MIDTERM 1 (Friday, October 11 2013; 3-4:30 in EduE 36)
TOPIC LIST
(as of October 8, 2014)
Real Variables, Math 5201
Bruce Peckham

1. Definitions and Notation
(a) Operations on sets: $A \cup B, A \cap B, A \backslash B, A^{c}$
(b) $A \times B$
(c) Function, domain, codomain=target, image=range
(d) $f(A), f^{-1}(A)$ (Image and inverse image of A)
(e) $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$
(f) Definition of \mathbb{R} as the collection of all "cuts" of the rationals.
(g) For a set $A \subset \mathbb{R}$, upper bound, lower bound, Least upper bound (lub), greatest lower bound (glb)
(h) For \mathbb{R} : least upper bound property, greatest upper bound property
(i) Metric Space: M or (M, d), subspace, (Cartesian) product space
(j) Complete metric space (every Cauchy sequence converges)
(k) Topological Space, subspace, (Cartesian) product space
(l) For a set $A \subset M$: bounded, unbounded
(m) χ_{A} (or 1_{A}, the indicator function of A)
(n) Sequence in \mathbb{R} or M, subsequence, bounded, monotone in \mathbb{R}
(o) ϵ, δ definition for the limit of a function $f: M \rightarrow N$, as $x \rightarrow a$, including one-sided limits when $M=\mathbb{R}$.
(p) ϵ, N definition for a sequence to i) converge to L, ii) be Cauchy. (in \mathbb{R} or M)
(q) limsup and liminf of a real sequence
(r) M, N definition for a sequence in \mathbb{R} to diverge to $+\infty$ (or $-\infty$).
(s) Definition for a series to converge.
(t) Cardinality: $A \sim B$ if there is a bijection between A and B. (A is "equinumerous" with B, or A has the same cardinality as B)
(u) A is countably infinite $(A \sim \mathbb{N})$
(v) Topology (in metric spaces): open, closed, limits of A, accumulation (cluster) points of $A, \bar{A}=\operatorname{cl}(A)=c l_{M}(A)=$ the closure of $A($ in $M), A^{\circ}=\operatorname{int}(A)=$ the interior of A, $\partial A=$ the boundary of A, open ball $=M_{r} x=B(x, r)=B_{r}(x)$
(w) homeomorphism
(x) Continuity of $f: M_{1} \rightarrow M_{2}$ at a :
i. ϵ, δ
ii. $x_{n} \rightarrow a \Rightarrow f\left(x_{n}\right) \rightarrow f(a)$
(y) Continuity of $f: M_{1} \rightarrow M_{2}$ on M_{1} :
i. Continuous at each $a \in M_{1}$ using any of the above notions of continuous at a point.
ii. Inverse image of any open set is open
iii. Inverse image of any closed set is closed
(z) Uniform continuity of $f: M_{1} \rightarrow M_{2}$ on M_{1}. ($\left.\epsilon-\delta\right)$
2. Examples, results and constructions to know:
(a) Definition of a "candidate" for the least upper bound of a subset $S \subset \mathbb{R}$ using the ideas and notation of cuts.
(b) "Candidate for the limit of a Cauchy (bounded) sequence in \mathbb{R}.
(c) Relationships between sets:
i. DeMorgan's laws: $(A \cup B)^{c}=A^{c} \cap B^{c} ;(A \cap B)^{c}=A^{c} \cup B^{c}$
ii. $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$
iii. $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$
iv. $f(A \cup B)=f(A) \cup f(B)$
v. $f(A \cap B) \subseteq f(A) \cap f(B)$. Know an example showing strict inclusion.
vi. $f(A) \backslash f(B) \subseteq f(A \backslash B)$. Know an example showing strict inclusion.
(d) Series convergence tests: geometric, basic comparison, limit comparison, integral test, ratio test (with limsup/liminf), root test (with limsup/liminf)
(e) Specific metrics for \mathbb{R}^{n} : Euclidean, max, sum
(f) The discrete metric ($\mathrm{d}(\mathrm{x}, \mathrm{y})=0$ or 1) for any metric space
(g) Examples: A collection of closed sets whose union is not closed; a collection of open sets whose intersection is not open.
3. Proofs to know:
(a) Sequence and series proofs:
i. Proof that the limit of a specific function or sequence exists.
ii. A sequence that converges is Cauchy (in \mathbb{R} or M)
iii. A Cauchy sequence is bounded (in \mathbb{R} or M)
iv. (MCT) A nondecreasing real sequence that is bounded above converges to its least upper bound.
v. Basic comparison test for convergence/divergence of a series of positive terms. (Show partial sums are bounded.)
vi. Proof that a specific p-series converges/diverges using the proof techniques of the integral test (not just quoting the integral test). (Show partial sums are bounded.)
vii. Proof of the ratio test for convergence of a series with positive terms in the case that $\lim \sup a_{n+1} / a_{n}=L<1$. (Show partial sums are bounded.)
(b) Cardinality equivalences and inequivalences.
i. $\mathbb{N} \sim 2 \mathbb{N}$. (The natural numbers are equivalent to the even natural numbers.) Explicit construction.
ii. \mathbb{Q} is countable. More generally, countable unions of countable sets are countable.
iii. If A and B are countable, so is $A \times B$.
iv. The unit interval $[0,1]$ is not countable. Assume $[0,1]$ is the set of infinite decimal expansions which do not end in an infinite string of 9's. (Proof by contradiction.)
v. $\sqrt{2}$ is irrational
(c) Metric Space results:
i. Properties of open and closed sets, for example A_{α} open $\Rightarrow \cup A_{\alpha}, A_{1} \cap A_{2}$ both are open, \bar{A} is closed, $M_{r} x$ is open, $\bar{A}=\operatorname{limits}(A)$.
ii. Show A open in $M \Leftrightarrow A^{c}$ closed in M.
iii. Uniqueness of limit of a convergent sequence (proof) $(\epsilon, N$ proof)
iv. Any direction of equivalence of $\epsilon-\delta$, sequence, and open set definitions of continuity on a whole space.
4. (Pieces of) HW problems might be asked on the test. In particular: Ch 1: 2a, 11; Ch 2: 3,6b,7
5. Anything else we've covered that I think is easy.
