Name:_____

The test has two parts. 100 points total.

Part I. Do all of the following problems. 50 points total.

- 1. (5 pts each, 20 pts total) Give examples of the following. If a metric space is not specified in the question, make sure you indicate the metric space(s) in which your examples live.
 - (a) A set that is connected, but not path connected. Explain briefly why your set has both properties.
 - (b) A continuous function $f: M \to N$ and a closed set $A \subset M$ for which f(A) is not closed. State explicitly M, N, f, A, f(A) for your example.
 - (c) An open cover of $[0,1) \subset \Re$ with no finite subcover. Explain briefly.
 - (d) A function $f : \Re \to \Re$ which is in the function space $C^2(\Re, \Re)$, but not $C^3(\Re, \Re)$. Justify briefly.
- 2. (5 pts) Define what it means for \mathcal{U} to be an open cover of $A \subset M$ and for \mathcal{V} to be a *finite subcover* of \mathcal{U} (which also covers A).
- 3. (5 pts) Explain how results from topology can be used to prove the following version of the Max-Min theorem from Calculus I. A formal proof is not required. If $f : [a, b] \to \Re$, and f is continuous, then there is a $c \in [a, b]$ with the property that $f(c) \ge f(x)$ for all $x \in [a, b]$.
- 4. (5 pts) Determine the largest possible Lebesgue number for the open cover $\mathcal{U} = \{(-2, 1/4), (0, 7/8), (1/2, 2)\}$ of [0, 1]. What point in [0, 1] requires the Lebesgue number to be no bigger than your answer? No further justification necessary.
- 5. (5 pts) Give an example of a subset A of a metric space M which is bounded, but not totally bounded. State explicitly A, M (including the metric), a specific ball which contains A and an r > 0 for which there exists no finite collection of balls in M whose union contains A.
- 6. (5pts) Give an example of a subset A of a metric space M that is closed and bounded, but not compact. Explain briefly. Include explicit descriptions of A and M.
- (5 pts) Explicitly list all types of connected sets in R¹. State which of these are also compact. No justification necessary.

Part II. Do 5 of the following 6 proofs. 10 points each. 50 points total. You may do the remaining proof for 5 points extra credit. If you do not clearly mark 'EC' for the proof which is to be the extra credit proof, I will count number 6 as the extra credit.

- 1. Let M be a metric space. Prove that if $A \subset M$ is compact, then A is closed. You may use either the "sequential" or "open cover" definition of compactness.
- 2. Let M be a metric space. Prove that $A \subset M$ totally bounded implies that A is bounded.
- 3. Show that if M and N are metric spaces, $A \subset M$, A is covering compact, and $f: M \to N$ is continuous, then f(A) is covering compact. Do not use sequential compactness.
- 4. Prove that if $A \subset M$ is path connected, then A is also connected. You may assume that $[a, b] \subset \Re$ is connected.
- 5. Let (a_n, b_n) be a sequence in $M \times N$, where M and N are metric spaces with respective metrics d_M and d_N . Assume this sequence converges in the "max" metric, defined as $d((a_1, b_1), (a_2, b_2)) = \max\{d_M(a_1, a_2), d_N(b_1, b_2)\}$. Prove that if $(a_n, b_n) \to (a, b)$ in $M \times N$, then $a_n \to a$ in M. Use an " ϵ - δ argument.
- 6. (EC unless another problem of 1-5 is marked as EC) Prove that if M is a metric space, $A \subset M$, and A is covering compact, then A is sequentially compact. You need not prove the "lemma" that if no subsequence of a given sequence (a_n) in A converges to the point $a \in A$, then there exists an r > 0 such that $a_n \in M_r a$ for only finitely many n.