnegative terms in $\{a_n\}$, $\{c_n\}$ is the subsequence of negative terms in $\{a_n\}$.
 - (b) Decide whether given series converge or diverge.
 - (c) Series examples: conditionally convergent; alternating, terms converging to zero but the series diverges, $\limsup a_{n+1}/a_n > 1$ but the series converges.
 - (d) Characterization in \Re^1 of all connected sets, compact connected sets, open connected sets.
 - (e) Example of a set that is connected but not path connected
 - (f) Example of an open cover (of a noncompact set) with no finite subcover; a cover with not positive Lebesgue number.
 - (g) Example of a (noncompact) set which has a sequence with no convergent subsequence
 - (h) Identify (non)homeomorphic sets
 - (i) Examples of f continuous, A closed, f(A) not closed; f continuous, A bounded, f(A) not bounded.
 - (j) Examples of functions that are C^0 but not C^1 , C^k but not C^{k+1} , differentiable but not C^1 , C^{∞} , but not analytic, discontinuous everywhere, continuous on the irrationals but not the rationals.
- 4. Easy HW problems. Especially: Ch 2: 6,8,22,47, 48, 54, 55
- 5. Anything else we've covered that I think is easy.