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Abstract. Many systems in science and engineering can be modelled as coupled or forced
nonlinear oscillators which may possess quasi-periodic or phase-locked invariant tori. Since there
exist routes to chaos involving the break-down of invariant tori, these phenomena attract considerable
attention. After a brief historical overview of known methods for the computation of invariant tori
this paper presents a new algorithm for the computation and continuation of quasi-periodic invariant
tori of ordinary differential equations.

The proposed algorithm is based on a novel invariance equation which gives rise to a natural
parametrisation of quasi-periodic invariant tori. The discretisation of this invariance equation gives
an algorithm that is easy to implement and immediately suitable for continuation. Consistency and
stability of a finite-difference discretisation is shown in the case that the differential equation can be
written in generalised radius-angle coordinates.

Since the parametrisation is uniquely defined, the proposed method requires neither the computa-
tion of a base of a transversal bundle, nor re-meshing during continuation, but uses only information
in the tangent space of a torus. It is independent of the stability type of the torus and examples of
attracting and saddle-type tori are given. The algorithm is robust in the sense that it can compute
reliable approximations to weakly resonant tori. The performance of our method is demonstrated
with extensive examples.
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1. Introduction. Coupled or forced oscillators occur in many applications as
far ranging as aerodynamics and chemical reactions; we refer, for example, to [27]
as an entry point to the extensive literature. These oscillators can exhibit quasi-
periodic oscillations, that is, oscillations with at least two (incommensurate) internal
frequencies [8, 49]. Recent fields of applications in which quasi-periodic oscillations
were reported include laser dynamics [3, 37, 38], rotor dynamics of jet engines [5],
power networks [14, 32] and population dynamics in chemostats [39].

A quasi-periodic oscillation (motion) takes place on a quasi-periodic invariant
torus which is densely filled by quasi-periodic orbits [8, 49]. In this paper we consider
the computation of such a quasi-periodic invariant torus of an ordinary differential
equation (ODE)

ẋ = f(x, λ) , f : R
n× R

m → R
n , n ≥ 3 , m ≥ 0 .(1.1)

Here λ ∈ R
m is a parameter and we always assume that f is sufficiently smooth.

Whenever the dependence on λ is not relevant, for example, when λ is constant, we
omit the explicit argument λ for simplicity. In addition, we suppose that (1.1) has
a quasi-periodic invariant torus for some λ0. Note that a quasi-periodic invariant
torus is as smooth as the flow generated by (1.1) [49]. Since the right-hand side of
(1.1) depends on an external parameter λ, one may also be interested in parameter
continuation, that is, the computation of a family of invariant quasi-periodic tori.
In this context, the question of persistence of quasi-periodic invariant tori becomes
important.
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Figure 1.1. Sketch of Arnol′d tongues in a two-dimensional parameter space (a). In between
the Arnol′d tongues exists continuous curves (red), where the flow on the torus is quasi-periodic.
Panels (b) and (c) show parallel and phase-locked flow, respectively, on the two dimensional standard
torus.

Typically, an invariant quasi-periodic torus persists as a differentiable manifold
under small perturbations because it is normally hyperbolic. This means that the
attraction (expansion) transverse to the torus is stronger than the attraction (expan-
sion) on the torus; see [24, 53] for the precise formulation of normal hyperbolicity and
[8] for how it can be expressed in terms of a Floquet form. However, the flow on the
torus may change from quasi-periodic to phase-locked after which normal hyperboli-
city may be lost such that the torus is destroyed.

Let us, for the moment, assume that (1.1) has a quasi-periodic invariant 2-torus
and depends on two parameters λ = (µ, ε) such that for ε = 0 the flow on the torus
is diffeomorphic to a parallel flow; see Fig. 1.1 (b). Then Fig. 1.1 illustrates the
typical behaviour of the flow on an invariant torus as the parameters change; see also
[2, 8, 26, 27].

For small ε > 0 the parameter space features so-called Arnol′d tongues as is
sketched in Fig. 1.1 (a). For parameter values inside an Arnol′d tongue the flow on
the torus is phase-locked, that is, a stable and an unstable periodic orbit exists on
the torus and the flow is not diffeomorphic to a parallel flow; see Fig. 1.1 (c). In
between the Arnol′d tongues there exist continuous curves where the flow is quasi-
periodic. These curves are of finite length and end at points where neighbouring
Arnol′d tongues start to overlap [45]. Thus, quasi-periodic invariant tori exist for
parameter values in a Cantor set of positive measure. Such a family of quasi-periodic
invariant tori is also called a Cantor-like family [8]. Note that there exists an open
set of parameter values such that the Arnol′d tongues do not overlap. Invariant tori
may exist for parameter values in this set.

In this paper we propose a natural parametrisation of a quasi-periodic invariant
torus which is obtained by using a novel invariance equation; see §3. An easy-to-
implement algorithm is derived by discretising this invariance equation by using finite-
differences. This discretisation can be constructed by recursion over the dimension p
of the torus; see §4.4. Therefore, our implementation can be used for the computation
of quasi-periodic invariant tori of arbitrary fixed dimension p, the limiting factor being
only the available computational power. A proof of consistency and stability is given
in §4.2 for the case that the ODE (1.1) is available in a partitioned form, meaning that
it can be written in generalised radius-angle coordinates; see §2.2 for more details.

Since the parametrisation is uniquely defined, the proposed method requires
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neither the computation of a base of a transversal bundle, nor re-meshing during
continuation, it uses only information in the tangent space of a torus. Thus, it is nat-
urally suited for continuation and is incorporated into a one-parameter pseudo-arc-
length continuation algorithm. Even though the derivation of the algorithm applies
to the quasi-periodic case, we find that the algorithm is able to follow a branch of
invariant tori even when the tori are resonant, provided that the encountered reson-
ances are ‘weak enough’; see §4.3 for details. Peaks in the estimated error, which is
monitored during continuation, can actually be used to locate Arnol′d tongues. The
algorithm works independently of the stability-type of the torus. It is able to ‘step
over’ small parameter intervals where the torus changes stability during which process
it loses normal hyperbolicity; see §5.2 for an example.

This paper is organised as follows. In §2 we give an overview of the historical back-
ground and a comparison of methods for the computation of invariant tori. Section
§3 covers the derivation of an invariance equation for quasi-periodic invariant tori. Its
discretisation by finite differences is described in detail in §4. In §5 we demonstrate
the performance of our algorithm with examples. In particular, an example is given
where a torus changes stability and a family of period-doubled tori emerges; see §5.2.

2. Historical Background. The first direct numerical approximations of in-
variant 2-tori appeared in the engineering literature about 20 years ago. Since quasi-
periodic invariant 2-tori of dynamical systems can be observed directly as the closure of
a quasi-periodic orbit, early attempts of the numerical investigation of quasi-periodic
invariant 2-tori were based on the computation of quasi-periodic orbits. Chua and
Ushida [15] described in 1981 the spectral balance method for the approximation of
quasi-periodic orbits, which is a generalisation of the harmonic balance method used
for the approximation of periodic orbits. A description of both methods can be found
in [46]. The basic idea is to use Fourier polynomial approximations of the quasi-
periodic orbit, where the set of basis functions must be chosen carefully to avoid
small divisor problems. This method is suitable for the approximation of a single
quasi-periodic orbit regardless of its stability. We use a slightly generalised version of
this method in §5.2 for obtaining initial approximations to the 2-torus and its second
basic frequency.

Another approach for the numerical analysis of quasi-periodic orbits was intro-
duced by Kaas-Petersen [33, 34, 35] in 1985. Here, a quasi-periodic orbit is computed
as a fixed point of a generalised Poincaré map. This algorithm is generalisable to quasi-
periodic orbits on higher-dimensional tori and has the advantage that it provides a
simple algebraic criterion for determining the stability of the orbit, which is directly
related to the stability of the fixed point. Hence, it is straightforward to detect quasi-
periodic bifurcations (see also [6] and [9]), and an example of a quasi-periodic orbit
losing stability is given in [35]. The drawback of this algorithm is that it also suffers
from the small divisor problem. Namely, for quasi-periodic orbits with rotation num-
bers that are well approximated by continued fraction expansion it becomes hard or
even impossible to compute the generalised Poincaré map with sufficient precision.

To overcome difficulties caused by properties of the flow on the torus, such as the
small divisor problem, research focused on the direct computation of the torus itself
or, equivalently, an associated invariant closed curve of a local Poincaré map. In §2.1
we sketch the historical development and the current state of the art of methods for
invariant closed curves and tori of maps, and in §2.2 we do the same for tori of ODEs.
In the sequel, T

p := (R/2π)p denotes the p-dimensional standard torus parametrised
over [0, 2π)p. A function u : T

p → R with domain T
p is called torus function. Note
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that T
1 = S1 and that by this definition the 0-torus T

0 is a point, whereas the 0-
sphere S0 consists of two isolated points. For invariant 1-tori of maps and ODEs we
also use the terms invariant closed curve and periodic orbit, respectively.

2.1. Tori of Maps. The basic idea is to find a torus function u : T
p → R

n such
that its image T := { u(θ) | θ ∈ T

p } is invariant under the map f : R
n → R

n. That
is, the invariance condition

u(ϕ(θ)) = f(u(θ))(2.1)

holds point-wise, where θ ∈ T
p and ϕ : T

p → T
p is diffeomorphic to the map f

restricted to the invariant torus T . Here, a typical problem that appears in torus
computations becomes visible, namely, the invariance condition (2.1) provides only
an equation for u, but the function ϕ is also unknown and it depends on the para-
metrisation of the torus T . One can fix the function ϕ by either introducing local
coordinates or by adding further conditions to (2.1), a non-trivial task in both cases.
Once the function ϕ is fixed, one transforms (2.1) into the equivalent fixed point form

u(θ) = f(u(ϕ−1(θ))),(2.2)

and solves (2.2), in principle, by fixed-point iteration or by applying Newton’s method
to one of the problems u(ϕ(θ))− f(u(θ)) = 0 or u(θ)− f(u(ϕ−1(θ))) = 0. We say ‘in
principle’ because we have not specified conditions to fix ϕ, hence, (2.1) and (2.2) are
not ready-to-use algorithms.

In 1985 Kevrekidis, Aris, Schmidt and Pelikan [36] published an algorithm for the
computation of invariant closed curves based on the invariance condition (2.1) under
the additional assumption that the map f is available in the so-called partitioned

form, that is, it can be written as

f :

(

r
θ

)

7→

(

g(r, θ)
h(r, θ)

)

,

where θ ∈ S1 and r ∈ R. In other words, f is a map on the cylinder S1× R. Hence,
the invariance condition becomes the functional equation u(h(u(θ), θ)) = g(u(θ), θ)
where only u : S1 → R is unknown and which can be solved efficiently with Newton’s
method. A generalisation of this algorithm to the case of invariant closed curves of
general maps in R

n was proposed by Debraux [16] in 1994. Debraux adds suitable
orthogonality conditions to fix the parametrisation. Another method was given in
1996 by Moore [41]. Here, a unique parametrisation is obtained by introducing a
local coordinate system.

An algorithm for the computation of invariant closed curves of maps based on the
fixed point equation (2.2) was published in 1987 by Van Veldhuizen [51, 52] where it
is assumed that the invariant closed curve can be parametrised by radial coordinates.
Thereby, the coordinate system is fixed and it is possible to compute attracting in-
variant closed curves by iterating the fixed-point equation (2.2). This algorithm can
be regarded as a first implementation of the Hadamard graph transform technique;
see also [31].

Dieci and Lorenz [19] proposed in 1995 a generalisation of the graph transform
technique to the computation of attracting invariant tori of maps, and examples for
2-tori are given. With the aid of the normal bundle, a local torus-coordinate system is
introduced to fix the parametrisation. Therefore, no restrictions on the representation
of the map apply. This algorithm allows the computation of the full invariant 2-torus
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of an ODE when applied to the time-τ map of the flow generated by the ODE. A
recent implementation of a continuation method utilising this algorithm includes the
re-parametrisation technique described in [41] and can be found in [48].

Independently, in 1996 Broer, Osinga and Vegter [10, 11, 12, 13] developed an
algorithm for the computation of invariant tori of maps which is also based on the
graph transform technique. This algorithm introduces a local coordinate system util-
ising the ∂xf -invariant transversal bundle. It is able to compute attracting as well as
saddle-type tori and examples of attracting and saddle-type invariant closed curves
and 2-tori are given. Furthermore, their algorithm can be used for the computation
of compact overflowing invariant manifolds, for instance, local stable and unstable
manifolds of compact invariant manifolds. This is demonstrated with examples of
the computation of local stable and unstable manifolds of invariant closed curves and
invariant 2-tori; these examples appeared in [44].

A further developed version of this algorithm was published in 2003 by Broer,
Hagen and Vegter [7]. Here, a Lipschitz-continuous approximation to the normal
bundle is used instead of the ∂xf -invariant transversal bundle. This algorithm is
implemented on both fixed and adaptive meshes for invariant closed curves and 2-
tori. Examples for the computation of attracting as well as saddle-type invariant
closed curves and 2-tori of maps and ODEs are given.

2.2. Tori of ODEs. The second main class of algorithms for the computation of
invariant tori of ODEs is based on the invariance condition for vector fields. The basic
idea is to find a torus function u : T

p → R
n such that its image T := { u(θ) | θ ∈ T

p }
is invariant under the flow induced by a vector field. In other words, the vector field
restricted to the torus T is everywhere tangent to T . This invariance condition can
be rewritten as the first-order partial differential equation (PDE)

p
∑

i=1

ψi(θ)
∂u

∂θi
= f(u) ,(2.3)

where the ψi : T
p → R, i = 1, . . . , p, are the coefficients of the vector field restricted to

the invariant torus in the base { ∂u
∂θ1

, . . . , ∂u
∂θp

}. Again, one encounters the problem that

(2.3) provides an equation for u only, while the function ψ is also unknown and depends
on the choice of a parametrisation of the torus. As for the computation of invariant
tori of maps, the function ψ can be fixed by either introducing local coordinates or
by adding further conditions, either of which comes with its own difficulties. Once
the function ψ is fixed, one applies Newton’s method and obtains a fast-converging
algorithm.

An early algorithm that follows this idea was published in 1987 by Samoilenko
[49]. It is based on the invariance condition (2.3) under the additional assumption
that the ODE is available in the partitioned form

{

ṙ = g(r, θ),

θ̇ = h(r, θ),

where r ∈ R
n−p and θ ∈ T

p. In other words, the ODE is already given in torus
coordinates. In this case the invariance condition (2.3) assumes the specific form

p
∑

i=1

hi(u, θ)
∂u

∂θi
= g(u, θ) .(2.4)
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Samoilenko considers the computation of quasi-periodic invariant tori by the Fourier-
Galerkin method applied to (2.4) and a thorough convergence analysis of this al-
gorithm is given both in the linear and in the nonlinear case. (He also gives an
introduction to the theory of quasi-periodic orbits; the derivation of our invariance
equation in §3 is, in fact, based on properties of quasi-periodic orbits stated in [49].)

The numerical approximation of invariant tori independent of the flow on the
torus was first considered by Dieci, Lorenz and Russell [17] in 1991. Equation (2.4)
is discretised by a finite difference method and a proof of convergence is given in [18].
Other discretisation methods for equation (2.4) were also studied; see, for example,
[4, 22, 25, 40]. The performance of these algorithms is demonstrated with examples
for the computation of attracting invariant 2-tori.

An extension to the computation of invariant 2-tori of ODEs that cannot be trans-
formed into radius-angle coordinates was published by Moore [41] in 1996. Moore
introduces a local coordinate system around the torus and, thereby, fixes the un-
known function ψ. He also addresses the problem that a suitable initial paramet-
risation may become inappropriate during a parameter continuation and develops a
re-parametrisation technique which produces parametrisations of high quality. The
other way to fix the function ψ, namely, the extension of equation (2.3) by suitable
additional conditions, was recently proposed by Henderson (personnel communica-
tion 2003). This avoids the computation of local coordinates at the expense of adding
orthogonality conditions for each mesh point. Within a parameter continuation this
method would also require frequent re-parametrisations as done, for example, in [41].

2.3. Comparison. The two main approaches for the computation of invariant
tori of maps and ODEs, namely, applying Newton’s method to a functional equation
and the graph transform technique, have inherent strengths and weaknesses. The
functional equation approach has the advantage that one obtains quadratically con-
vergent algorithms by employing Newton’s method, whereas algorithms based on the
graph transform technique are only linearly convergent. Furthermore, the speed of
convergence of Newton’s method is independent of the properties of the flow near the
torus while the speed of convergence of the graph transform technique is determined
by the attraction (expansion) transverse to the torus. In particular, during a para-
meter continuation, algorithms based on the graph transform technique cannot ‘step
over’ small parameter intervals where the torus changes stability.

On the other hand, the graph transform technique is memory conservative. It
requires only to store the mesh and can be implemented to work node by node. Thus,
it is not necessary to have simultaneous access to the full stored data. In contrast,
for applying Newton’s method it is necessary to store not only the mesh but also
a Jacobian and its (incomplete) factorisation. Therefore, compared with Newton’s
method, the graph transform technique allows the computation of higher dimensional
tori under the restriction of sufficient normal attraction (expansion).

A complete proof of convergence for normally hyperbolic invariant tori is only
available for algorithms based on the graph transform. Convergence of Newton’s
method was investigated seriously for algorithms using the invariance condition (2.4).
The major difficulty here is to show stability of the discretisation. Such a proof of
stability is given by Dieci and Lorenz [18] for a finite-difference scheme, but it requires
rather strong assumptions.

A problem that both main approaches share is the choice of a suitable paramet-
risation, which is non-trivial as we already pointed out. This is the major difficulty
for the construction of algorithms that are simple to implement. Our main goal is to
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overcome this difficulty. As a first step we derive a PDE that gives rise to a para-
metrisation of quasi-periodic invariant tori in a natural way. The discretisation of
this equation provides an algorithm that not only computes a quasi-periodic invariant
torus but also its basic frequencies. The method is simple to implement, uses only
information in the tangent space and can be regarded as a natural generalisation of
algorithms for periodic orbits. Furthermore, it is used in a one-parameter continu-
ation environment where it is capable of computing phase-locked tori, provided the
resonances are ‘sufficiently weak’ relative to the used mesh; see §4.3.

3. Invariance Equation. In this section we derive an extended PDE that an
invariant quasi-periodic torus must satisfy. To this end we make use of the close
relationship between a quasi-periodic torus that is invariant under the flow of (1.1)
and a quasi-periodic orbit that is an actual solution of (1.1). This is described in
detail in Broer, Huitema and Sevryuk [8] and Samoilenko [49]. In the following we
briefly quote the properties that we use for the derivation.

A quasi-periodic orbit of (1.1) densely fills a quasi-periodic invariant torus. Fur-
thermore, any quasi-periodic orbit x can be written in the form x(t) := u(ωt),
where u : T

p → R
n is a torus function and the real numbers ω1, . . . , ωp are ra-

tionally independent, that is, there exist no integers k1, . . . , kp,
∑p
i=1 |kp| 6= 0, such

that
∑p
i=1 kiωi = 0. The numbers ω1, . . . , ωp are called the basic frequencies and

ω := (ω1, . . . , ωp) the frequency basis of a quasi-periodic torus or a quasi-periodic
orbit, respectively.

An important property that we are going to use is the following equality of norms.
In the space of quasi-periodic functions x ∈ [ C0(R) ]n we define the supremum norm

‖x‖2
[ C0(R) ]n :=

n
∑

i=1

(

sup
t∈R

|xi(t)|

)2

,

and in the space of torus functions the maximum norm

‖u‖2
[ C0(Tp) ]n :=

n
∑

i=1

(

max
θ∈Tp

|ui(θ)|

)2

.

If x is a quasi-periodic orbit with frequency basis ω and u an associated torus function
such that x(t) := u(ωt) then the norms of x and u have the same value (see also [49]) :

‖x‖[ C0(R) ]n = ‖u‖[ C0(Tp) ]n ,(3.1)

which follows from the density property mentioned above.
Now, let y ∈ [C1(R)]n be an arbitrary quasi-periodic function with frequency basis

ω and let v ∈ [ C1(Tp) ]n be an associated torus function. We put the representation
y(t) = v(ωt) into (1.1) and define the quasi-periodic function g ∈ [ C0(R) ]n,

g(t) := f(v(ωt)) −

p
∑

i=1

ωi
∂v

∂θi
(ωt) ,

and the associated torus function G ∈ [ C0(Tp) ]n,

G(θ) := f(v(θ)) −

p
∑

i=1

ωi
∂v

∂θi
(θ) .
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rotation by 2πρ

Figure 3.1. The characteristic field of equation (3.2) on the standard torus T2 is a set of
parallel straight lines with slope ̺ = ω2/ω1. The cross-section θ2 = 0 (blue lines) is mapped onto
itself under the transport along the characteristics whereby a rotation by 2π/̺ occurs.

We can interpret the function g as a defect function. If y is a quasi-periodic orbit of
(1.1) then g is identically zero and vice versa. From the norm equality (3.1) of g and
G we now obtain the equivalence

g ≡ 0 ⇐⇒ G ≡ 0 ,

which implies that a quasi-periodic torus u with frequency basis ω is invariant under
the flow of (1.1) if and only if it satisfies the partial differential equation

p
∑

i=1

ωi
∂u

∂θi
= f(u) .(3.2)

Equation (3.2) has some remarkable properties that are closely related to the
properties of the flow on the torus. Its characteristics satisfy the simple ordinary
differential equation

θ̇ = ω , θ ∈ T
p ,

which is solved by a set of parallel straight lines; see Fig. 3.1. In the following we
denote a solution of (3.2) by u∗. The image x(t) := u∗(ωt) of a characteristic under the
solution u∗ in the phase-space of (1.1) is, by definition, a quasi-periodic orbit on the
invariant torus T . Therefore, u∗ maps the parallel flow generated by the characteristic
equation on T

p onto the quasi-periodic flow on the invariant torus T . For that reason,
we call a parametrisation of T generated by a solution of equation (3.2) a natural

parametrisation of the torus T .
Since equation (3.2) is a semi-linear transport equation, arbitrary subsets M ⊆ T

p

are transported along the characteristics without changing shape; see [23]. Of special
interest are the cross-sections

Ti := { θ ∈ T
p | θi = 0 } ;
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see Fig. 3.1, where T2 is indicated by blue lines. After the time ti := 2π/ωi the set
Ti is mapped onto itself whereby in each angular direction a shift of 2πσj occurs,
where σj = ωj/ωi and j 6= i. For p = 2 this is a rigid rotation with irrational
rotation number. Therefore, each image set u∗(Ti) is an invariant (p− 1)-torus of the
period-2π/ωi stroboscopic map Pi : u∗(Ti) 7→ u∗(Ti).

A further noteworthy property of equation (3.2) is that it can be interpreted as
a direct generalisation of the equations for equilibrium points (0-tori) and periodic
orbits (1-tori) of autonomous differential equations, namely

0 = f(u)

and

ω
du

dt
= f(u),

respectively. The latter is usually transformed such that the period of the periodic
orbit rather than its frequency appears as a variable; see also [20].

Similar to periodic orbits, an invariant quasi-periodic torus of (1.1) is not uniquely
defined by the partial differential equation (3.2). For any quasi-periodic invariant p-
torus, both the torus function u and the frequency basis ω are unknown but (3.2) is
an equation for the torus function only. This is due to the fact that the p-torus T has
p free phases. In order to fix the free phases and allow the computation of the basis
frequencies we introduce phase conditions as follows.

Assume that we already know a nearby solution ũ, for instance from a previous
continuation step. Then we take s ∈ T

p such that the parametrisation u(θ + s) is an
extremal point of the function

g(s) := ‖ũ− u‖2 ,

where we use the [ L2(T
p) ]n-norm defined by

‖u‖2 :=
1

(2π)p

n
∑

i=1

∫

Tp

u(θ)2 dθ .

This idea generalises the phase condition used in AUTO [20] and in [21] for the
computation of periodic orbits. The parametrisation u∗(θ) := u(θ + s∗) is implicitly
defined by the necessary conditions of extremality of g(s∗),

〈

∂ũ

∂θi
, u

〉

:=
1

(2π)p

n
∑

j=1

∫

Tp

∂ũj
∂θi

(θ) uj(θ) dθ = 0 , i = 1, . . . , p .

By adding these phase conditions to equation (3.2) we obtain the extended system


























p
∑

i=1

ωi
∂u

∂θi
= f(u) ,

〈

∂ũ

∂θi
, u

〉

= 0 , i = 1, . . . , p ,

(3.3)

which has as many equations as unknowns and where ũ is an a-priori known initial
approximation. We refer to system (3.3) as the invariance equation.
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Figure 4.1. Discretisation of the two-dimensional standard torus T2 (a); the periodicity with
respect to θ1 and θ2 is indicated by grey colouring; only the data of the blue part of the mesh needs
to be stored. The finite-difference star generated by the common central finite-difference quotient is
shown in panel (b).

4. Numerical Approximation. In this section we describe the computation
of approximate solutions of the invariance equation (3.3). To this end, we introduce
appropriate mesh-functions and approximate the partial derivatives by central differ-
ence quotients; see §4.1. Because of the specific structure of the invariance equation
(3.3) the discretised system can be constructed recursively, whereby the dimension p
of the torus is used as the recursion parameter; see §4.4. This already reduces the
implementation effort in the case of 2-tori and means that our implementation of
the proposed algorithm is able to compute invariant tori of arbitrary fixed dimension
p. In §4.2 we discuss convergence of the algorithm and in §4.3 we explain how to
integrate it in a continuation environment. In §4.3 we also address existence and con-
vergence problems that may occur since quasi-periodic invariant tori do not persist
under generic perturbations.

4.1. Discretisation by Finite Differences. A discretisation of equation (3.3)
by finite differences seems especially advantageous for the following reasons:

1. The domain T
2 is compact and has no boundary.

2. High-order finite-difference schemes are easy to construct.
3. The finite-difference method is simple to implement.

In order to construct a mesh, we choose p arbitrary but fixed natural numbers
N1, . . . , Np and call N := min{N1, . . . , Np} the discretisation parameter. We define
the step-sizes hi := 2π/Ni, i = 1, . . . , p, and call h := max{h1, . . . , hp} = 2π/N
the mesh size. The mesh points are now defined using the one-dimensional toroidal
index-sets TNi

:= Z/Ni, i = 1, . . . , p, and

T
p
N := (TN1

) × · · · × (TNp
)

is the corresponding p-dimensional toroidal multi-index set; see Fig. 4.1 (a). The
mesh-functions are defined on the space GN :

GN := { uN | uN : T
p
N → R } .
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m ηk q

1 1

2
2 x ∈ C3(R)

2 8

12
− 1

12
4 x ∈ C5(R)

3 45

60
− 9

60

1

60
6 x ∈ C7(R)

4 672

840
− 168

840

32

840
− 3

840
8 x ∈ C9(R)

Table 4.1
Coefficients for several central finite-difference schemes. These schemes are consistent and of

order q for sufficiently smooth functions, as specified in the last column

A mesh-function on T
p
N is indicated by the sub-index N . Addition of two mesh-

functions and multiplication with a scalar are defined point-wise. In the space of
vector-valued mesh functions [ GN ]n we define a scalar product as

〈 uN , vN 〉[ GN ]n :=

n
∑

i=1

〈 uN,i , vN,i 〉GN
,

where we used the scalar product in the space of real-valued mesh functions GN on
the right-hand side:

〈 uN,i , vN,i 〉GN
:=

1

N1 · · ·Np

∑

j∈T
p

N

uN,i(j)vN,i(j) .

In the space [ GN ]n we use the norm which is induced by the scalar product

‖uN‖2
[ GN ]n := 〈 uN , uN 〉

2
[ GN ]n .

We now discretise the invariance equation (3.3) by restricting to functions defined
only on the mesh points T

p
N . We denote this discretisation in terms of the discretisation

operator PN : [ Cr(Tp) ]n → [ GN ]n, sometimes also referred to as the restriction
operator,

(PNu)(j1, . . . , jp) := u(j1h1, . . . , jphp) .(4.1)

Furthermore, we approximate the partial differential operators by the partial finite-
difference operators ∂N,i : [ GN ]n → [ GN ]n,

∂N,iun :=
1

hi

m
∑

k=−m

ηkuN (. . . , ji + k, . . .) , ηk ∈ R , i = 1, . . . , p ,

where we use central finite-difference quotients for which the coefficients ηk are skew
symmetric, that is, ηk = −η−k for k = 0, . . . ,m.

For different values of m the coefficients ηk, k = 1, . . . ,m, of consistent central
difference schemes are given in Table 4.1; see also [30]. Note that η0 = 0 by skew
symmetry. For m = 1 this is the common 3-point central-difference quotient formula
ẋ(t) = 1

2h (x(t + h) − x(t − h)) + O(h2) of order 2 and its difference star is shown in
Fig. 4.1 (b). In our implementation we use the two finite-difference discretisations for
m = 1 and m = 2 of consistency order 2 and 4, respectively, and compute two different
approximations on the same mesh. This allows us to estimate the approximation error
as the norm of the difference between these two solutions.
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We introduce a compact notation for this discretisation by using the difference
operator DN : [ GN ]n → [ GN ]n,

DNun :=

p
∑

i=1

ωi∂N,iuN ,(4.2)

and define for brevity

fN (uN )(j1, . . . , jp) := PN ( f(u(θ)) )(j1, . . . , jp) = f(u(j1h1, . . . , jphp)) .

With these definitions the discretised invariance equation (3.3) is given by

{

DNuN = fN (uN ) ,
〈 ∂N,iPN ũ , uN 〉 = 0 , i = 1, . . . , p .

(4.3)

In practical implementations it is recommended to use normalised difference quotients
for ∂N,iPN ũ because this usually leads to better conditioned systems.

System (4.3) can be solved by applying Newton’s method. Therefore, it is con-
venient to rewrite (4.3) as the root-finding problem

FN (uN , ω) :=

(

fN (uN ) −DNuN
〈 ∂N,iPN ũ , uN 〉

)

= 0 ,(4.4)

where FN : ([ GN ]n × R
p) → ([ GN ]n × R

p). Note that the dependence of FN on ω is
due to the dependence of DN on ω which, for simplicity, is not explicitly noted.

4.2. Consistency and Stability. So far, we only assumed for the construction
of our algorithm that a sufficiently smooth solution of the invariance equation (3.3)
exists in order for the difference-quotients to be meaningful. Although, in addition,
we generally need regularity of the solution for applying Newton’s method (which
follows from normal hyperbolicity), a rigorous proof of convergence can only be given
in a rather restrictive setting. The restrictions are caused by properties of the right-
hand side f of the autonomous system (1.1) that we have to impose in order to
show stability of the finite-difference discretisation. These properties are similar to
properties required in the proofs of convergence given by Dieci, Lorenz and Russell
[17] and by Dieci and Lorenz [18] for finite difference methods and by Samoilenko [49]
for Galerkin methods, as outlined below.

The proof of stability of our finite-difference discretisation in the case when one or
more basic frequencies are unknown is ongoing work and we restrict here to the special
case when quasi-periodic forcing is present and focus on similarities to and differences
with [17], [18] and [49]. To set the stage, we consider the ODE in partitioned form

{

ẋ = f(x, θ) , f : R
n× T

p → R
n , n ≥ 1 ,

θ̇ = ω , ω ∈ R
p ,

(4.5)

where ω is now a known quantity. Since f now explicitly depends on θ, an invariant
torus of (4.5) has no free phases and the invariance equation (3.3) reduces to the
partial differential equation

p
∑

i=1

ωi
∂u

∂θi
= f(u, θ)(4.6)
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with constant coefficients ω1, . . . , ωp. In other words, the invariance equation is no
longer extended. Equation (4.6) is a special case of the partial differential equation
(2.4), which is used as the determining equation for invariant tori in [17], [18] and
[49]. As before we denote a solution of equation (4.6) by u∗.

To simplify the following considerations we define the differential operator D :
[ Cr(Tp) ]n → [ Cr−1(Tp) ]n as D :=

∑p
i=1 ωi

∂
∂θi

. With this definition we can rewrite
the continuous and the discretised problems as

Du = f(u, θ)(4.7)

and

DNuN = fN (uN ) ,(4.8)

respectively. Equation (4.8) is consistent of order q with equation (4.7) at u∗ if there
exist constants M1,M2 ∈ R independent of N and a natural number N0 such that for
all N ≥ N0 the inequalities

‖PNDu
∗ −DNPNu

∗‖ ≤M1h
q

and

‖PNf(u∗, θ) − fN (PNu
∗)‖ ≤M2h

q

hold. The second inequality holds trivially because PNf(u∗, θ) − fN (PNu
∗) = 0 by

definition of PN . We can construct high-order finite-difference schemes by using one-
dimensional standard difference-quotient formulas as stated in the following lemma.
Note that, in contrast to [17] and [18], we do not use upwind schemes.

Lemma 4.1 (consistency). Let x ∈ Cr(R) and the difference quotient, defined as

∆x(t) :=
1

h

m
∑

k=1

ηk(x(t+ kh) − x(t− kh)) ,

be consistent with order q (see Table 4.1), that is, there exist continuous functions

h0(t) > 0 and 0 ≤ C(t) < ∞ such that for every t ∈ R and h ∈ [0, h0(t)) the

inequality

∣

∣

∣

∣

dx

dt
(t) − ∆x(t)

∣

∣

∣

∣

≤ C(t)hq

holds. Then for u∗ ∈ [ Cr(Tp) ]n there exists a natural number N0 such that the

finite-difference operator DN is consistent of order q with D at u∗ for all N ≥ N0.

Note that x ∈ Cq+1(R) is a sufficient condition for the construction of consistent
difference quotients of order q. Then C(t) = ‖x‖Cq+1(R) and the inequality in the
lemma holds for arbitrary h > 0. The condition x ∈ Cq+1(R) can be weakened;
see [28].

Proof. First we show consistency of the partial finite difference operator from
which the assertion then follows.

For u ∈ Cr(Tp) we denote by ∂iu(θ) := ∆u(· · · , θi, · · ·) the partial differential quo-
tient defined by applying ∆ to the i-th argument of u. Then, by assumption, there
exist continuous functions hij(θ) > 0 and 0 ≤ Cij(θ) <∞ such that for each compon-
ent u∗j , j = 1, . . . , n, and every θ ∈ T

p the inequality | ∂
∂θi
u∗j (θ) − ∂iu

∗
j (θ)| ≤ Cij(θ)h

q
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holds for all h ∈ [0, hij(θ)). From compactness of K := {1, . . . , p} × {1, . . . , n} × T
p

it follows that both h0 := min(i,j,θ)∈K hij(θ) > 0 and C0 := max(i,j,θ)∈K Cij(θ) < ∞

exist. Therefore, the inequality | ∂
∂θi
u∗j (θ) − ∂iu

∗
j (θ)| ≤ C0h

q holds uniformly for all
θ ∈ T

p and h ∈ [0, h0). From (∂N,iPNu
∗
j )(k1, . . . , kp) = ∂iu

∗
j (k1h1, . . . , kphp) follows

now the estimate
∥

∥

∥

∥

PN
∂u∗

∂θi
− ∂N,iPNu

∗

∥

∥

∥

∥

2

=
n
∑

j=1

∥

∥

∥

∥

PN

(

∂u∗j
∂θi

− ∂iu
∗
j

)∥

∥

∥

∥

2

≤
n
∑

j=1

(C0h
q)2 = n(C0h

q)2 ,

where the ‘≤’ sign is obtained using the triangle inequality. This implies consistency
of ∂N,i for i = 1, . . . , p.

Let now τi := PN
∂
∂θi
u∗ − ∂N,iPNu

∗, then PNDu
∗ − DNPNu

∗ =
∑p
i=1 ωiτi and

we obtain the estimate

‖PNDu
∗ −DNPNu

∗‖2=

∥

∥

∥

∥

∥

p
∑

i=1

ωiτi

∥

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

∥

p
∑

i=1

ωi‖τi‖

∥

∥

∥

∥

∥

2

≤

∣

∣

∣

∣

∣

p
∑

i=1

ωi

∣

∣

∣

∣

∣

2

n(C0h
q)2 ,

and thus the assertion with N0 > 1/h0.
To simplify the notation of stability we define the linear operators AN and LN

as follows. Let J(θ) denote the Jacobian ∂
∂x
f(u∗(θ), θ) at (u∗(θ), θ). Then we define

the discrete linear operator AN : GN → GN point-wise as

(ANuN )(j1, . . . , jp) := J(j1h1, . . . , jphp) uN (j1, . . . , jp) ,

and LN : GN → GN becomes LN := AN − DN . Note that, similar to (4.4) for our
specific invariance equation (4.6), LN is the Jacobian F ′

N (PNu
∗) of FN evaluated at

PNu
∗.
Our finite-difference discretisation is stable if for some N0 ∈ N the inverse oper-

ators L−1
N exist and are uniformly bounded for all N ≥ N0. In order to show stability

we impose a further restriction on f as stated now.
Lemma 4.2 (stability). Suppose the Jacobian J(θ) is uniformly strongly posit-

ive, that is, there exists a constant c > 0 independent of θ such that the inequality

〈 J(θ)x , x 〉 ≥ c‖x‖2 holds for all x ∈ R
n. Then the finite-difference discretisation

for equation (4.6) defined by (4.8) is stable. More precisely, the inverse operators L−1
N

exist for N ≥ N0 ≥ 2m+ 1 and are uniformly bounded by ‖L−1
N ‖ ≤ c−1.

Proof. We divide the proof into two parts. First, we show that the discretisation is
stable, provided DN is skew-symmetric. Second, we show that DN is skew-symmetric
for our choice of discretisation.

Suppose DN is skew-symmetric for all N ≥ N0 ∈ N, that is, D∗
N = −DN . Then

〈DNuN , uN 〉 = 〈 uN , −DNuN 〉 = −〈DNuN , uN 〉 = 0. It follows for LN the
equality

〈 LNuN , uN 〉 = 〈 (AN −DN )uN , uN 〉 = 〈ANuN , uN 〉 .(4.9)

From the definition of the scalar product in GN and the assumption on J(θ) we obtain
the inequality

〈ANuN , uN 〉 =
1

N1 · · ·Np

∑

j∈T
p

N

〈 (ANuN )(j) , uN (j) 〉
Rn

≥
1

N1 · · ·Np

∑

j∈T
p

N

c〈 uN (j) , uN (j) 〉
Rn

= c‖uN‖2.
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This implies stability: c‖uN‖2 ≤ 〈 LNuN , uN 〉 ≤ ‖LNuN‖‖uN‖. Thus, c‖uN‖ ≤
‖LNuN‖ for all uN ∈ GN , hence, the inverse operators L−1

N exist and are uniformly
bounded by ‖L−1

N ‖ ≤ c−1.
In order to show skew-symmetry of DN we introduce the rotation operators Ei :

GN → GN , (EiuN )(j1, . . . , ji, . . . , jp) := uN (j1, . . . , ji + 1, . . . , jp). Using Ei, the
partial difference operators can be written as ∂N,i = (1/hi)

∑m
k=1 ηk(E

k
i − E−k

i ), the
assumption N0 ≥ 2m + 1 eliminates the pathological case that Eki = Ei for some
k = 2, . . . ,m. In the next step we confirm that E∗

i = E−1
i . By definition, we have

〈 EiuN , vN 〉 =
1

N1 · · ·Np

∑

j∈T
p

N

〈 uN (· · · , ji + 1, · · ·) , vN (· · · , ji, · · ·) 〉.

The index shift (j1, . . . , ji + 1, . . . , jp) 7→ (̃1, . . . , ̃i, . . . , ̃p) gives

〈 EiuN , vN 〉 =
1

N1 · · ·Np

∑

̃∈T
p

N

〈 uN (· · · , ̃i, · · ·) , vN (· · · , ̃i − 1, · · ·) 〉

=
〈

uN , E−1
i vN

〉

,

because we can reorder the sum over ̃i due to the congruence 1 ∼= Ni + 1 (mod Ni).
It follows that

(∂N,i)
∗ =

(

1

hi

m
∑

k=1

ηk(E
k
i − E−k

i )

)∗

=
1

hi

m
∑

k=1

ηk

(

(Eki )∗ −
(

(E∗
i )
k
)∗
)

=
1

hi

m
∑

k=1

ηk

(

(E∗
i )
k − ((E∗

i )
∗)
k
)

=
1

hi

m
∑

k=1

ηk
(

(E−1
i )k − Eki

)

= −
1

hi

m
∑

k=1

ηk
(

Eki − E−k
i

)

= −∂N,i ,

thus

(DN )∗ =

(

−

p
∑

i=1

ωi ∂N,i

)∗

= −

p
∑

i=1

ωi (∂N,i)
∗

=

p
∑

i=1

ωi ∂N,i = −DN ,

which completes the proof.
The condition that J be uniformly strongly positive can be interpreted geometric-

ally. Writing S(θ) := 1
2 (J(θ)+J(θ)T) and U(θ) := 1

2 (J(θ)−J(θ)T) for the symmetrical
and skew-symmetrical parts of J(θ), respectively, it follows from (4.9) that the uni-
form strong positivity of J is equivalent to S being uniformly positive definite. Hence,
all eigenvalues of S(θ) are real and bounded from below by c. This implies that the
eigenvalues of J(θ) have positive real parts that are also bounded from below by c,
which means that the torus is normally repelling with a rate not less than c > 0.
A similar argument leads to the torus being normally attracting by reversing time.
However, as already stated at the beginning of this section, we conjecture that the
only property of the solution required for convergence is its normal hyperbolicity. We
show with our examples in §5 that our algorithm is indeed able to compute tori of
saddle type.

We point out that we impose exactly the same condition on the Jacobian J as
Dieci and Lorenz in [18]. However, the proof of stability given in [18] does not apply in
our situation because LN is not a block M-matrix, which is due to the fact that DN is
skew symmetric. On the other hand, this condition on J is weaker than the conditions
used by Samoilenko in [49] to show convergence of the Galerkin method in the space
[ Cr(Tp) ]n. In [49] further constraints are required involving higher derivatives of f .
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Figure 4.2. The first steps in the computation of the Farey tree (a) and a sketch of the expected
convergence behaviour of our algorithm during a parameter continuation (b). For increasing but
fixed discretisation parameter N we expect the estimated error ERR that depends on the parameter
µ to behave qualitatively similar to the blue lines in the sequence 1-2-3. The points QPP on the
µ-axis mark the parameter values where the torus is quasi-periodic. The light blue line segment
EI indicates the open interval for which a solution of the discretised system exists. The maximal
possible accuracy of our algorithm is drawn as the red curve MPE, the estimated error is bounded
from below by ERR ≥ MPE.

4.3. Continuation. A typical continuation algorithm consists of two parts, a
predictor and a corrector. Suppose we already know a quasi-periodic invariant torus
for a certain parameter value. Then the continuation algorithm proceeds as follows.
First, the predictor computes an initial guess of a torus for a new parameter value.
For example, this could be the known torus for the other parameter value or a torus
obtained by extrapolation which is the basic idea of the tangent predictor. In the
second step, the corrector computes the new quasi-periodic invariant torus starting
from the initial guess produced by the predictor. Within this context our algorithm
is a corrector.

During a parameter continuation the parameter will frequently cross Arnol′d
tongues as we already pointed out in §1. Therefore, the invariance equation (3.3)
does not hold on an open and dense set of parameter values. On the other hand,
since our algorithm is stable, a solution of the discretised invariance equation (4.3)
is regular, hence, it does exist not only for parameter values µ where the torus is
quasi-periodic but also in a small neighbourhood of µ. Furthermore, any actual dis-
cretisation is of finite accuracy only. Therefore, we can expect that the algorithm
also computes approximations to phase-locked tori, provided the resonance is ‘weak
enough’.

The terms weaker resonance, stronger resonance and weak enough resonance are
used in the following sense. Utilising the Farey sum, one can introduce an ordering
of resonances; see, for example, [26]. Let ̺1 := p1/q1 and ̺2 := p2/q2 be rational
numbers. The Farey sum ⊕ is defined by ̺1 ⊕ ̺2 := (p1 + p2)/(q1 + q2). Starting
with the rational numbers ̺0 = 0/1 and ̺1 = 1/1 one can introduce an ordering of
p:q resonances with rational rotation number ̺ ∈ (0, 1], ̺ := p/q, in terms of levels in
the Farey tree; see Fig. 4.2 (a). For a given level, all rational rotation numbers above
this level have smaller denominators. Similarly, all rational rotation numbers in lower
levels have larger denominators. Because the width of an Arnol′d tongue that belongs
to the rotation number p/q is proportional to εq (see Fig. 1.1 and [26]), all rotation
numbers in higher levels belong to wider Arnol′d tongues and all rotation numbers
in lower levels belong to more narrow Arnol′d tongues, thus, to stronger or weaker
resonances, respectively. In particular, the Arnol′d tongue of ̺1 ⊕ ̺2 is the widest
Arnol′d tongue between the tongues of ̺1 and ̺2. The rotation numbers 1/1, 1/2, 1/3
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and 1/4 play a special role and are called strong resonances; see, for example, [27]. If
a rotation number belongs to a level such that for a given ODE the flow on the torus
can be regarded as quasi-periodic within the accuracy of a particular discretisation,
we call the resonance weak enough.

Within a continuation method we expect our algorithm to behave qualitatively as
depicted in Fig. 4.2 (b). Suppose that the flow on the torus is quasi-periodic for the
parameter values µ marked by the points QPP and that the solution of the discretised
system exists for all parameter values in the interval marked by EI (entire light blue
segment). Then the red curve MPE sketches the maximal possible accuracy that our
algorithm can reach theoretically when the flow on the torus is not quasi-periodic.
The blue lines with labels 1, 2 and 3 illustrate the actual accuracy for discretisations
with discretisation parameters 0 < N1 < N2 < N3, respectively. An estimate of this
accuracy must be monitored during continuation.

As long as the encountered resonances are weak enough, our algorithm will com-
pute a solution within its prespecified numerical accuracy. For µ-values that belong
to stronger resonances the actual accuracy of the obtained mesh function will not im-
prove as the mesh is refined. Thus, we expect peaks in the approximation error due to
wider Arnol′d tongues, the height of which indicates the ‘strength’ of a resonance. For
all other parameter values we expect to observe convergence. When the parameter
value gets close to a region where the torus is strongly resonant, the algorithm will
eventually break down. Our experience is that the algorithm is less sensitive for finer
meshes in the sense that the computed solutions seem smoother and we can continue
closer to or even through strong resonances. Furthermore, for finer meshes the con-
tinuation routine requires fewer steps to pass through a stronger resonance tongue.
After passing through an Arnol′d tongue the algorithm resumes the computation of
apparently smooth mesh functions.

4.4. Recursive Construction of the Discretised System. When developing
numerical algorithms on multi-dimensional domains one typically introduces a biject-
ive map of the set of multi-indices onto a set of single indices such that the discrete
function values can be stored as vectors. Thereby, one obtains a finite-dimensional
nonlinear algebraic system. In the following, we present a different approach that not
only simplifies the implementation but also allows the computation of tori of arbitrary
dimension p ≥ 1.

Consider the differential equations for tori of increasing dimension p ≥ 0 written
as a root-finding problem in function space:

0-torus: 0 = F 0(u) := f(u) ,

1-torus: 0 = F 1(u) := f(u) − ω1
∂u

∂θ1
= F 0(u) − ω1

∂u

∂θ1
,

2-torus: 0 = F 2(u) :=

(

f(u) − ω1
∂u

∂θ1

)

− ω2
∂u

∂θ2
= F 1(u) − ω2

∂u

∂θ2
,

...

p-torus: 0 = F p(u) :=

(

f(u) −

p−1
∑

i=1

ωi
∂u

∂θi

)

− ωp
∂u

∂θp
= F p−1(u) − ωp

∂u

∂θp
.

We observe that the expressions on the right-hand side can be formed recursively. This
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motivates the idea of developing an algorithm that constructs the extended discrete
system (4.3) by recursion over the dimension p of the torus.

Let p ≥ 1 and natural numbers N1, . . . , Np be given. Similar to §4.1 we define the
discretisation parameter N , the step-sizes hi, the mesh-size h and the toroidal index-
sets TNi

, i = 1, . . . , p. This time, we recursively define the spaces of mesh-functions:

G
1
N := { u1

N | u1
N : T

1
N1

→ R } ,

G
q
N := { uqN | uqN : T

1
Nq

→ G
q−1
N } ,

where q = 2, . . . , p is the recursion parameter. In the space of vector-valued recursive
mesh functions [ G

q
N ]n we define a scalar product

〈 uqN , vqN 〉[ G
q

N
]n :=

n
∑

i=1

〈

uqN,i , v
q
N,i

〉

G
q

N

,

where we used the scalar product in the space of real-valued recursive mesh functions
G
q
N on the right-hand side, that is,

〈

u1
N,i , v

1
N,i

〉

G1
N

:=
1

N1

N1
∑

j=1

u1
N,i(j)v

1
N,i(j) ,

〈

uqN,i , v
q
N,i

〉

G
q

N

:=
1

Nq

Nq
∑

j=1

uqN,i(j)v
q
N,i(j) .

In the space [ G
q
N ]n we use the norm which is induced by the scalar product

‖uqN‖2
[ G

q

N
]n := 〈 uqN , uqN 〉[ G

q

N
]n .

Addition of two mesh-functions and multiplication with a scalar are defined recursively
point-wise.

The discretisation operator PN : [ Cr(Tp) ]n → [ G
p
N ]n now assumes the form

(PNu)(j1) . . . (jp) := u(j1h1, . . . , jphp) .

If we identify uN (j1, . . . , jp) and upN (j1) . . . (jp) then the spaces [GN ]n and [Gp
N ]n are

isometric.
One can interpret a mesh-function uqN ∈ [ G

q
N ]n as a q-dimensional array with

elements in R
n, and uqN (j) ∈ [Gq−1

N ]n as a (q− 1)-dimensional array with elements in
R
n. The recursive definition is yet another way to actually perform the index com-

putation and the notation uqN (j1) . . . (jq) is closely related to the recursive indexing
of arrays in C and C++. Its main advantage is that an element uqN ∈ [ G

q
N ]n can be

regarded as an object with an index map that has to be defined for one-dimensional
indices only, for instance, by operator overloading. Thus, the dimension p of the torus
becomes a free parameter in our algorithm and the mesh-functions uqN ∈ [ G

q
N ]n may

be implemented as a template-class with q as a template-parameter.
So far, we have given a recursive definition of mesh-functions. One still needs

to show that the function FN in equation (4.4) as well as its linearisation can be
computed recursively. With the above definitions it is straightforward to derive an
algorithm for the evaluation of FN , for example,

F pN (upN , ω) :=

(

GpN (upN , ω)

bpN (upN )

)

,(4.10)
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(a) (b)

Figure 4.3. Structure of the Jacobian (F 2

N
)′ when using the five-point finite difference formula

for m = 2; see Table 4.1. The blue lines indicate the positions of structural non-zero elements. The
light blue diagonal blocks in panel (a) are sparse submatrices with a similar structure as the main
block in (a) as shown in panel (b). The dark blue diagonal blocks in panel (b) contain the Jacobians
of the right-hand side of the autonomous system (1.1) at the mesh-points.

where GqN contains the recursive discretisation of the partial differential equation that
is part of the invariance equation (3.3) :

GqN (uqN , ω)(j) :=

{

f(u1
N (j)) − ω1(∂N,1u

1
N )(j) for q = 1 ,

Gq−1
N (uqN (j), ω) − ωq(∂N,qu

q
N )(j) for q > 1 .

(4.11)

The term bpN represents the discretised phase conditions:

bpN (upN ) :=







〈 ∂N,1 ũ
p
N , upN 〉
...

〈 ∂N,p ũ
p
N , upN 〉






,(4.12)

and the finite-difference approximation ∂N,i of ∂
∂θi

is recursively evaluated as:

(∂N,iu
q
N )(j) :=















1

hq

m
∑

k=1

ηk ( uqN (j + k) − uqN (j − k) ) for i = q ,

∂N,iu
q
N (j) for i < q .

(4.13)

Since [ GN ]n and [ G
p
N ]n are isometric, the two equations FN (uN , ω) = 0 and

F pN (upN , ω) = 0 can be regarded as fully equivalent. For efficiency, the finite differences
∂N,i ũ

p
N , i = 1, . . . , p, are evaluated only once and normalised to improve the condition

of the Jacobian (F pN )′. This algorithm not only has the advantage that the dimension
p of the torus is a free parameter, but the finite-difference formula also appears only
in its one-dimensional form at label i = q of (4.13). This remarkably simplifies
the implementation of a particular finite-difference scheme as well as its possible
substitution by another one.

Next, one derives an algorithm for the recursive evaluation of the Jacobian (F pN )′

by differentiation of (4.10-4.13). As an additional result we obtain the general struc-
ture of this matrix as shown in Fig. 4.3 for the case of a 2-torus where we used the
finite-differences for m = 2; see Table 4.1. This matrix is a bordered matrix with the
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L(2   t)
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ω

v(   t)ω

Figure 5.1. A parametrically forced network with a non-linear resistor and a time-dependent
inductor as modelled by equation (5.2). The characteristic of the resistor is approximately cubic and
has regions with negative slope. The periodic forcing is due to the time-dependence of the inductance.

principle structure

(F pN )
′
=







∂GpN
∂upN

apN

bpN 0






,

where bpN is defined as above and the columns of apN contain the partial difference
quotients ∂N,iu

p
N for i = 1, . . . , p. Here, (upN , ω) denotes the point of linearisation.

One can interpret the main part
∂G

p

N

∂u
p

N

as a recursive block matrix where the structure

repeats in the diagonal blocks as indicated in Fig. 4.3 (b).

5. Examples. In this section we demonstrate the performance of our algorithm
with two examples arising in nonlinear electrical engineering. First, we extensively
investigate a parametrically forced network of Philippow [47] in §5.1. This example is
particularly difficult for our algorithm because strong resonances with wide Arnol′d
tongues exist in parameter space. Ironically, it was the break-down of our algorithm
near strong resonances that gave rise to the more thorough analysis presented here.
In addition, it is a typical example for the problems that one may face in order
to obtain suitable start data. Namely, the widely used homotopy method [20] to
obtain seed solutions for the computation of periodic orbits does not work, because
the analytically known solution may be singular. Here, the analytically known torus
lies at a branch-point, which means that we cannot initialise a continuation algorithm
with this torus. Furthermore, in the two-dimensional parameter space of this example,
the torus persists locally as a quasi-periodic or ‘weakly resonant’ invariant torus in
only one direction. If, for a given ODE, one cannot carry out a similar analysis ‘by
hand’, as is typically the case for higher-dimensional ODEs, one relies on simulation
data.

Our second example described in §5.2 can be regarded as a typical area of applic-
ation of our algorithm in its current state of development. The two basic frequencies
are of different order of magnitude and, therefore, no strong resonances occur. The
invariant tori undergo ‘local bifurcations’ (see §5.2) and our algorithm has no prob-
lems to ‘step over’ the regions where the tori change stability, as well as to compute
the parts of the branches where the tori are of saddle type. One could obtain start
data from a torus bifurcation of a periodic orbit, but this is not yet implemented; we
used simulation data to obtain a seed solution.

5.1. A Parametrically Forced Electrical Network. As our first example we
investigate a nonlinear network arising in electrical engineering, given by Philippow
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in [47] and used as a 2:1 frequency divider. The circuit is depicted in Fig. 5.1 and
its model equation can be derived as follows. Since it is a shunt circuit the drop of
voltage over each element is identical and we denote it by v(ωt). Applying Kirchhoff’s
laws we obtain a differential equation from the node equation

iC + iRN
+ iL = 0

where the currents iC , iRN
and iL, respectively, are given by the formulas

iC = C
dv

dt
,

iRN
= b1v

3 − b2v ,

iL =
ψ

L0(1 + b
2 sin 2ωt)

≈
ψ

L0

(

1 −
b

2
sin 2ωt

)

.

Using the relation v = dψ
dt

for the inductance and denormalising all quantities one can
derive an ODE of the form; see [47],

ẍ+ αẋ3 − βẋ+ (1 +B sin 2t)x = 0.(5.1)

Here, x ∈ R is the denormalised voltage and the parameters α = ε−B and β = ε
2 −B,

where B, ε ∈ R, are chosen such that the system response x(t) is an almost harmonic
2π-periodic signal, in other words, the frequency of the input signal is halved.

5.1.1. Qualitative Analysis. In what follows we are going to investigate the
qualitative behaviour of solutions of equation (5.1) over a wide range of parameter val-
ues and demonstrate the existence of both quasi-periodic and phase-locked invariant
tori. We start our investigation with a qualitative analysis of the system for B = 0,
where no forcing is present. In this case the ODE can be rewritten as the first order
system

{

ẋ1 = x2 ,
ẋ2 = −x1 + ε

2x2 − εx3
2 .

(5.2)

The bifurcation diagram of (5.2) is given in Fig. 5.2 (a). We immediately see that (5.2)
always has the trivial solution (x1, x2) = (0, 0) (blue line), which is an equilibrium of
the flow, attracting for ε < 0 and repelling for ε > 0. At ε = 0 the equilibrium un-
dergoes a (degenerate) Hopf bifurcation. Namely, system (5.2) becomes the harmonic
oscillator

{

ẋ1 = x2 ,
ẋ2 = −x1 ,

and we conclude, that a vertical family of neutrally stable 2π-periodic orbits branches
off the family of equilibria (green line).

For further investigation in a neighbourhood of ε = 0, we transform (5.2) into
polar coordinates and apply the averaging method [27]. This yields the simple system

{

ṙ = ε
8r(2 − 3r2) ,

θ̇ = 1 .

The nontrivial zeroes r1,2 = ±
√

2/3 correspond for small |ε| to a 2π-periodic orbit of
system (5.2) near

{ r =
√

2/3, θ = t } = { x1 =
√

2/3 cos t, x2 = −
√

2/3 sin t },
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Figure 5.2. The bifurcation diagram of the autonomous system (5.2) depicted as the L2-norm
of the solution versus ε; panel (a). The blue line marked by label 1 is a branch of equilibrium
solutions. At label 2, a vertical family of periodic orbits emanates and at label 3 an ε-dependent
family γε of periodic orbits branches off the vertical family. The periodic orbits of the family γε for
ε = 0 (label 3 ), ε = 3.0 (label 4 ), ε = 6.5 (label 5 ) and ε = 9 (label 6 ) are plotted in panel (b).
Labels 7 and 8 indicate the periodic orbits of γε with period 3π and 4π, which reside on the tip of
1:3 and 1:4 resonance tongues, respectively.

which is attracting for ε > 0. Therefore, an ε-dependent family γε of periodic orbits
(red curve in Fig. 5.2) branches off the vertical family that we found above. In
Fig. 5.2 (b) some periodic orbits of γε are shown in phase space.

The fully forced system is the first-order ODE











ẋ1 = x2

ẋ2 = −(1 +B sin θ) x1 +
ε

2
x2 − εx3

2

θ̇ = 2,

(5.3)

where θ ∈ T
1. For small forcing amplitudes B > 0, we can deduce the qualitative

behaviour from the results obtained for B = 0. Namely, for B = 0, an ε-dependent
family Tε,0 := γε × T

1 of invariant tori exists for system (5.3). Since the periodic
orbits γε are asymptotically stable for ε > 0 and the flow on Tε,0 is parallel due to
decoupling, the tori of Tε,0 are normally hyperbolic. This implies that for sufficiently
small B > 0 a family Tε,B of normally hyperbolic invariant tori exists, which are
either quasi-periodic or phase-locked, depending on ε. We expect that these invariant
tori have cross-sections that are similar to the periodic orbits of the family γε; see
Fig. 5.2 (b).

5.1.2. Numerical Analysis. Let T1 = π (so ω1 = 2) denote the forcing period
and T2 = 2π/ω2 the (ε-dependent) period of an element of γε. Then the rotation
number ̺ε is defined by ̺ε := T1/T2 = ω2/ω1. A resonance tongue in the (ε,B)
parameter plane starts at each point (ε, 0), where ̺ε is rational; see Fig. 5.3 (a). For
simplicity, we restrict ourselfs to the case of strong resonances, that is, resonances
where ̺ε ∈ {1/1, 1/2, 1/3, 1/4}. The labels 3, 7 and 8 in Fig. 5.2 (a) mark the points
on γε for which the periodic orbits have period T2 = 2T1, 3T1 and 4T1, respectively.
These periodic orbits reside on the tips of the 1:2, 1:3 and 1:4 resonance tongues at
B = 0 and ε ≈ 0, 6.87, 11.32, respectively. The analysis above showed that T2 = 2π
for ε = 0. Hence ̺0 = 1/2. The values of ε for which ̺ε ∈ {1/3, 1/4} were obtained
by continuation of γε using AUTO [20].

Fig. 5.3 shows a simplified bifurcation diagram (a) of system (5.3) in the (ε,B)-
parameter plane and the bifurcation diagram of the trivial π-periodic orbit x ≡ 0 for
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Figure 5.3. Simplified bifurcation diagram of the full system (5.3) in the (ε, B) parameter
plane (a). The 1:2, 1:3 and 1:4 resonance tongues are drawn as filled areas. Along the dotted
line at B = 0.1, we continued the trivial π-periodic orbit and panel (b) shows the corresponding
bifurcation diagram. Schematic phase portraits illustrating the changes in the time-π stroboscopic
map are shown in the panels (c)-(h).

B = 0.1; panel (b). In addition, the panels (c)-(h) illustrate the qualitative changes in
the phase portraits of the period-π stroboscopic map. For small ε > 0 there only exists
a trivial fixed point (c). As ε increases, two consecutive period-doubling bifurcations
occur at ε ≈ 0.1 (d) and at ε ≈ 0.3 (e) and two 2-periodic points emerge, one saddle
and one node. The fixed point (0, 0), thereby, becomes an unstable node. After
the second period-doubling bifurcation a 1:2 phase-locked invariant torus is formed
by a saddle-node connection of invariant manifolds of the 2-periodic points (e). At
ε ≈ 1.1 the Floquet multipliers become complex conjugate and the fixed point is a
spiral source (f). At the same time, as ε > 0.3 grows, the 2-periodic points move
towards each other and finally merge for ε ≈ 1.56 in a saddle-node bifurcation (g)
and disappear. For ε > 1.56 we leave the 1:2 resonance tongue and the torus becomes
quasi-periodic or weakly resonant (h), depending in a delicate way on ε.

5.1.3. Continuation of Tori. Using the proposed algorithm, we compute the
Cantor-like family of quasi-periodic invariant tori for fixed B = 0.1 (dashed red line
in Fig. 5.3 (a)) that exists in the interval ε ∈ [1.5, 7] in between the 1:2 and 1:3
resonance tongues. During the continuation phase-locking will occur, but almost all
of the resulting periodic orbits will have such high periods that, numerically, the flow
can be regarded as quasi-periodic.

In order to obtain good start data for the continuation of the invariant tori for
B = 0.1 we use the fact that the perturbed torus Tε,B for small B > 0 is near Tε,0,
which is given by the set γε × T

1. Therefore, we can use an approximation to Tε,0
as the seed for approximating Tε,B . We computed a numerical approximation of the
torus for ε = 2 on a 41 × 101-mesh using Newton’s method and the torus function
x1(θ1, θ2) = sin θ2, x2(θ1, θ2) = cos θ2 together with the basic frequencies ω1 = 2 and
ω2 = 2.08 as a seed solution. The value ε = 2 is chosen in order to be far enough away
from the 1:2 resonance tongue so that we can expect a fast convergence of Newton’s
method.

Fig. 5.4 shows the invariant tori together with their cross-sections at θ1 = 0 for
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Figure 5.4. The invariant torus of system (5.3) together with cross sections at θ1 = 0 for
B = 0.1 and ε = 1.750 (a1, a2), ε = 2.000 (b1, b2), ε = 3.054 (c1, c2), ε = 5.493 (d1, d2), ε = 6.000
(e1, e2) and ε = 6.884 (f1, f2), respectively. The tori are embedded into R3 by x′

1
= 3 + x1 cos θ1,

x′

2
= 3 + x1 sin θ1 and x′

3
= x2. Even though it is very hard to see in cross section (a2), the mesh

is actually overlapping itself.

different parameter values ε; compare also the periodic orbits for B = 0 in Fig. 5.2 (b).
Starting with an approximation at ε = 2.0, shown in panel (b1), we first continued the
torus for ε < 2.0. As ε approaches the border of the 1:2 resonance tongue, the solution
develops more and more ripples (see Fig. 5.4 (a1)), and the estimated error grows
rapidly as depicted in Fig. 5.5 (a). We stopped the computation when the estimated



QUASI-PERIODIC INVARIANT TORI 25

(a)
ERR

ε

 0.02

 0.04

 0.06

 0.08

 0
 2  3  4  5  6

(b)

x1

x2

−1

−0.5

 0

 0.5

 1

−1.5 −1 −0.5  0  0.5  1  1.5

31 x   75

41 x 101

(c)
1:3

2:5

1:2

ω2
2π

3:8
4:11

ε 6

 6.5

 7

 7.5

 8

 8.5

 9

 2  3  4  5  6

(d)

x1

x2

−1

−0.5

 0

 0.5

 1

−1.5 −1 −0.5  0  0.5  1  1.5

31 x   75

41 x 101

Figure 5.5. Graphs of the estimated error measured via the parameter (see §4.1) on a 41×101-
mesh (a) and the second period T2 := 2π/ω2 (c) plotted versus ε. The horizontal lines in panel (c)
indicate selected resonances. Panels (b) and (d) show cross-sections for ε = 3.0 (b) and ε = 6.5 (d)
of solutions on different meshes.

error became larger than 1. Subsequently, we continued the torus for ε > 2. In the
interval ε ∈ [2, 5.4] the algorithm converges quickly and the solutions seem smooth,
(c1). For ε ≈ 5.5 an 3:8 resonance occurs which influences the algorithm visibly. The
estimated error in Fig. 5.5 (a) shows a very clear peak and the approximation is no
longer smooth; see Fig. 5.4 (d1). Furthermore, it takes a large number of continuation
steps to pass through the resonance tongue. For ε > 5.6 the algorithm has no problems
until the parameter approaches values near the border of the 1:3 resonance tongue at
ε ≈ 7. We observe the same behaviour as for the 1:2 resonance. Namely, the estimated
error grows rapidly and the approximations are again non-smooth; see Fig. 5.4 (f1).

5.1.4. Performance of the Algorithm. Panels (a) and (c) in Fig. 5.5 illustrate
the typical convergence behaviour of our algorithm for a fixed (non-adaptive) mesh
and a varying system parameter. The estimated error (a) and, aligned underneath,
the second period T2 (c) are shown as functions of ε; see §4.1 for how the error
is measured. The horizontal lines in Fig. 5.5 (c) indicate selected values of T2 for
which resonances occur that affect the computation. Whenever the torus becomes
resonant, we expect convergence problems because the torus is then phase-locked and
our invariance equation does not hold. But this does not necessarily mean that the
algorithm breaks down; see §4.3. Namely, with the exception of the 3:8 resonance,
‘weaker resonances’ apparently do not influence the algorithm. There is a clear peak
in the estimated error around ε ≈ 5.5, which is exactly the point where T2 crosses
the 3:8 resonance line, but the algorithm still produces an acceptable approximation;
see Fig. 5.4 panels (d1, d2). In comparison, the peaks near the 2:5 (ε ≈ 4.6) and the
4:11 (ε ≈ 5.9) resonances are far less pronounced. Other weak resonances have no
observable effects at this numerical accuracy.
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Figure 5.6. Graphical illustration of the computational effort with N1 = 41 fixed and N2

varying. Panel (a) shows the error estimate versus N2 and panel (b) the total computation time
needed to compute the invariant torus for ε = 2 on an N1 × N2-mesh.

computation time
N2 ERR fill-in 1 LES total
41 9.4797e-02 38.2 14.3 116.5
51 4.8700e-02 41.8 20.2 163.1
61 3.3933e-02 42.5 25.8 208.7
71 2.0481e-02 40.1 27.3 220.4
81 1.1848e-02 40.1 31.3 254.1
91 6.6308e-03 28.5 15.5 135.5

101 1.0498e-02 22.1 10.3 98.9
111 1.8392e-02 20.1 10.8 94.4
121 3.6929e-02 20.1 11.7 102.2
131 1.1514e-01 20.2 11.7 96.0
141 6.7397e-02 18.7 10.1 103.9
151 5.5799e-02 19.5 12.0 132.0

Table 5.1
Computational effort for ε = 2 and N1×N2 meshes with fixed discretisation parameter N1 = 41

and varying N2, as shown in the first column. The other columns give the estimated error ERR, the
fill-in produced by the ILU preconditioner, the average time (in sec.) for solving one linear equation
system (1 LES), and the total computation time (in sec.) for solving the nonlinear discretised
equation.

Panels (b) and (d) of Fig. 5.5 show cross sections of the numerical approximation
of the torus and illustrate the convergence behaviour of the algorithm for varying
(non-adaptive) meshes and fixed parameter values for two typical situations. In panel
(b), the parameter value ε = 3.0 is chosen such that the torus is quasi-periodic (or very
weakly resonant). In this case we already obtain a good approximation on a coarse
mesh. On the other hand, the parameter value ε = 6.5 in panel (d) is close to the
1:3 resonance near ε ≈ 7 which clearly results in worse convergence behaviour. Near
stronger resonances the cross-sections of approximated tori typically have ripples, as
shown on a 31× 75 mesh in panel (d). When continuing a torus on a fixed mesh, the
amplitude of these ripples grows as the parameter approaches a strong resonance and
the algorithm eventually breaks down.

When solving the discretised equations an interesting phenomenon occurs. It
turns out that the computation time depends heavily on the proportion N2/N1 of the
numbers of mesh points. Fig. 5.6 as well as Table 5.1 indicate the computational effort
for meshes withN1 = 41 (fixed) mesh points in the θ1-direction andN2 (varying) mesh
points in the θ2-direction. The second column of Table 5.1 gives the estimated error
ERR, which is also visualised in Fig. 5.6 (a). The next two columns in Table 5.1 give
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Figure 5.7. The estimated error (a) (logarithmic scales) and the computation-time (b) as
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the fill-in generated by the ILU preconditioner, (that is, the ratio nnz(L+U)/nnz(A),
where nnz(A) is the number of structural non-zero elements of the matrix A) and the
average computation time for solving one linear equation system (1 LES). The total
computation time for solving the nonlinear discretised system using Newton’s method
is given in the last column of Table 5.1 and displayed in Fig. 5.6 (b). The results are
normalised to 8 Newton Iterations and were obtained using a PC with an 800MHz
Pentium III processor and 250MB RAM. The estimated error is minimal for N2 = 91
and the computation time is minimal for N2 = 111. A similar observation can be
made for other examples as well and it turns out that there is no obvious correlation
with, for instance, the basic frequencies of the approximated torus

Apparently, there exist ‘optimal’ values for the ratio N2/N1 such that for a fixed
discretisation parameter N = max{N1, N2} the computation time as well as the
estimated error become particularly small. Furthermore, for such ‘optimal’ meshes
the ILU preconditioner usually generates a moderate fill-in. Since the system matrices
are sparse this implies that storing the incomplete LU-factorisation requires only a
moderate amount of memory. For this reason we usually keep the ‘optimal’ ratio
N2/N1 fixed for our computations. For the example considered here, the data of
Table 5.1 suggests that N2/N1 ≈ 2.5 is a good choice and we used this value in our
computations as well as in the comparison of meshes in Figs. 5.5 (b) and (d). At
present, we have no explanation for this effect.

Fig. 5.7 (a) shows the growth of the estimated error for ‘optimal’ meshes with
N2/N1 ≈ 2.5 as functions of N1. The estimated error ERR (black) decreases propor-
tional to N−3

1 (blue), which is one order of magnitude better than expected, because
the error is estimated for a method of order q = 2. Similarly, Fig. 5.7 (b) shows
the total computation time as a function of N1 for meshes with N2/N1 ≈ 2.5. The
computation time (black) grows approximately proportional to N3.36

1 (blue), which
means that doubling N1 increases the computation time approximately by a factor
of 10. The observed time complexity O(N3.36

1 ) is more than two orders of magnitude
less than the worst case O(N6

1 ).

5.2. A circuit with saturable inductors. As our second example we numer-
ically investigate a nonlinear electrical circuit given by Hayashi in [29]. The circuit is
depicted in Fig. 5.8 and contains an oscillator built by the two saturable inductors I1
and I2, a capacitor C, a resistor R1 and an AC voltage source S1. Furthermore, a DC
bias is superposed by the loop S2-R2-I1-I2 where S2 is a DC voltage source and R2 a
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I2

I1

S1

R1

R2

S2

C

Figure 5.8. The resonant circuit with two saturable inductors (I1 and I2) described by system
(5.4). In addition, the circuit contains an AC (S1) and a DC (S2) voltage source.

further resistor. The nonlinear characteristics of the cores of I1 and I2 are assumed
to be cubic and hysteresis is neglected. The ODEs modelling the circuit are



























ẋ1 = x2 ,

ẋ2 = −k1x2 −
1

8
(x2

1 + 3x2
3)x1 +B cos t ,

ẋ3 = −
1

8
k2(3x

2
1 + x2

3)x3 +B0 ,

ṫ = 1 .

(5.4)

Here, x ∈ R
3 and B0, B, k1, k2 ∈ R are free parameters; see [29] and [54] for more

details of the derivation. The values of the xi are dimensionless quantities and do not
correspond directly to particular currents or voltages of the circuit. For x3 ≡ 0 and
B0 = 0 one obtains Duffing’s equation, therefore, system (5.4) is sometimes referred
to as being of Duffing type. System (5.4) was studied extensively in, for example, [29]
and [54] using simulation and averaging and it was found that quasi-periodic invariant
tori and, in particular, a sequence of torus-doubling bifurcations occur.

Let us be more precise by defining the term torus-doubling bifurcation in the spirit
of Arnéodo, Coullet and Spiegel [1]. Suppose the ODE

ẋ = f(x, µ) , f : R
n× R → R ,(5.5)

with parameter µ has a periodic orbit that undergoes a period-doubling bifurcation
for some µ0 ∈ R. To every periodic orbit of (5.5) we can associate an invariant torus
by adjoining the equation

θ̇ = ω , θ ∈ T
1 .(5.6)

The extended system (5.5-5.6) will exhibit a torus-doubling bifurcation at µ0. Now
consider the perturbed system

{

ẋ = f(x, µ) + εg(x, θ) ,

θ̇ = ω + εh(x, θ) ,
(5.7)

where ε is a positive parameter. For small ε the tori of (5.5-5.6) will persist, provided
that these are sufficiently normally hyperbolic. However, at µ0 these tori lose normal
hyperbolicity. Hence, for small ε 6= 0 there exists a whole interval [µ1, µ2] such that
no normally hyperbolic torus exists in (5.7) for µ ∈ [µ1, µ2]. For µ 6∈ [µ1, µ2] we still
have the situation that on one side of the interval there exist only single tori whereas
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on the other side of the interval we have single and double tori. If the length of the
interval is small, we refer to this phenomenon as a torus-doubling bifurcation.

It can be shown, that for sufficiently smooth right-hand sides of (5.7) the length
of the interval [µ1, µ2] decreases rapidly with ε, provided that the system can be
separated into ‘slow’ and ‘fast’ variables; see [42]. This means for quasi-periodic tori
that the basic frequencies must have sufficiently distinct values. This condition is met
in our example and a crude but simple way to separate ‘slow’ and ‘fast’ variables is
averaging the system as described below. The sequence of torus doublings mentioned
above is observed in simulations of (5.4) for the fixed parameter values B0 = 0.03,
B = 0.22, k2 = 0.05 and varying k1 ∈ [0.04, 0.2]. The aim of our investigation is
to compute the invariant tori occurring in this system directly as a two-dimensional
manifold.

By averaging, it is possible to derive a system that approximates (5.4) and where
the variables x and t are decoupled. Suppose the solutions of (5.4) are almost harmonic
oscillations with the same frequency as the voltage imposed by the voltage source S1.
Then we may assume that x(t) takes the form







x1(t) = y1(t) cos t+ y2(t) sin t ,
x2(t) = −y1(t) sin t+ y2(t) cos t ,
x3(t) = y3(t) ,

(5.8)

with time-dependent amplitudes y ∈ R
3. Using (5.8) one can derive the autonomous

system



































ẏ1 =
1

2
(−k1y1 −Ay2) ,

ẏ2 =
1

2
(Ay1 − k1y2 +B) ,

ẏ3 = B0 −
1

16
k2(3r

2 + 2y2
3)y3 ,

ṫ = 1 ,

(5.9)

where the ‘slow’ variables y and the ‘fast’ variable t are now decoupled; see also [54].
The additional quantities A and r are defined by

A := 1 −
3

32
(r2 + 4y2

3) ,

r2 := y2
1 + y2

2 .

5.2.1. Numerical Analysis. The bifurcation diagram of system (5.9) can be
computed with AUTO [20]; see Fig. 5.9 (a). The black curve marked by label 1 is a
family of equilibrium points. For decreasing k1 < 0.2 the equilibria lose stability at
k1 ≈ 0.1189 in a Hopf bifurcation (label 2) and a family of attracting periodic orbits
branches off (blue). In panel (b) an orbit of this family is shown for k1 = 0.09. At
k1 ≈ 0.0772 the periodic orbits lose stability in a period-doubling bifurcation (label
4) and a family of doubled periodic orbits emanates. At k1 ∈ {0.0509, 0.0476, . . .}
further period doublings occur that apparently form a cascade. Orbits of the doubled
and quadrupled families are shown in panels (c) and (d) for k1 = 0.06 and k1 = 0.05,
respectively.

According to transformation (5.8) an equilibrium point of the averaged system
(5.9) corresponds to a periodic orbit of the full system (5.4). Therefore, we expect a
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Figure 5.9. The bifurcation diagram of system (5.9) with the maximum of y2 versus k1 (a).
The black line marked by label 1 is a branch of equilibrium points. For decreasing k1 a family of
periodic orbits (blue) branches off in a Hopf bifurcation at label 2. It seems that for decreasing k1 a
cascade of period-doubling bifurcations occur, the start of which is indicated in panel (a) by the labels
4, 6 and 8. The attracting periodic orbits for k1 = 0.09 (label 3 ), k1 = 0.06 (label 5 ) and k1 = 0.05
(label 7 ) are shown in panels (b), (c) and (d), respectively, projected into the (y1, y2)-plane. For
k1 ≈ 0.04 a strange attractor is observed in simulations.

family of periodic orbits in the full system (5.4) close to the branch of equilibria of
system (5.9). From the occurrence of a Hopf bifurcation at label 2 in the averaged
system we conclude that in the full system the family of periodic orbits undergoes
a torus bifurcation near k1 ≈ 0.1189 and that a family of invariant tori emanates.
Similarly, we expect that the period-doubling bifurcations of the averaged system at
labels 4, 6, 8, etc. in Fig. 5.9 correspond to torus-doubling bifurcations at ‘nearby
values’ of k1 in the full system. In fact, in simulations we observe quasi-periodic
orbits and a sequence of torus doublings which seems to result in a strange attractor.
Moreover, the invariant circles of the period-2π stroboscopic map have a shape similar
to the periodic orbits shown in Fig. 5.9 (b)-(c); see also [54].

5.2.2. Continuation of Tori. It is possible to compute the family of periodic
orbits (black curve in Fig. 5.10 (a)) of the full system (5.9) with AUTO [20] whereby
a torus bifurcation is detected at k1 ≈ 0.1214 (label 2). Using our algorithm we can
complete this bifurcation diagram by branches of tori (blue and red), including the
parts of the branches where the tori are of saddle-type (dashed). Note, that these tori
cannot be obtained by simulation. The bifurcation diagram is shown in Fig. 5.10 (a)
and the branches are labelled in the same way as in Fig. 5.9 (a). These two bifurcation
diagrams appear to be very similar which is numerical evidence that the qualitative
analysis using the averaged system (5.9) is accurate for this system and the choice of
parameter values.

Fig. 5.11 shows the primary and Fig. 5.12 the doubled tori for different parameter
values. The torus in Fig. 5.11 (a) is close to the torus bifurcation and, therefore,
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Figure 5.10. The bifurcation diagram of system (5.4) with max
θ∈T2{|u1(θ)|, |u2(θ)|} versus

k1 (a). The black curve marked by label 1 is a branch of periodic orbits. For decreasing k1 a
family of invariant tori (blue, label 3 ) branches off in a torus bifurcation at k1 ≈ 0.1214 (label 2).
The invariant tori of this family undergo a torus-doubling bifurcation at k1 ≈ 0.0799 (label 4) and
a family of doubled invariant tori emanates (red, label 5 ). As k1 decreases further, more torus-
doubling bifurcations are found, for example at k1 ≈ 0.0517 (label 6), which seem to form a cascade
similar to the cascade of period doublings found in system (5.9). Panel (b) shows the estimated
error for each branch of the bifurcation diagram (a), which was monitored as a function of k1.

x1

x2

x3

(a)

−2
−1

 0
 1

 2 −2
−1

 0
 1

 2

 1

 1.5

x1

x2

x3

(b)

−2
−1

 0
 1

 2 −2
−1

 0
 1

 2

 1

 1.5

x1

x2

x3

(c)

−2
−1

 0
 1

 2 −2
−1

 0
 1

 2

 1

 1.5

x1

x2

x3

(d)

−2
−1

 0
 1

 2 −2
−1

 0
 1

 2

 1

 1.5

Figure 5.11. The primary invariant torus of system (5.4) for k1 = 0.1214 (a), k1 = 0.1182 (b),
k1 = 0.1044 (c), and k1 = 0.0444 (d), respectively, projected onto (x1, x2, x3)-space. For decreasing
k1 the torus separates rapidly from the periodic orbit and becomes ’fatter’. Note that the torus in
panel (d) is of saddle type.

almost coincides with the unstable periodic orbit inside it. In Fig. 5.12 we left out
part of the tori and highlighted a cross-section. This cross-section is actually an
approximation to the invariant closed curve of the period-2π stroboscopic map of the
full system (5.4); see §3. Hence, it is similar to the doubled periodic orbits of the
averaged system (5.9); see also Fig. 5.9 (c). The self intersection of the doubled tori is
due to the projection of the tori from the 4-dimensional phase space R

3 ×T
1 into the

3-dimensional (x1, x2, x3)-space, which is also a Poincaré section of the phase space
for fixed θ ∈ T

1.
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Figure 5.12. The doubled invariant torus of system (5.4) for k1 = 0.0797 (a), k1 = 0.0775 (b),
k1 = 0.0700 (c), k1 = 0.0598 (d), k1 = 0.0502 (e), and k1 = 0.0421 (f ), respectively, projected onto
(x1, x2, x3)-space. Only part of the tori is shown and a cross-section is drawn as a black curve to
emphasise the evolution of the tori. The behaviour of the cross-section is qualitatively similar to
the behaviour observed in period-doubling bifurcations of periodic orbits. Note that the tori shown
in panels (e) and (f ) are of saddle type. The self intersection of the tori is due to projection.

5.2.3. Performance of the Algorithm. The branches of invariant tori were
computed as follows. We obtained seed approximations of the primary and doubled
invariant tori by two dimensional Fourier analysis of simulation data obtained for k1 =
0.09 (primary torus) and k1 = 0.0775 (doubled torus), respectively, and continued the
branches in both directions. The tori were computed on a 31×31 mesh (primary torus)
and a 31 × 61 mesh (double torus), respectively. Unlike the previous example, we do
not encounter convergence problems caused by strong resonances because the rotation
numbers vary between ρk1 ∈ [0.093, 0.132] for the primary tori and ρk1 ∈ [0.053, 0.074]
for the doubled tori. The parameter values at which the torus-doubling bifurcations
occur were obtained by investigation of the simulation as well as the continuation
data.

The convergence behaviour of our algorithm depending on the parameter is illus-
trated in Fig. 5.10 (b). It shows the graphs of the estimated error along each branch
as functions of the parameter k1. The error remains bounded and the occurring peaks
are not high compared to the average error of each branch. The error is relatively
large, but this is due to the coarse meshes used; the solutions themselves seem smooth
for all parameter values.
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6. Conclusion. In this paper, we derived an invariance equation for quasi-
periodic invariant tori that gives rise to a natural parametrisation of tori under the
assumption that the flow on these tori is quasi-periodic. The discretisation of the
invariance equation by central finite-differences led to algorithms of high order of
consistency. A proof of stability was given in the case that the ODE is available in
partitioned form. The algorithm is implemented as a corrector in a one-parameter
continuation environment and computes invariant tori with prescribed accuracy even
when the tori are not quasi-periodic, provided the resonances encountered are ‘weak
enough’. This was shown with examples. Furthermore, the algorithm is able to ‘step
over’ regions where the torus changes stability, as was demonstrated in the last ex-
ample.

In future work we plan to implement algorithms that can start a continuation from
a local torus (Neimark-Sacker) bifurcation that is detected during the continuation of a
periodic orbit. We also intend to implement the detection of ‘local torus bifurcations’
and branch switching. This will be based on the detection of bifurcations of the
cross-sections of invariant tori similar to the detection of local bifurcations of periodic
orbits.

The main weakness of our approach as a general tool for continuation of tori is
its derivation based on the assumption of quasi-periodicity. At first, this may seem a
greatly restrictive assumption. However, as reviewed in §2, there are similar restrictive
(but distinct) assumptions inherent in all previous approaches. Also, as we have seen,
the method works in practice away from ‘too strong resonances’. Future work will
address this weakness directly. One idea is to locally modify the vectorfield such that
the flow on the torus is diffeomorphic to a parallel flow and the torus as a geometric
object is invariant under the original flow. Future work will also consider a rigorous
proof of stability.
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[14] W.G. Büntig and W. Vogt, Numerical Bifurcation Analysis of Nonlinear Power Systems,
Proceedings of the 48th Internationales Wiss. Kolloquium, Technische Universität Ilmenau,
22.-25.9.2003, pp. 373–374.

[15] L.O. Chua and A. Ushida, Algorithms for computing almost periodic steady-state response of
nonlinear systems to multiple input frequencies, IEEE Trans. Circuits and Systems, 28(10)
(1981), pp. 953–971.

[16] L. Debraux, Numerical computation of a branch of invariant circles starting at a Hopf bifurc-
ation point, Contemp. Math., 172 (1994), pp. 169–184.

[17] L. Dieci, J. Lorenz and R.D. Russell, Numerical calculation of invariant tori, SIAM J. Sci.
Stat. Comput., 12 (1991), pp. 607–647.

[18] L. Dieci and J. Lorenz, Block M-matrices and computation of invariant tori, SIAM J. Sci.
Stat. Comput., 13 (1992), pp. 885–903.

[19] , Computation of invariant tori by the method of characteristics, SIAM J. Num. Anal.,
32(5) (1995), pp. 1436–1474.

[20] E.J. Doedel, A.R. Champneys, Th.F. Fairgrieve, Y.A. Kuznetsov, B. Sandstede and
X. Wang, AUTO 97 : Continuation and Bifurcation Software for Ordinary Differential
Equations (with HomCont), 1997

[21] E.J. Doedel, W. Govaerts, Y.A. Kuznetsov, Computation of periodic solution bifurcations
in ODEs using bordered systems, SIAM J. Numer. Anal., 41(2) (2003), pp. 401–435.

[22] K.D. Edoh, R.D. Russell and W. Sun, Computation of invariant tori by orthogonal colloca-
tion, Applied Numerical Mathematics, 32 (2000), pp. 273–289.

[23] L.C. Evans, Partial Differential Equations, American Mathematical Society, Providence,
Rhode Island, 1998.

[24] N. Fenichel Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math.
J., 21 (1971), pp 193–226.

[25] T. Ge and A.Y.T. Leung, Construction of invariant torus using Toeplitz Jacobian
matrices/fast Fourier transform approach, Nonlinear Dynamics, 15 (1998), pp. 283–305.

[26] J.A. Glazier and A. Libchaber, Quasi-periodicity and dynamical systems: An experiment-
alists view, IEEE Trans. Circ. Sys., 35(7) (1988), pp. 790–809.

[27] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurca-
tion of Vector Fields, Springer-Verlag Berlin, 1997.

[28] W. Hackbusch, Elliptic Differential Equations, Theory and Numerical Treatment, Teubner
Verlag Stuttgart, 1987; English translation, Springer Verlag Berlin Heidelberg, 1992.

[29] C. Hayashi, Quasi-periodic oscillations in non-linear control systems, in Selected Papers on
Nonlinear Oscillations, Chihiro Hayashi, Professor Emeritus, Kyoto University; Kyoto
University 1975, Printed by Nippon Printing and Publishing Company, Ltd. Yoshino,
Fukushima-ku, Osaka, Japan.

[30] M. Hermann, Numerische Mathematik, R. Oldenbourg Verlag, Munich, 2001.
[31] M.W. Hirsch, C.C. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol.

583. Springer-Verlag Berlin-New York, 1977.
[32] W. Ji and V. Venkatasubramanian, Dynamics of a minimal power system: invariant tori

and quasi-periodic motions, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42(12)
(1995), pp. 981–1000.

[33] Chr. Kaas-Petersen, Computation of quasiperiodic solutions of forced dissipative systems, J.
Comput. Phys., 58(3) (1985), pp. 395–408.



QUASI-PERIODIC INVARIANT TORI 35

[34] , Computation of quasiperiodic solutions of forced dissipative systems. II, J. Comput.
Phys., 64(2) (1986), pp. 433–442.

[35] , Computation, continuation, and bifurcation of torus solutions for dissipative maps and
ordinary differential equations, Phys. D, 25(1-3) (1987), pp. 288–306.

[36] I.G. Kevrekidis, R. Aris, L.D. Schmidt and S. Pelikan, Numerical computations of invari-
ant circles of maps, Physica D, 16 (1985), pp. 243–251.

[37] B. Krauskopf, N. Tollenaar and D. Lenstra, Tori and their bifurcations in an optically
injected semiconductor laser, Optics Communications, 156(1-3) (1998), pp. 158–169.

[38] B. Krauskopf, S.M. Wieczorek and D. Lenstra, Different types of chaos in an optically
injected semiconductor laser, Applied Physics Letters, 77(11) (2000), pp. 1611–1613.

[39] P. Lenas, N.A. Thomopoulos, D.V. Vayenas and S. Pavlou, Oscillations of two competing
microbial populations in configurations of two interconnected chemostats, Math. Biosci.,
148(1) (1998), pp. 43–63.
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