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Bruce Bartlett Peckham
Thesis Abstract
The Closing of Resonance Horns for Periodically Forced Oscillators

A two-parameter family of maps of the plane is gencrated by varying the forcing
frequency w and amplitude o of a planar oscillator with unforced frequency Wy For small

forcing amplitude, resonance homns open nto the first quadrant of the parameter plane from

gvery point on the 0=0 axis where tz)ﬂf’{ﬁ = p/q is rational. Inside the "p/q resonance horn,”

the corresponding phase portrzits contain at least one period q orbit, with rotation number
p/q. In this thesis, we investigate the continuation of resonance homns which terminate at
some higher forcing amplitude, where the small amplitude theory is no longer applicable.

We define a "self rotation number” for an orbit that allows us to define a "p/q
resonance surface” as a component of the closure of the set of period q points with self
rotation number p/q. Its projection to the parameter space is a "p/q resonance horn.” We
show that the closure operation can add only fixed points with an eigenvalue e2%P/q to the

surface.

This enables us to enumerate all possible bifurcations associated with a p/q surface.
The generic unfoldings of these surfaces imply that all such surfaces are two-manifolds.
When the surfaces are compact, we classify them topologically. In addition, we show that
if either the period is even, or the resonance surface is orientable, a compact resonance
surface must have a fixed point associated with it.

The rest of the results of the thesis are concerned with the way these individual
resonance surfaces and horns fit together to form a complete bifurcation picture. Except for
the low period (strong resonance} cases, the resonance horns all tend to run from the zero
forcing line 10 a Hopf bifurcation curve. Notable exceptions are the period-one and period-
two horns, whose closings involve "breaks” in the Hopf bifurcation curve. These breaks
allow the phase portraits to pass from an attracting invariant topological circle, that exists
for small forcing amplitude, to an attracting fixed point at a high amplitude of forcing,
without ever undergoing a Hopf bifurcation.
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1. INTRODUCTION

- amena which can be modelled by nonlinear forced oscillators occur in
many ficlds of science and engineering. If one considers the amplitude and frequency
of forcing as parameters, this parameter space can be divided up into regions in which
the behavior of the forced oscillator is qualitatively the same. The local theory for such
a bifurcation analysis, that is, the theory for small forcing amplitude, has been well
developed: the parameter space is separated by "resonance horns” (entrainment regions,
Amol'd tongues) emanating from the frequency axis (zero forcing amplitude). This
theory, obtained via circle map theory, is sumrmarized in Sections 2.4 and 2.5 below.
Section 2.2 includes a description of a similar situation in which resonance horns
emanate from a Hopf bifurcation curve in a two-parameter space. The results presented
in this paper provide a connection between these two "local” situations. Following the
lead of Aronson, McGehee, Kevrekidis, and Aris [AMKA], we investigate the global
structure of these resonance homs as they are continued beyond the region of small
forcing amplitude where they are known to exist. As in [AMKAY}, we define "resonance
surfaces” (surfaces of periodic points) in the phasexparameter space that project, at least
for small forcing amplitude, to the "usual” resonance horns. Specifically we look at
compact resonance surfaces. The corresponding resonance horns "close” or "terminate”
at some amplitude of forcing. Some structure of the surfaces in the phasexparameter
space 1s necessary for this phenomenon to occur. The completion of proofs of the
conjectures introduced in [AMKA] are among the results introduced here.

Many of the results in this paper assume that, for positive amplitude of forcing,
the family of maps generated by return maps of the forced planar oscillator flow are
generic, smoothly varying (at least C1 with respect to the parameters) two-parameter
families of ! diffeomorphisms of the plane. Therefore, only codimension-one and
codimension-two bifurcations can occur, The generic unfoldings of such bifurcations,
summarized in Section 2.2, tells us exactly what must be happening nearby in
phasexparameter space. This local knowledge helps us piece together the global picture

for the resonance surfaces.

Chapter 3 introduces the concept of the "self rotation number” of an orbit, a
generalization of the "familiar” rotation number as defined in Section 2.3 for circle
maps. annulus maps, and planar maps with a fixed point. The properties of this self

]
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rotation number allow us to globally define a specific resonance surface whose
projeciion to the parameter space will be a specific resonance horn, This self rotation
number also aids us, in Section 3.4, to characterize all possible points on a resonance
surface, and to classify all generic bifurcations associated with an individual resonance
surface. Thus armed, we are able to topologically classify individual resonance surfaces
(Section 3.5), and complete the proofs of results which include the conjectures of
[AMKA] (Chapter 5).

Chapter & looks at typical bifurcation diagrams associated with each individual
resonance surface, and pieces together the results to get some structure typical of the
bifurcation diagram for any forced oscillator in the plane.

Many of the above results were suggested by numerical investigation of a
specific two-parameter family of maps of the plane. In Chapter 4, we discuss this
particular map, as well as the numerical techniques and theory we employed.

Chapter 7 indicates some extensions of results developed in this paper to
applications other than forced oscillators.



2, PRELIMINARY THEORY - A SUMMARY OF KNOWN RESULTS

2.1 Continuous vs. Discrete Dynamics for Pericodicaily Varying Vector
Fields

Consider the following k-parameter family of nonautonomous differential
equations

%m v(x, L), ve CI{MDx Rx Rk Rn) {2.1}

where v is periodic with smoothly varying (C1) period T(W) in its second variable, t,
and M? is an n-dimensional manifold. Standard O.D.E. theory [Hale] implies the
existence of a function e CHMxRxRxRk->R™M), called the flow of {2.1}, which

satisfies the initial value problem:

a » v
W*'-a——“(xg t{) t u) == V(X,i;}l)’ @(X{}xt&ﬁ)»}l)*x(}» {22}

The flow ¢ induces a C! family of orientation preserving diffeomorphisms, fy,
of MR via the "time T(|) stroboscopic map” (equivalently, the "time T(u) Poincare
map") for any fixed value of tp:

fu(x)=0(x.to,t0+ T (1), 1) {2.3}
¢ Cl in all its arguments together implies f;(x) is C1 in x and W together.

Conversely, ¢ is called a "suspension” of the map(s) f,. Thus, for a fixed value
of tp, we have the choice of investigating the n+1+k dimensional continuous flow, ¢, or

the discrete n+k dimensional mapping, f.

Comments:

1. Among the relationships between f and ¢, is the 1-1 correspondence between closed
orbits of ¢ and the periodic orbits of f. The stability of the two corresponding orbits

must also coincide.
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2. For a fixed tg, {2.3} uniquely defines the corresponding family of diffeomorphisms,
fii, but, give @ family of diffeomorphisms, “the” corresponding family of suspensions

is not unique.

3. If we append the equation g% = 1to {2.1}, then we can think of the appended system

as an autonomous vector field in the n+1 variables (x,t). (The p variables are still
parameters.) For each fixed [, ¢ can then be viewed as a flow on Mx%.

2.2 Local Fixed Point Bifurcations

Local bifurcation theory is built on the concepts of universal unfpldings and
center manifold theory. Because we are interested in two-parameter families of maps of
the plane, we describe the universal unfoldings for all local codimension-one and
codimension-two bifurcations of fixed points for maps of the plane. Whenever we
come across any of the following points in a generic two-parameter family of maps of
the plane, then, in a neighborhood of such a point in phase x parameter space, the map
we have must be topologically equivalent to the corresponding universal unfolding
below. (In order to get the picture in the full four-dimensional space, we have added a
parameter €2 to the codimension-one unfoldings: each slice corresponding to
£p=constant is a copy of the one-parameter diagram. Points in the one-parameter
diagram become lines and curves become two-dimensional surfaces. If the original
bifurcation involves only a one-dimensional center manifold, we append the equation
fe(y)=2y or %y, depending on the stability of the nonsingular eigenvalue. Diagrams of

recurrent sets are restricted to {y=0}, however, so they "look” the same as in the one-
dimensional phase case.)

Codimension-one

Table 2.1
Saddle-node fe(x) = x + € ; x? Ar, GH 2.1
Period Doubling fe(x) = (e-1)x + x3 Ar, GH 22
4



Hopf fe(r,®)=((1+e)r £ 13, O+ ) Ar, GH 2.2 x=r
{nonresonant case) (w is non resonant, i.e., W£2Rp/q)

Codimension-two

Table 2.2
N Uni | Unfoldi Ref Ei
Cusp (Saddle-node with fe(x)=eq + (B2 + Dx £ x3 Ar, GH 2.3
a higher order degeneracy)
Degenerate Period Doubling  fe(x)= (€3-1)x + sz3 + x5 PK 2.4
{w/ higher order degeneracy)
Degenerate Hopf fe(r,®)=((1+epPreordHS, 8+ w) Ta2,GH 2.4,x=r

(w/ higher order degeneracy) (¢ is nonresonant)

Hopf with Resonance: Ay =ef2miP/4. This is most complicated group of
codimension-two bifurcations (with the possible exception of the degenerate Hopf,
which we use very little in this paper). When 23, we can use complex coordinates: z
= x + iy; the two parameters are represented by the complex parameter ¢, Wheng=1 or
2, y = x, In all the below cases, the "unfoldings™ are not for the discrete map with the
indicated resonant eigenvalues, but for the differential equation which approximates the
gth iterate of the map in the sense that, up to terms of degree q+1, the orbits of the qth
iterate of the map follow the flow lines of the differential equation.

q=5 z= €z + Zjz2A(jz}?) + BZ a1 Ar,Ta 25
q=4 t=cz+ Azlz2 + 23 Ar,Ta
q=3 Z=cz+ Azlz]¢ + 22 Ar,Ta 2.6
q=2 (Double -1) X = £1x +2€2y * x3 - 2x2y Ar,Ta 2.7
g=1 (Bogdanov) X= £ +€g§+ x2 & xy Ar,Ta 2.8
4#
3

g
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Note the following about the resonant Hopl cases:

1. If g25 , e=0 lies on a Hopf bifurcutson line in the parameter space and is the tip
of a "resonance horn” opening on one side of the Hopf line. The boundaries
of the hom are saddle-node bifurcations for the g iterate of the map which
become tangent of order 952— as we approach £=0.

2. If g=3, € = (0,0) lies on a Hopf bifurcation line, but the bifurcation involves
only the three saddles, not q saddles and g sinks as is the case for ¢25. Also,
the period three saddles exist for € in a full punctured neighborhood of (0,0),
not just in a horm emanating from (0,0) in the parameter space.

3. When g=4, we get the following two cases:

A. |Ai<l. The bifurcation involves only a single period-four orbit of saddle
points; they exist in a full punctured neighborhood of ¢=0. The phase
portraits are analogous to the g=3 case.

B. |A]>1. The £=0 point is the tip of a "resonance hom" inside which there
exist one period-four saddle orbit, and one period-four node orbit. These
orbits coalesce in saddle-node bifurcations on the boundaries of the resonance
horn, Thus, the periodic points behave analogously to the 25 case. The
phase portraits, however, may or may not be analogous, depending more
delicately on A; all cases are not completely known at this time. A further
difference with the g25 case is that the sides of the resonance horn do not
become tangent at £=0, but open at an angle between § and 7.

4, The bifurcation diagrams given for the above differential equations are the same
as for the corresponding map which we were investigating in the first place,
with the following exception: curves in parameter space for the flow that
represent coincidence of a stable and an unstable manifold, that is, a global
bifurcation, such as the homoclinic or heteroclinic orbits in the ¢=1,2,3 cases,
become regions of manifold crossings in the parameter space bifurcation
diagram for the map.

Golubitsky and Schaeffer [GS] also treat all of the above bifurcations, but from
a slightly different perspective.



4
i
g
:
l
:
i
g

el Ee EN

Contingation Theory

Let {f,;} be a two-parameter family of Cf maps of the plane, varying smoothly
(Ch) with respect to pt. Define

(1) = {{x.n)e RZxR? fu(x)=x }

Z(1y = {{x,11) € T(1) : Dyfi(x) has an eigenvalue equal to 1}

D(1) = {(x,n) € I'(1) : Dyfji{x) has an eigenvalue equal to -1} {2.4}
H(1) = {(x,p) € T(1) : Dyfyy(x) has eigenvalues Ay,A7 with AjeAp=1}
E(1) = {(x,) € (I'(1) : Dxf(x) has eigenvalues Aj.Az with A1=A3}

The implicit function theorem implies that, generically, each component of I'(1}is a
smooth {CT) two-dimensional surface, and each component of Z(1), D(1), H(1), E(1) is
a smooth (Ct-1) curve without endpoints, all embedded in R4, (See {4.4} and {4.5}
for the actual equations describing the above sets.) The loss of smoothness in the
curves is due to an equation involving eigenvalues, and thus first derivatives with
respect to phase variables, in the definition of each set.

Claim 2.1: Generically, Z(1) consists of
1) Simple saddle nodes
2} Bogdanov points
3) Cusp points

Sketch of Proof: The universal unfoldings of the simple saddle node (in either GH

or A) give three nondegeneracy conditions, all generically holding in a one-parameter

family. With two parameters, any one of these degeneracies may now exist. The

Bogdanov point (a second eigenvalue on the unit circle) and the cusp point (a zero in a

higher order term) are two of these. The third type involves a degeneracy with respect

to a parameter. Because we have two parameters, however, a degeneracy with respect
7



to one parameter does not change the bifurcation. We can simply use the other
parameter as our “continuation” parameter. In two-parameter families, at least one of

PR

the parameters wil f\bc "n?mdegenerate."
By similar arguments, we see that, generically, D(1) consists of
1} Simple period doublings
2) Double -1 eigenvalue points
3) Degenerate period doubling points
and H(1) consists of
1) Simple, nonresonant Hopf bifurcations

2) Degenerate (generalized) nonrgsonm; Hopf bifurcations

G g pre B Lot ot = *qf‘s’y}x LUALY: FLINII 0
3) Resonant Hopf bifurcations 4, ?* R [l o
‘\_ ‘2‘ 3 i ’

4} Saddle points (not bifurcation points)

E(1) is not a true bifurcation set, only a curve separating nodes from foci. We will have
no need to characterize its points as we have done with the other sets.

When dealing with periodic points of period g22, we can work with f,d instead
of just fj;. The symmetry introduced implies:

1) When all points on an orbit are distinct, and any of the above bifurcations occurs
for f,,4, the same bifurcation occurs simultaneously at each point on the orbit
of the bifurcation point. Copies of the universal unfoldings for the fixed point
bifurcations occur in a neighborhood of each point on the "bifurcation orbit.”

2) When point(s) on an orbit do interact, the symmetries involved typically make
the generic bifurcation different from the corresponding fixed point case.
Heureristically, this can be explained with two comments. First, the q copies
of the bifurcation now interact, so we shouldn't expect to obtain anything
similar to the a fixed point bifurcation. Second, arbitrary perturbations of £},

8
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3. p(x,f) = p/q if and only if f has a penodic orbit of period g.

Annulus Maps

We can define rotation numbers for annulus maps f:A—A, A=Ix%, where I is
an interval of the real line (with or without endpoints). Simply "lift" f to a degree one
map T (me(T(a,8+2m)) = ng(T(a,0)) + 2%, where 7 is the projection onto the second
coordinate) of the universal covering space IxR of A. Define

lim mefX(x)) - ma(x)
ko 2k

px.n= {2.6}

where x = (a,0).

Maps of the Plane

For circle maps and annulus maps the "center” of the circle or annulus is 2
natural point around which to measure rotation. For maps of the plane, there exists no
such center point. Whenever a planar map has a fixed point xg, however, we can use it
as a reference point. Any other point x in the plane can be written in the polar
coordinates (a,8)€ (0,o)x% defined by

X = Xg - (mse) 0.7}

asinf

For a # Q, these coordinates make the planar map an annulus map, so {2.6} serves as a
definition for the rotation number of points in the plane "around xq."

We will return to further generalizations of the rotation number later in the paper.
See, in particular, Sections 3.1 and 3.3

Caution: Unlike rotation numbers for diffeomorphisms of the circle, the limits
used in defining rotation numbers for annulus and planar maps do not always exist.

10
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2.4 Two-parameter Families of Circle Maps

In order to set the stage for the primary object of study in this paper, the
periodically forced planar oscillator, we now discuss a two-parameter family of circle
maps that are perturbations of rigid rotations of the circle. [Hall]

Let £:5-3% be defined by
f(Q) = 0 + 2xmg + ag(d) {2.8}

where g and « are scalar parameters which we group for convenience as pi=(q,a),
and g(0) satisfies

1. geCl, jg(®) <1

2. For all 6e R, g(6+28) = g(B) {2.9}
n
3. lg(@®de =0

The standard theory implies the existence of "resonance horns," similar to those
associated to the Hopf bifurcations with resonance for g25, in the p parameter space.
Assumption 1 above on g implies that {;; is a homeomorphism as long as a<l. The
uniqueness of rotation numbers for homeomorphisms implies that these resonance
horns cannot overlap in the region where a<1. The homs emanate from every point on
the (g axis where g is rational: g = p/q, (p/q) = 1. Inside these horns, the phase
portrait of f;4 is a "circle in resonance,” containing a period q attracting orbit alternating
with a period q repelling orbit. Figure 2.9 shows a typical horn with corresponding
one-parameter families of phase trajectories and manifolds for £, q=3, on a one
parameter cut a=constant, across the hom. (Let w = 1 for the diagram.) Ignore the
manifolds and orbits off the invariant circle in the phase diagrams; they will be used in
the next section. Compare Figure 2.9 with Figure 2.5. Figure 2.10 shows the locus of
period-three points corresponding to the same one-parameter cut a=constant of Figure
2.9, along with its projection to the phase plane. Again, we have embedded & in the

11
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plane so we can refer to the same diagram in the next section. The labels will also be
explained later.

General Horn Comments

1. Homs exist for g21 with the circle map, but only for q25 with the Hopf
bifurcation.

2. Circle map horn boundaries are wedge-shaped, while Hopf horn boundaries are
tangent of order (g-2)/2 (for g25). Recall that for the g=4 Hopf bifurcation,
when a resonance horn exists, it is wedge shaped. This is consistent with the
{g-2)/2 contact order. Typically, in both cases, the horn width decreases as q
increases.

2.5 Forced Planar Oscillators: Small Forcing Amplitude

Forced oscillators are the main object of study in this paper. We will start our
basic forced oscillator model from the system

i—f'mi*‘(x(t)), F:RZ5R2 | FeCl(R2) {2.10}

which we assume to have a normally hyperbolic stable closed orbit Cg of frequency g,
Consider the two-parameter family of forced oscillations

%%‘:F(x) +oGxon o0 {2.11}

where Ge CY(R2x [R) has period 1 in its second variable. The amplitude of forcing, ¢,
and the frequency of forcing, o, are the two parameters. This equation is a special form
of equation {2.1}. In particular, u=(m,0t). The period of the forcing T(u)=1/w, which
is certainly smoothly dependent on y as long as @#0. The family of maps we wish to

study 1s:

x—fux), fi:RZ-5R?2, p=(wa)e R? 12,12}

12



where i, o) (X)30(x.ty, to+ 1/, (@.0)), for seme fixed value of tg. ¢ is the flow of
{2.11} as defined in section 2,1,

The attracting orbit Cp of the unforced system {2.10} ensures that Cp is an
atfracting invariant circle for {2.12} if a=0. Moreover, a=0 implies that f; restricted to

Cyu 18 a rigid rotation, For small >0, normal hyperbolicity causes this invariant circle
Cl,o) to persist. Thus, for small a>0, fulc, is a perturbation of a rigid rotation to
which the theory of the previous section applies. For a=0, the unforced period 1/wg
cycle, strobed at a time interval of 1/t to obtain fiing' H=(w,0), results in a rotation
number of wp/w. This ratio turns out to be a more convenient parameter than .
Consequently, we will let i = (¢@o/0,x) from now on. For small >0, we 'aga.in have
homns in the parameter space emanating from every point on the g/@ axis where oxp/w
= p/q. Inside these horns, the phase portrait of ;4 restricted to Cy is a "circle in
resonance,” containing a period q attracting orbit alternating with a period q saddle orbit.
Both orbits have a rotation number p/q, as do all points on Cyy ~ See Figure 2.9 again
for the one-parameter cut { t=04}.

Note:

1. In Figure 2.9, the phase portraits are not restricted to Cyy, so the attractor-repeller
pair on Cy; becomes a node-saddle pair in R2.

2. Except for the tip, the boundary of the horn consists of saddle-node bifurcations.

3. In Figure 2.10, we see the saddle-node pairing of f,;9 changes as we cross the
hormn. The saddle 51 is paired with node ny on the left boundary, n3 on the
right boundary. We will exploit this change in pairing in Chapter 6.

4. G 2 generic two-parameter family of vector fields makes us expect fy tobe a
generic two-parameter family for a»>0, which would, in turn, make f
restricted to Cy a generic two-parameter family of circle maps for a>0. For
o=0 fy, is the time T map of a flow, which is definitely not generic.

13



5. As p—tip of the horn from "inside” the hom, the forced oscillator invariant
circle in resonance, Cj;, approaches the unforced oscillator circle, Cy, while
the Hopf invariant circle in resonance, C,;, shrinks to 2 point.

4. The differences in the unfoldings of the local normal forms for the Hopf
bifurcation for each period g=1, 2, 3, 4, or 25, is consistent with the vast
differences in the global structure of the corresponding horns, as seen later in

this paper.

14



3. RESONANCE SURFACES
3.0 Motivation

Let us return to the forced oscillator of Section 2.5. We were considering the
family of time 1/t Poincare return maps generated by

%%mi?(x) + o G(x,001) {2.11}

We have seen that, for small forcing ., the persistence of the attracting invariant circle
makes it natural to define the rotation number of orbits. The angle of rotation is
measured with respect to the “center” of the circle. This gives us a way of
distinguishing certain period q orbits from others.

As we move higher into the horn (away from the tip), however, this circle in
resonance typically breaks and more complicated recurrent sets and attractors form.
Consequently, it becomes more difficult to consistently assign a rotation number to a
given orbit. Even if, for each parameter value with a periodic orbit, an appropriate
"center” phase point can always be found around which to measure a rotation number,
there is no guarantee that such points will vary continuously with the parameter. This
comment applies to the theory of Matsuoka [Mat], which guarantees a "linked" fixed
point corresponding to every periodic orbit. The fixed point, however, is not
necessarily unique, nor does it vary continuously with parameter. Because of these
problems, and in order to at least postpone invoking the (considerable) theory of
Matsuoka, as well as for other reasons enumerated later on in this section, we use a
generalization of the definition of rotation number of an orbit to include the point about
which the rotation is measured. A special case of this generalized rotation number, the
self rotation number, py(x.fi)=ps(x,11), depending only on the orbit itself, will, for us,
be the most useful by-product of this construction.

Note that whenever both the point whose rotation number we are measuring and
the point around which we are measuring the rotation are periodic points, our
construction will give us a pair of knotted periodic orbits, an elementary concept in knot
theory. See [Mat] or [BW] for more general ideas in knot theory. Our definition of
rotation number, however, does not require the orbit under consideration to be periodic.
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In order to keep the development as general as possible, we will not require our
families of diffeomorphisms to be generated by Poincare return maps of three
dimensional flows such as {2.11}. Unless specifically stated otherwise, in the
remainder of Chapter 3, {fi;} will be a family of orientation preserving C7, r21,
diffeomorphisms of RZ2 varying continuously in the C? topology as | varies in a
neighborhood of RE,

No generic assumptions are made in this chapter untii section 3.5.
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3.1 Self Rotation Number

The family {f},} induces a map g: R2xR2xRk — R2 by
g(x,y u) = f(x) - [u(y) 3.1}

By a slight abuse of notation, we write

gy = .00 - £.0) (3.2}

For any fixed value of (y,))e R2xRK, {3.1} defines a diffeomorphism gy, that is just
a translate of fy;. In this case, we can make the polar coordinate changes defined by

Ay,ucosOy

acost
Ayusin®y

asing

}ﬂ X-y = go(xryrn); ( ]m fp(x) - f}i(y) = gl(x,y,}i) {3'3}

Because these coordinate changes are nonsingular for x=y (x#y implies f(x)=i,(y),
a1s0), (Ayu.Oyy): (3,0) € (0,2)x% — (0,00)x5 is an orentation preserving C!
diffeomorphism varying continuously in the C! topology as p varies. We define a
function R:(0,)xBxR2x Rk —» § by

R@By)=Rapyu(l) =By u(ab)-8 {3.4}

By embedding & as the unit circle in the plane, we can write (via the change of
coordinates {3.3})

fu() - fu(y) _glxym)
[fu(x) - fu(y)] lg! oy )

0
g XY BOYH o gy
-yl g0y

{3.5}

Let A denote the diagonal of R2xR?: A={x,ye R?] )%'}.

Claim 3.1: 0 and By ,(a,0) are C! functions of (x,y,10) from {(RZxR7)A}x Rk —
5.

Proof: The assumed C! topology on our function space implies that (W) (x) 15
Clin both x and p. The other operations in the definitions of {3.5} are algebraic
operations (including division by a nonzero scalar) and the norm operation: z— 2! for

17



z=0; all such "other” operations are analytic. So the composition of operations defining
6 and By,1(a,0) is at least C1, O

Corollary 3.2: 6 and ©y ,(a,0) are C! functions of {a,0,y,n) from
{0,00) B xR°x Rk - &,

Proof: This is immediate from Claim 3.1 and the nonsingular coordinate change
{3.3}.0

Using these relationships, we can see that the function R defined in {3.4} is
equivalent to a function r :{{R2xR2)\A}xRk — § , which we will call the "rotation of

x around y under f},," defined by

fu(x) -fuly) x-y {3.6}

r(x’y!p’) = ;Xsyvu(l) = ;f;,;(x) . fu(y)j ]X * yl

_gleoyw)  glxym)
lglecy )l 1800y )i

Note: On the right hand side of {3.6} we have identified the unit circle of R? with %;
the subtraction of the two above "vectors," however, is performed in %, not in R2.

R and r are related by

acos9
R{a,0,y.i) = r(y+[ , ly,u). {3.7}
asinB ).

Corollary 3.3: Both R and r are C! on their respective domains.

Proof: This is 2 direct consequence of Claim 3.1, Corollary 3.2, and the definitions of
Randr. 0

The map R induces a map R between the universal covering spaces of its domain
and range in the following way. The domain covering map
P (0,00 % Rx R2x Rk — (0,00 )x Gx R2x Rk js defined by (a, 8, v, L)~ (a, 6, v, 1),
where 6 = 8 mod (2r). The covering map of the range is p:R—% is defined by §—6,
where again, 8 = 8 mod (2r). The general lifting lemma [Mu, p. 390] now implies that

18



specifying the image of a single point wg under R (subject, of course, to the restriction
proR(wg)=Repa(wp)) uniquely defines a continuous lift of Repg which we will call R

fond

R
(0,00)x RXR2xRK oee eme — 5 R
Pd Pr
R
(0,00)xBx RZx Rk > &

Claim 3.4: R(a,8+2nk,y,p) = R(a,8,y,0), ke Z

Proof: We saw above that (Ay .0y, is a diffeomorphism from the open annulus
(0,00)x% to itself for every fixed y and . When we "lift" such a map (Ay 1,©y ) as in
the above construction to a map (A Yo éy,u) of the covering space (0,03x[R, it satisfies
the condition Oy (2, B+21k) = Oy (2, 8) + 2nk. (fy, being a diffeomorphism implies
éy# is a degree £1 map in its second variable; orientation preservation and fy, mapping
neighborhoods of x to neighborhoods of fi;{x) implies the degree is +1.) Lifting both
sides of equation {3.4} (by fixing the same value to ensure the lifted functions are
equal)

R(a,8+2nk,y ) = Oy pu(a, 0+20K) - (B+20K) = By (a,B) + 27k - (B+27k)
= By (2,9 - 8= R@byp) 0

Note: This claim implies Repg] is a well defined lift of R. By identifying Ropg~? with
R, we can think of K as a lift of either R or Repy: let ﬁ(a,ﬂ,y,gx) = ﬁ(a,ﬁ,y,n} for any
e R with 8 mod (2n) = 6 5.

Claim 3.5: There exists a lift ¥ of r (not of ropg) that satisfies ¥ (x,y,l1)= T (y,x,1).

Proof: Claim 3.4 implies the lift T exists. Note that {3.6} implies r(x,y,l)=r(y,X,1t}.
To prove T, y.W)=T (¥y,x,u), fix a point (xg,y0,ULp) and define a path
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beos($+t) X ¥

- ; 2 R2 k - = b
YO=(x(0), Y010 in (| RXR2NARY by x(n) X0, [bsin ( M}m) :

+ (Eg:{(gji“:;} H(t=po, where (b,9) are chosen to satisfy i%ﬂl = (:;ff} Along
this path we can monitor r{y(t)). r(y(t)) = r(x(t),y(1),1(t)) = r{y (), x{t),u{t)) =
r(y(t+n)). From this and the continuity of T and ¥, it follows that T (y(t)) - T(¥(0)) -
[Ty(t+n)) - TO(n))] =2kn for some integer value of k. Evaluating this expression at
t=0 gives us k=0. Att=1, we get 2[F(y(n)) - T(O)] =0 (Recall T is well defined,
$O T(Y(t+2n)) = T(¥(1)).) By using the definition of ¥, we see that this is precisely
27 (vx ) -TOXY, W] =0. O

We now are in 2 position to inductively define Ty y (k). ke £+, the total
1 X around 3"*;‘ ‘I. C 118D .

Prypl) = Fyypuk-1) + FEI),&1(y),0)

k-}

= 3 F @B, 8) (3.8}
=0

Define the average rotation rate of x around y after k iterates, the kib jterate frequency of
rotation of x around v;

fond

rx,x;a(k)
2nk

Finally, for x»y, define the rofation number of x around ¥, i.e., the frequency of

rotation of x around y per iterate of f;:

. fangd . k
pixy.fu) = plx,y.pu) & im W, ke £+, whenever this limit exists  {3.9}

koo Z'Kk
As a special case of this rotation number, for x#f,(x), define the self rotation number
Qf K-

ps(st) = p(fiﬁ(x)ixsul
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The rotation, frequency of rotation, and rotation number for backward iterates are
defined analogously, but are not needed fu ..o problems treated in this paper.

When the family of diffeomorphisms I, is generated as a return map of a flow
¢ (x,10,4,10) of a differential equation such as in {2.11}, we can define T uniquely. The
flow is a natural suspension which uniquely determines choice for a lift of r. We saw in
Section 2.5, we saw that the maps, f},(x), are defined as ¢(x,to,u)+-({)-,g), for a fixed tp

are a family of orientation preserving diffeomorphisms of R2 varying continuously in
the C! topology as p varies in R¥, Paralleling the above treatment (and dropping
reference to the fixed value of tp), we define

o(x o) - oy, Ueu)  o(x,0,p) - ¢(y,0,1)
{¢(x,i;m,p) " é(ystjw!}i)l |¢(’f;§;$i) - ¢(Y:Os¥1)i

Tx,y,p0° [0,00)> %1 by t—

(- ¢t - Y VOU)  x-y {3.10}

o vop) - 0y, Yoy XY

{Recall that the subtraction is performed in &, not in [R2.)

d(x,t/w,1t) - o(y,tw,|)
i¢(x,tf(0,}.l) - ¢(¥:ﬂwrl«l)|

The direction of the arrows in Figure 3.1 represents
at each time t.

Let Tx,yu(t) be the unique lift of ry y (0, r {{(RZXR2NAIXREXR - § (it
exists by the same construction as above) from & to R that is continuous in (x,y.1t,1)
and satisfies Ty,yu(0)=0. (Note that Txy , is defined on (-=,00} and that, because
we have rescaled time in the flow by a factor of Ty=1/, this definition coincides on its
common domain of definition, £+, with the definition in {3.8}, assuming the arbitrary
lift was "properly” chosen to define {3.8}. F(x,y,1) = Txyu(1} is now determined by
the flow ¢; the arbitrary addition of a multiple of 2% has been eliminated.

The rotation number of X around v is now defined as in {3.9}. (Again, backward time

rotation numbers are defined analogously, but are not used in this paper.)
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Note the following properties involving the rotation number of x around y:

1. The rescaling of time in {3.10} by the factor of Ty;=1/w means that T is really the
ratio of the frequency of rotation of x around y to the frequency of forcing, w.

2. If x and y are both periodic of period q for some fixed u, ie., fd(x)=x and

f.9(¥)=¥, then rx,y 1{Q)=1x,y,u(0)=0, 50 pg(x,p} = LE STHCHE . Because the

2ng
quantity Iffg‘*i(ﬁis defined by flowing for a finite time qT(W) which varies
Tq

smoothly with i, property 1 implies p(x,y,J1) is C! when restricted to the
submanifold defined by {f,3(x)=x} M {f3(¥)=y}{x=y}, for some fixed
tg. This property will be extremely useful to us in Jater sections.

3. In Section 3.3, we show Txy (1) can be extended to include cases when x=y.
This will allow us in tumn to define pg(x.f,,) for fixed points of f},.

4. For circle maps, the usual rotation number p(x,fy,) of xe & is included in our
definition by embedding  as the unit circle in R2, p(x.fi)=p(x,¥.f,) where
on the right hand side we think of xe $cR? and y=f,J(y)=(0,0) for ali j, and
fglnga,

5. For maps of the plane, computing the rotation number of x around a fixed point
yo of T, p(x,y0.fy.), is also included in our generalized rotation number. In
this case, however, the interpretation is simpler: 'fx,y,u(k) 1s the total change
in the (lifted) second coordinate of the single annulus map (Ay 1Oy} in k
iterates. (See {3.3} and {3.8}.) When yg is not a fixed point, the full
development described in this section is necessary: evaluating Tx y(k+1) -
?ggy,u(k) involves the change in the (lifted) second coordinate of the annulus

map (Az,w@;,p) where zszfl;1 (¥).

6. We can compute rotation numbers for orbits without having to locate a fixed
point around which the orbit rotates.
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7. If we know, or can assume, the angle traversed between consecutive iterates.
Tx,yuli+1) - Txyul), is eventually m some fixed interval of length 2x, the:.

the actual flow ¢ need not be used. This is because Fyy y(i+1) - Txypuli) is
always defined mod (2n). This is especially useful in computing rotation
numbers for flows whose Poincare maps have a closed form and for maps not
generated as a return map of a flow.

Claim 3.6: For a circle homeomorphism, the standard rotation number of x under 6,
p(x,8), is equivalent to the self rotation number, p;(x,8).

Proof: Let @ be a lift of ©. Embed $ as the unit circle in R2 as above. Set f be any
homeomorphism of R? that fixes the origin and satisfies flg = ©. What we need to
check is that p(x,0,0)=p(f(x),x.f) for all xe 8<R2. Geometrically, in RZ,
FHx)A0),0 = T(B(x),0,f) measures the change in the angle of the vectors from the
origin to f(x) as j increases. That is, ¥ (fi(x),fi(0),f) = © 1+1(x) - Bi(x). Similarly, we
can think of F(f(x),x,)) as measuring the change in the angle of the vectors fi+1(x) -
fi(x} as j increases. Equivalently, we could measure the change in the angle of the
perpendiculars to these secants of the unit circle. The perpendicular to B+1(x) - f(x) is
%( (:)J+1(x) + C:)i(x)), being the bisector of the sector swept out between é?"‘“i(‘x) and

Bix). So FEH+1(x)A(x)u) = 15( 8i+2(x) + BI+1(x)) - ;-( @i+ I(x) + Bix)).
Consequently

T opl) - Frooup®) = {O%1(x) - B%x)}

(g @) + BkGx) - 3(B1(x) + B900))
= 3 @+100) - ) T 5B} - 8%x)
< e Frop(D) |

Therefore, p(x,0.N=p(f(x).x.1). 0
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3.2 Resonance Surfaces and Regions: Definitions and Justifications

We now define and proceed to identify various components of the two
dimensional surface of period q points:

I'(q) = {{x.u)e R2xR? : {,9(x)=x }, where q is fixed 21 {3.11}
The following two lemmas which will help us to determine the structure of I'(q).

Lemma 3.7: Let {f,} be a family of orientation preserving diffeomorphisms of R2
varying continuously in the CJ topology as W varies in a neighborhood of Rk, Then
;)S{x,fu) is constant over components of

I'{q)\{fixed points of I'(qQ)}. (q=22)
Proof: Because all points of I" (and their iterates) satisfy fu‘l(x)mx, then qpe(x.f,) =
?!E{x}.x.u@ , , . :
is well defined, continuous, and integer valued on I'(q) \{fixed points on

2n
T'{g)}. Therefore pg must be constant. (W

Note: In Section 3.3, we will define ps on the fixed points of I'(q) as well.

Lemma 3.7 allows us to define the following objects for g=2:

TP = {(x,u)e R?%R2 : x is a true period q point of f,
with self rotation number p/q} {3.12}
(xu)e [P = a p/g point on a plg orbit

Component of TP® = p/q resonance surface

Projections of resonance surfaces to the Y parameter plane = p/q resonange

regions.

Lemma 3.8: Let {f;}be as in Lemma 3.7. Suppose, in addition, (p,q) = 1. 22,
and (xpt0) € TP \I™. Then xg is a fixed point of f, .
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Proof: Choose a sequence (xpyi) in T'P'% that approaches (xo.ug). Continuity of
f;&fi(x} in x and pt implies fgﬁfi(X(;)*-«x& If the orbit at g is not a fired point, then the

only other possibility is a periodic orbit of period r, 1<r< q. The self rotation number of
(xp,40) would then exist and equal n/r for some ne Z. Continuity of the self rotation

number implies p/q=n/r. This contradicts (p,g)=1. Therefore, xp must be a fixed point
of fyy,- O

Note that all points on the orbit of xj coalesce to xg by the continuity of fj(x) with
respect to x and

x(0-x0 = £ (x(0) > F o (X(0) = X0, j=0,...q-1.

Lemma 3.8 says that if (p,q)=1, the closure operation can add to I'™q only fixed
points where p/g orbits "coalesce.” In Section 3.4 we will see that the eigenvalues of
these fixed points will also be (at least partially) determined.
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3.3 Self Rotation Number of Fixed Points

In the previous section, we made two polar coordinate changes (see {3.3}) to
define the diffeomorphism (Ay @y 1) (2,8) : (0,00)xE — (0,20)xS from ;. We
begin by extending this function, and then as a consequence, R{a,8,y.u):
(0,0)xSxR2x Rk %, to a=0. The extended function R we will still be able to lift.
This will enable us to define rotation numbers for a=0. By showing these rotation
numbers are independent of 8, we will define the rotation of a point around itself, and

thus the self rotation number of a fixed point.

Lemma 3,10: Let f;; be a family of C! orientation-preserving diffeomorphisms of RZ,
varying continuously in the C! topology with respect to pe RE. Then the
diffeomorphisms (Ay ,(a,8),@y(a,8)) of (0,0s)x%, induced by f; by the change of
coordinates defined in {3.3}, can be uniquely extended to homeomorphisms of
[0,00)x%.

Proof: We will first determine the proper extension of (Ay 1(2,8),8y,(2,0)) to a = 0.

{3.3} implies
f - f
App(@®) = a0 - Lw): Oy a8y = 12X fuG) {3.13}
|Fu(x) - fu ()]
and
=|X-¥|: m.x_i
a=|x-y|; 8 Xy {3.14}
As a0, x—y, 1,(x) = f,(¥), s0 Ay ,(a.8)—0. Therefore define
Ayp(0,8)=0 {3.15}

To find the extension for €y ,(2,0), we start with Taylor's theorem:

acosB
£, (9 = f (3) + Dl () [asme

]-z» ofa).
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From {3.13}:

acos soonB
Bruocya)( 6} o(a) Drug(ymwg} o(1)
By u(a,B) = = 5 as a—0
|Dfug<xa)( }«:» o(a)| Imfngiya:{‘""’s )-a» o1y

Because each f; is a diffeomorphism, Dqu{y} always exists and is nonsingular.

Therefore, we can define

0
D fl-’-g QG)(COSB \}

Pl

{3.16}

0y,:(0,6)=""") R(@.8,y0.0) =

Dfuﬁ(y{}} nonsingular also implies that ®y ,(0,0) is continuous in 8 and bijective as a

function only of 8. So {3.15} and {3.16} define (Ay,,(,8).8y 4(2,8)) as a bijective
continuous map of the compact space [0,£]x% and its image in [0,00)x%. Such a map is
necessarily a homeomorphism. Combining this with the overlapping diffeomorphism
(Ay,u(a,8).0y ,(a,6)) on (0,e)x3, we obtain (Ay ) (a,8),0y ,(a,8)) as a
homeomorphism of the extended space [0,00)x%.

Lemma 3.11: @y ,(a,8) is continuous in a neighborhood of (0,8¢.¥0.10) in
[0,00)x%x R2Zx Rk,

2
Proof: Note first that for each component of fsfifiv f"; )

(a;;j;&s}) f' (}’) = fu( [a:;seﬂ]) - f:L (LH (38218 ))«Imf:l (y+ [asi{i 5 )) . f; (y)

af o af 0
zgi%(y+ [ !] bt acos8 + 3&%(}'*[& })"’ asing {3.17}
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R

where c’; 1s between 0 and acos, 4:-"2 is between 0 and asind, j=1,2, by the mean value

theorem. Our assumptions on the C1 continuity of f with respect to p imply that the
partial derivatives in {3.14} vary continuously as a function of p and the evaluation
points. Because the c-’I 30 as r—0 uniformly in (8,y,}1), the evaluation points of the

of )
partial derivatives — ypas (a,y)—(0,yp) uniformly in (8,u). So 3?{&{( ¥+ [ ‘ 8}),
asin

81‘:1 0 | |
and 3—'(1(2 y—f{%}) are continuous functions of {(a,8,y.40) in a neighborhood of a=0.

Consequently, each XJ is a continuous function of {a,0,¥,u) in a neighborhood of a=0.
Furthermore, since we have factored out an a from {3.14} in defining X), and because
the linear part of a diffeomorphism is never singular, i.e., [(X1,X2)| is never zero, we

1x2
have Tg%——iz—)}; is a continuous function of (a,0,y,1) in a neighborhood of a=0.

1 w2
Therefore, -I%E—% {(which equals 8y ,(a,0) by {3.14}) is a continuous function of

(a,0,y,)) in a neighborhood of a=0. Together with the "automatic” continuity of
Oy u(a,0) away from a=0, we obtain the continuity of ®y (a,0) on the full space,
[0,00)x&xR2x Rk, [J

Note: Although we don't need the fact here, Ay ,1(a,8) is also continuous on the full
space, [0,0)xSxR2xRE, so the extended annulus diffeomorphisms (Ay(a,8),
By ,(a,8)) vary continuously in the CY topology with respect to y and p.

Corollary 3.12: Let fy; be a family of C! orientation-preserving diffeomorphisms of
R?, varying continuously in the C! topology with respect to pe RE. Then R(a,0,y,11)
can be uniquely extended to a continuous function R: [0,e0)x BxR2x Rk G,

Proof: This is immediate from Corollary 3.11 since R(a,8,y,u) is defined in {3.4} as
Gy pa,B) - 0. D

Because R(a,0,y,)) can be extended to a=0, so can its lift I‘%{a,g ¥:i). Thus, we can
extend our definition of rotation number in {3.9} to a=0 (depending on 8):
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P{a,e,y,p)ahm Kﬁ;&_@_, ke £+, whenever this limit exists  {3.18}
t=ee 21k

Asin {3.7},

: P(a,B,y,1) = p(w[acf}sa}y,u), for a=0 {3.19}

E asin@

Corollary 3.13: Let f;; be a family of C! orientation-preserving diffeomorphisms of
3 [R2, varying continuously in the C! topology with respect to e R¥. Then pq(y.fy) has

a natural extension to the fixed points of f, which always exists.

Proof: We saw above in the proof of Lemma 3.10, that @y ,(0,0) is a
homeomorphism of . When y is a fixed point, we iterate the same annulus map
Oy u(0,0) instead of a different map ©,,(0,9), z=f,i(y), at each iterate.
Consequently, the self rotation number of a fixed point is the self rotation number of a
circle homeomorphism. Such homeomorphisms have a unique (independent of 8)
rotation number which always exists. By an argument similar to that in the proof of
Claim 3.6, this rotation number equals P(a,0,y,1) for each 8¢ B. Thus, P(0,8,y,11)

always exists and is independent of 8. So

plr.y,0) = P(0,8,y,11), for any choice of 8¢ & {3.20}

is a natural definition for the p(y,y,1L) O

29




EE o T e S e EE S B e By e B B

3.4 Fixed Points of Resonance Surfaces

In Section 3.2, we showed that, when q22, (p,q)=1, a p/q resonance
surface T consists of period g points ™4 and fixed points ™9\ 1P We can use

the machinery of the previous section to determine at least one, if not both, of the
eigenvalues of these fixed points.

Lemma 3.14: The self rotation number pg(x,f,} exists and is identically equal to p/q
for all points on a p/q resonance surface. (Compare with lemma 3.7)

Proof: All points (x,u)e IPA satisfy f,9(x)=x. If (x,)) is not a fixed point, then
Lemma 3.7 tells us that ps(x,fu) = p/q. If (x,}) is a fixed point, then we can choose a

sequence in . (xiiti) — (X,1). xiis a period q point of fu; with self rotation
number p/q. Define (a;,6;) by fH(xi) “Xj = (agc‘cmﬁj
a;sing;
of {8;} and a subsequence (which we will still call {8;}) such that 6;—6p. By the

} Pick a point 8¢ in the ®-limit set

above comments, Rai,ei,xi’ui({;}ﬁp. Continuity of R implies Rﬂ.ao,x.u(Q) = p. That is,

P(0,680,x,u) = p/q. So by {3.18}, ps(x.fy) = p(fu(x).x.f,) = P(0,80,5 1) = p/q.
|

Theorem 3.15: Letf) be a two parameter family of orientation preserving
diffeomorphisms of RZ varying continuously in the C topology w.r.t. i. Suppose, in
addition, (xg.}p) € %4\ (p,q) = 1, g22. Then xg is a fixed point of fpﬁ, and:

1. If g23, then Df | (xg) ~ [cos(mpfq) —sm(znp/q)}

sin(2np/q) cos(2np/q)

2. 1If g=2, then DfM(X{)) has a -1 eigenvalue

.
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Proof: Bf?}o(xo) must have an eigenvalue 1 or the q points on the orbit could be

uniquely continued above g to preserve the p/q orbit above yp. Thercefore ;E)fm(xo)
must have an eigenvalue A where AQ=1. That is, A=e28/q_ j=0,...,9-1 mod (1). In
Lcmmz we proved that xq is a fixed point at which all points on the orbit of x(t)
coalesce. Therefore, all we have left to prove are statements 1 and 2. We begin by
enumerating the possible self rotation numbers for the fixed point xg.

Case 1: A is complex (j/g=0 or 1/2 mod(1) ). Then GKQBQ{G,Q):SQS is

conjugate to a rigid rotation by 2nj/q mod(1). So there exists an integer m such that for
every 8, the rotation number P(0,0,xo,110) = ps(xo.f, ) = j/q + m.

Case 2: A = -1 (jiq = 1/2 mod(1)). There exists an eigenvector corresponding to
this -1 eigenvalue. This means that there exists & 8.1 such that @x&m(o,ewg =81+ 7,

and @m,m(&&; +7) = 6_3. So there exists an integer m such that P(0,6-1,x0.10) =
1/2 + m. Thus, for every 0, the rotation number P(0,8,xg,110) = ps(m,fm) =1/2+m.

Case 3: A =1 (j/q = 0 mod (1)). There exists an eigenvector corresponding to
this 1 eigenvalue. This means that there exists 2 01 such that @x&m(o,e}) = 8. So

there exists an integer m such that P(0,01,y,1) = m. Thus, for every 6, the rotation
number P(0,8,xp,10) = ps(m,f%) =m,

Lemma 3.14, however, says that ps(xo,f%} must be p/q. So p/g = j/gmod (1).
(p.q) = 1 implies (j,q) =1. @23 implies A = e27J/q = e27iP/ i5 complex, so the
eigenvalues of Df;_m(xo) are complex conjugates and Df%{x{;} is therefore conjugate to
c?s(zx}:z*q} wsin(27r:f;‘q}12 c?s(2npfq} -sin{27p/q) q=2 implies A=e2m(1/24m) -
sin(2mj/q) cos(2mj/q) | sin{2ap/q) cos(2np/q)
-1. 0
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3.5 The Topolory of Generic Resonance Surfaces

Viewed strictly as a differentiable manifold in the phasexparameter space M4, we
see that the implicit function theorem guaranties that I'(q) = {{(x,e)e R2xR2:
f.9(x)=x} is a smooth two-dimensional manifold in the neighborhood of any point

(x,£) with the 2x4 Jacobian matrix Dy ¢(fe9)(x) - (Id2:0102x7) has rank 2. The same is
evidently true for TP ¢ I'(q), q=2. Define the p/q singular set:

7P = {(x,10) & ™ . Dxle (x) has an eigenvalue equal toone}  {3.21}

Near the nonsingular points, I'P3 can be expressed as a function of €. Near the

singular points, this is impossible. We can, however, explicitly solve for two of the
four variables (x, y, €1, £2) in terms of the other two in the universal unfoldings of the
various singular bifurcation points. The following chart is obtained directly from the
universal unfoldings of Section 2.2. Except for the normal forms given in complex
coordinates, the resonance surfaces of periodic points described by the equations below
were already pictured in Figures 2.1, 2.3, and 2.4. For the Hopf cases with g22, we
find zeroes of the associated vector field away from the origin (x,y} = {0,0), because the
origin represents a fixed point of the associated map, not a period q point.

Table 31
Namg Independent Var's Explicit form of E;;;;
Saddle-node X,E2 E=£1=x3,y=0
Period Doubling X,E2 £=g;=-ix2,y=0
Cusp b 8 ) £ = ~{€£2x * x3), y =0
Degenerate Per Dbling X,E2 €1 = -(€ax2ix), y=0
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Hopf with Resonance:
Fq-1
= -z2Adz2) - BEa
q25 z e =-z]*A([z|) - B
73
- = Az =2
q=4 z E =-Ajz| p
7 2
= = -Alzl2 - 2=
q=3 z e=-Apl?-Z
q=2 x,€2 £] = -ix2, y=0
g=1 (Bogdanov) X.E2 £y = ~4x2, y=0'

Although the actual equations at a given singularity can differ from the above
equations, the contact order doesn't. For instance, in the saddle node, the general form
is e=ax2, for some nonzero a. We can always, however, solve in terms of the two

indicated independent variables listed in the above chart. Consequently, in a

neighborhood of any of the above singularities, P4 is a two-dimensional manifold.

The smoothness of the resonance surfaces requires some closer inspection.
Away from the bifurcation set, the surface is as smooth as the original system, {f;}.
On the bifurcation set, we need to consider the explicit formulas in the above table.
Except for the Hopf cases q=3, q=4, g25, the above expressions are analytic,
Consequently, for a particular application, the surface will be as smooth as the normal
form (not truncated), which 1s as smooth as the original system. For g=4 and g25 the
surfaces defined in the table are C! but not C2. The q=3 surface is continuous and all
directional derivatives exist, but due to the linear term z2/z, it is not differentiable at the
bifurcation point.

Theorem 3.16: A component of '™ (that is, a resonance surface) with g22, (p,q)

= 1, is generically a two-dimensional manifold without boundary in M4, If g#3, the
manifold is at least C1.

Proof: Let (xg,lip) be a point of P4,
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Case 1t {)fgo{xQ} has no eigenvalue equal to 1.

The implicit function theorem gives us x as a smooth (C' where each f}; is
assumed to be CT) function of .

Case 2: sz"&(xg) has an eigenvalue equal to 1, and xg is a true period q point of f%,

Because the orbit points are not inferacting, the only possible bifurcations are g-
fold copies of fixed point bifurcations. Thus, a saddle-node, a cusp, and a Bogdanov

bifurcation for f;io are the only possibilities. (See Claim 2.1 in Section 2.2.) Table 3.1

shows atl such points are smooth (at least C!) manifold points.

Case 3: nge(xo) has an eigenvalue equal to 1, and xg is not a true period q point of
fug
Theorem 3.15 says xg must be fixed point with eigenvalues €2®Mq, Table 3.1

again treats all such points. As discussed above, except when q=3, the manifold is at
least C! at such points. 1

Corollary 3.17 The set of all fixed points I'(1) is generically a smooth (as smooth as
the original system) two dimensional manifold without boundary in M4.

Proof: This is immediate from Theorem 3.16 by ignoring case 3.

Whenever we can assume, as we do in Chapter 5, that a resonance surface is
compact, then it can be topologically classified by its genus and orientabilify.

In the process of proving Theorem 3.16 (Cases 2 and 3) we proved

Corollary 3.18: Generically, for (p,g) = 1, ZP9 consists of
1) q copies of simple saddle-node bifurcations of period q points of f;
2) g copies of cusp bifurcation points of period q points of f},
3} q copies of Bogdanov bifurcation points of period q points of f,
4) A Hopf bifurcation of a fixed point of f, with resonant eigenvalues ¢2%iP/q
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4. NUMERICAL EXPERIMENTS
4.1 A Forced Oscillator Caricature

The following example, given to the author in 1985, was devised by R. P.
McGehee as a caricature of a forced oscillator, tractable to computer simulations and
experiments.

Xpsel = F;.&(Xn} for (X,ii} = (&bnasx)y) € szmz {‘4 l}
where F); is the composition gg * f%.

f‘“ﬁ) is defined as the time one map of the flow described by

dr r(1-r2) d@ 1-12

I 12 'dT=2Jt(Do+m,moe R {4.2}
go = (1 - a){(x,y) - (1,0)) + (1,0}, a € [0,1] {4.3}

The vector field described by {4.2} has the unit circle as a globally atiracting
invariant set which serves as our "unforced” oscillator. By composing the two maps,
we perturb the flow of {4.2} by "kicking” the system toward (1,0) every second,
according to {4.3}. (Thus, the forcing frequency w is always 1.) This type of
composition has been called "impulse forcing” by others. [SDCM]

Note that gg is the identity. Thus, for small o, we can think of the composition
as a perturbation of the unforced oscillator {4.2}. This means that the theory of section
2.5 for forced oscillators with small forcing amplitude should apply for small a. We
should be able to find {(given good enough numerical technigues) resonance homns
emanating from each point (o/w, &) = (g,a) = (p/q,0) on the wy axis into the o0
region.

g1 on the other hand maps every point to (1,0). Consequently, for large o
{near 1), Fy; is a perturbation of a map with a globally attracting fixed point. This is
important because one of the objects of investigation is resonance homns that "close.”
Being a perturbation of a map with a globally attracting fixed point means that for o near
1, no periodic points other than fixed points should exist. That is, each p/q resonance
horn must close when o approzaches 1.
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The specific form of the vector ficld {4.2} was chosen because it has an explicit
solution obtainable by scpaiai.un of variables. This saves us hours of computing time
by allowing us to find a closed form for the time 1 map of {4.2}, instead of requiring a
numerical integration to evaluate each iterate of Fy,.

4.2 Numerical Techniques

Several standard "continuation” packages currently exist for following equilibria
of differential equations, and fixed points of discrete maps. [DK] All seem to use a
Newton-Raphson iterative scheme to converge in the full phasexparameter space to the
desired points. Some small additions allow continuation of periodic points of discrete
maps with period larger than 1. These periodic points are precisely the points on the
resonance surfaces that we are investigating.

Ideas originating with R. P. McGehee led to continuation techniques which
turned out to be similar to "standard” pseudo arc length continuation methods. [Do]
Our algorithms are tailored specifically for a four-dimensional system (two parameters,
two phase variables), however, so their versatility is somewhat restricted. All our
Newton-Raphson iterations are performed on a four-dimensional (no larger angmented
systems) system of equations, two of which are always

Fuixj-x=0 {44}

The remaining two equations depend on the situation, although one of the two is always
chosen to ensure that the vector from the original guess to the point on the resonance
surface to which we converge is perpendicular to a second vector. This second vector is
usually chosen to be at least an approximation to a tangent vector to the resonance
surface at the starting guess or at the previously found point on the resonance surface.
The fourth equation is chosen in one of the following two manners:

1. Same as the third equation, but with a different (independent) tangent vector.
The two tangent vectors to the resonance surface can be chosen by the user,
approximated numerically from nearby points on the resonance surface, or
constrained to lie in a certain three-dimensional slice of the phasexparameter

space, such as Pp=constant.
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2. Toensure a codimension-one (bifurcation) curve is followed (A = Dyf,9(x}):

Eguation Description {4.5}
A, Tr(A)-Det(A)-1=0 Saddle-node bif,; an eigenvalue = 1
B. Tr(A)+Det (AY+ 1 =0 Period doubling bif; an eigenvalue = -1

C. Det(A)-1=0 Hopf bifurcation; the product of the
eigenvalues =1

D. [Tr (A)]2-4Det(A) =0 The eigenvalues are equal

Although the last curve is not a bifurcation curve, it does indicate the boundary
between nodes and foci, which helps to determine the phase metamorphoses in the
bifurcation diagrams.

A note of comparison with standard continuation routines such as AUTO [Do}:
the above method for continuing codimension-one curves does not require the
augmentation of the original system with an equation for the eigenvector (eg., for the
saddle-node: A¢ = ¢). For this reason, it may be considered more efficient, although
we lose the distinguishing feature of the eigenvector. This can cause a convergence
problem because we can have points, all close to each other on the resonance surface,
that satisfy the same set of four equations, but have different eigenvectors.

Note that the condition for a Hopf bifurcation we use can be satisfied not only
for a Hopf bifurcation, but also for a saddle point whose real eigenvalues multiply to get
one. Thus, our routines don't stop at double 1 or double -1 eigenvalue points in the
Hopf continuation. We do, however, have a curve which continues indefinitely; this
provides a nice way to get from one true Hopf bifurcation curve to another.
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4.3 Experimenta! Phenomena: Compact Resonance Sorfaces

The resonance surfaces of the system described in Section 4.1 do turn out to be
compact for q22. One parameter cuts for constant >0 give us cross sections of the
various p/q resonance surfaces. Small @ always yields slices analogous to Figure 2.10.
Following the saddle-node curves gives us the boundaries of the resonance surfaces,
with the exception of the period two horns, whose boundary includes period doubling
curves, as well. The combination of cross sections and bifurcation curves allows us to
get an idea of what the complete resonance surfaces are like, both topologically and
geometrically,

For most of the p/q resonance horns (period q 25), the cross sections are the
same topologically from the small o cross sections near the bottom tip of the resonance
horn, to the cross sections approaching the Hopf bifurcation point (with resonant
eigenvalues ¢2271iP/q) which mark the closing of the p/q resonance horn. The orientation
near the Hopf point depends on whether the Hopf bifurcation point is supercritical or
subcritical. See Figure 4.1. The cross sections for the strong resonance cases
(g=1,2,3) are indicated along with q=5 in Figure 4.2. We have attempted to draw in the

actual three-dimensional space {0=0p}. Note the "%-1 " point for q=3, 5. These are
Hopf bifurcation points with resonance: A1, Az = gt2Mip/q,

From the small forcing amplitude theory, we know each p/q resonance surface
projecting to a resonance horn near zero forcing amplitude has as a boundary, Cg, the
original unforced oscillator, lying above (p/q,0) in the (tug,¢t) parameter plane. Thus,
each such compact resonance surface 1s a compact two-manifold with a single
topological circle as its boundary. We can use either Morse theory or combinatorial
construction to identify each surface.

We will pursue the Morse theory first. [Mi] Temporarily identifying the points
on this circle to a point, leaves us with all p/q resonance surfaces with g22 as compact
two-manifolds without boundary. We can then use Morse theory to determine the
particular two-manifold represcnted by each resonance surface. We use as our Morse
function, projection onto the parameter variable «. For g23, the resonance surfaces

have two critical points, and so must be spheres. The p/2 horns all have three critical
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points; they are therefore projective planes. By reopening the holes we closed to apply
the Morse theory, we see that the p/q resonance surfaces are disks for g23, a mobius
strip for g=2, and a cylinder for g=1.

The fixed point surface I'(1) is quite different, because it extends to all parameter
values. The triangular curves of period-one saddle-node fixed point bifurcations mark
folds in the fixed point surface rather than the boundaries of period-one "resonance
homs.” Inside the triangles, there exist three fixed points; outside there exists only one.
Since the parameter space is the strip Rx[0,1], and the folds don't change the topology,
I'(1) must also be a closed strip with a hole (Cg).

The combinatorial construction of these surfaces corroborates the Morse theory
results just stated. [Ma] In all cases, the boundary circle Cq is represented by a cross
section "near” the tip. (Cross sections "A" in Figure 4.2) This circle is divided by the
saddle-node bifurcation points into g "node” components (n;) alternating with g "saddle"
components (s;). (Recall Figure 2.10.) For g=1, we cut the fixed point surface on
either side of the triangular "resonance region” in order to use the combinatorial
approach, valid for compact surfaces. The various cross sections of Figure 4.2
determined the pairings and corresponding edge identifications to use in Figure 4.3,
Dick Hall first suggested a figure similar to parts of the q=3 diagram; Dick McGehee
and Rick Moeckel suggested other parts of the g=3 diagram and the g25 diagram.

Figure 4.4 pictures several of the p/q resonance horns with some selected phase
portraits. These phase portraits were chosen to show the various routes from the
attracting invariant circle Cg to the unique attracting fixed point for large a. (The 4/5's
horn pictured is a hedge to limit the number of phase protraits we needed to draw. The
actual change from super to subcritical Hopf bifurcations occurs somewhere between
the the 4/5 and 1/1 horns.) Figure 4.5 is actual computer output of a three-dimensional
version of Figure 4.4 the q copies of the saddle-node curves demark the "edges” of the
vartous p/q resonance surfaces while several cross sections (a=constant) have been
included as an aid to visualize the structure of the entire surface. We projected the actual
surface into the three-dimensional (x.£1.€2) space for Figure 4.4, Dealing with the

fourth dimension requires even more imagination.

Some more detailed typical bifurcation diagrams are included in Chapter 5.
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4.4 Experimental Phenomena: A Bifurcation Overview

Return to Figure 4.4's picture of several of the p/q resonance horns together.
They all appear to run from =0 to (roughiy) the Hopf bifurcation curve. A naive
description of the full bifurcation picture is that of a globally attracting invariant circle
surrounding an unstable fixed point at 0=0, shrinking around the unstable fixed point to
form a globally attracting fixed point as a increases toward 1. The natural way for this
1o happen is via a Hopf bifurcation. The Hopf curve, however, has breaks in both the
period-two and period-one homns. As the selected phase portraits from Figure 4.4
show, these breaks allow radically different paths in the parameter space from the
bottom (with respect to o) to the top.

In the period-two hom, the unstable fixed point undergoes a first period
"undoubling" to become a saddle, and then a second to become a stable fixed point. In
the period-one horn, the saddle point, which is paired with a stable node along the sides
of the resonance horn, switches loyalties at a top corner cusp to be paired with what
used to be the center unstable fixed point. Above the top of the triangle, the only
remaining fixed point is the stable fixed point. Note that the only codimension-two
point which supports three fixed points is the cusp. It occurs, however, in a single
phase dimension. The Bogdanov points and the associated Hopf bifurcation are
necessary in order for the three fixed points to be able to line up in that one dimension.
As we discuss in Chapter 6, this is the reason the cusps and Bogdanov points must be
part of the period-one saddle-node curves.

To avoid misleading anyone about the complexity of the full bifurcation
problem, we mention that, even though the resonant surfaces of fixed points turn out to
be standard topological surfaces, the complete picture of phase portraits will never be
simple. This is mostly due to the existence of global bifurcations: manifold crossings
and corresponding regions of “chaos.” Such regions are known to necessarily exist
near codimension-two local bifurcation points with manifold crossings. In particular,
the list includes Bogdanov points, double -1 points, and Hopf points with period-three
resonance. See Chapter 6 for = more complete discussion of the "typical” bifurcation

diagrams.



5. COMPACT RESONANCE SURFACES--BIFURCATION
STRUCTURE

5.0 Introduction

In section 3.5, we treated our resonance surfaces as topological objects in the
phasexparameter space, M4. In the process we considered the singular set

ZPM=xpe TP, Dxfi (x) has an eigenvalue equal to one}  {3.21}

We determined that even points in the singular set are manifold points of ™ we

now consider the question of determining what singular points and/or curves actually
exist on any given resonance surface. In particular, we consider the specific resonance
surfaces that we know exist for forced planer oscillators with small forcing amplitude.
(Recall sections 2.2 and 2.5.)

We define these resonance surfaces for q22 as

I‘glq = the component of ™ containing C{;xuﬁp, where Hiip = {p/q,0) {5.1}

= the p/q resonance surface

AS’ Vemy, (I“‘%f %) where m,, is the projection onto the parameter space  {5.2}

= the p/g Amol'd Resonance Horn we wish to investigate.

I welet

1= (1) for every p (5.3}

then ™1 =T and q=1 can also fit into definitions {5.1} and {5.2].

Caution: (x,J1) € ™! does not imply ps(x,fu)=p. The role of p in {5.1} forg=1is
only to determine a certain component of I'(1).
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Continuing:

7§9=2"9 1 {5.4}

The first question we ask is : "How simple can the resonance surfaces be?”
From the small forcing amplitude theory we know that I’f}“‘ [ {O<ag<a} is composed of

frue period-q points. All examples of "closed” resonance horns, however, appear to
have a point where the period-q orbit sitting "above” it on the resonance surface
coalesces o a fixed point. This leads to the following conjecture, which we are not able
to prove in its full generality. A generic resonance surface is one that arises from a
generic two-parameter family of forced oscillations of the plane as in {2.11}).

Conjecture 50: Let I %q, g=22, be a generic p/q resonance surface. If

ng is compact, then it has a fixed point with eigenvalue e27¥q,

Typically, this fixed point occurs along a saddle-node bifurcation curve for g25
(the q saddle-node curves coalesce to a fixed point), and on the interior of the resonance
hom for q=3. When g=4, either may occur. A whole curve (a period doubling curve)
of fixed points will exist for q=2, while g=1 is altogether a different case.

5.1 The Actual Theorem
We begin, as usual, with some new notation. We define a quotient manifold
(T by TR % =157/ ~ where (x) ~ 8(x,2) (= (d(x),1)) for any integer j. If I*

has no fixed points then the natural projection 7~ qu -3 [I‘gq} is a q-fold covering map.

Theorem 5.1: Let I‘gq, q>2, be a generic p/q resonance surface. Ifﬁgq is compact,

and either q is even or [I‘%’q] is orientable, then it has a fixed point with eigenvalue

e2nip/q.
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Proof: Assume qu has no fixed points.

Because we are working with the specific resonance homn rg’q for the rest of the
proof, we will drop the subscript O and superscript p/q.

The small forcing amplitude theory implies that 8(T) =T f {0=0} = Cpis a
topological circle, which covers d[I'] = [Cg] q times. The same is true of any slice
{o=t1p} for small enough . Thus, I is topologically equivalent to I i foze} for o
sufficiently small (retract the cylinder I f [O<o<ag) Onto the circle Coy =T !{aw%}, 50 We
may work directly with {2 ¢}, We shall still refer to the "truncated” manifold as I'.

Cop (see Figure 2.10) is divided by 2q saddle-node points (a period-q orbit on
the left side of the resonance horn and a period-q orbit on the right side} into segments
which alternate between node segments and saddle segments. We label them sy, ..., 8¢;
ng, .., ng. [Capl has two corresponding segments in the quotient manifold which we

wil] label [s] and [n].

Because [T'] is a two-manifold with a single hole, it has a combinatorial normal
form as in Figure 5.1. [Ma] The outside curve consists of edges identified in pairs.
Furthermore, the normal form allows all cutside vertices to be the same point P.

Without fixed points, nt.: I' — [I'] is a g-fold covering map. For each oriented
closed curve [¥] € [T'], we can define an index I{[y]) € Z/g by lifting [¥] to T". Because
7 is a covering map, this 1ift 1s uniquely determined by fixing a starting pointug e T
The ending point ) € T is necessarily an iterate of the ug. (ug, vy € T.-1{u] for some
fu] &€ [I"]. Say u; = fi(ug), je Z/q. We define I([y]) to be j. This index is well defined
independent of the choice of base point in [T] and of the corresponding starting point of
the liftin T,

We now consider the specific path [y] € [I'] indicated in Figure 5.1. Since it is

obviously contractible to a point, the lifting lemma [Mu] implies I([y]) is zero.
Consequently, i(ic%}) + I([the outside curve]), with orientations on these two curves

induced by the indicated arows on [¥], is zero.
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Furthermore, the small forcing amplitude theory implies that the action of f on

C% is conjugate to a rigid rotation by 2np/q. By following any s; and then the n;j to
which it connects {or vice verse), we see that a lift of {C{m] ends up an angle of 2n/q

away from its starting point. Thus the index I{[C, ]) = k, where pk=%1 e Z/q.
Equivalently,

I([Caoj) and q are relatively prime. {5.5}

To compute I{[the outside curve]), we use the fact that, in its combinatorial
form, this outside curve consists of pairs of identified edges. Each edge, because all
vertices are identified, is a closed curve in [I'], and thus has an index. If [I"] is
orientable, one of each pair will point clockwise, and the other will point
counterclockwise. In this case, the indices of the two will cancel each other and the
index all the way around will be zero. This contradicts {5.5}. If [I'] is not orientable,
noncancelable indices will occur in pairs, forcing the "outside” index to be even. If g is
even, this will again contradict {5.5}. I

Note to readers of [AMKAY]: The above theorem is sufficient to prove the
Conjectures stated in that publication. Their restriction to a I” which projects to a
"simple disklike region™ is more than strong enough to ensure that, except possibly for
fixed points, {ngq]l fo0} consists of only the single component [CSNP/Q], which we

define to be the component containing the (identified) saddle-node orbit we know exists
for small forcing amplitude. [I“gq] % {qu} f {a0} consists of two components which we

label [S] and [N] for the Saddle and Node surfaces we know exist near the tip of the
surface, ¢ach necessarily orientable by overlapping coordinate systems that are all
projections to the parameter plane, and each with a single hole consisting of [CSNP/4]
and either [s] or [n]. (With our notation, [s] = [S]| gy 20 [0] = IN]| {3 When
the two components are sewn together along their common boundary, [CSNP/Q], the
resulting manifold [I'] is necessarily orientable,



6. TYPICAL FORCED OSCILLATOR BIFURCATION DIAGRAMS

6.0 Introduction

So far, we have described, in Chapter 4, some of the resonance surfaces and
other bifurcation structure associated with a particular example. We developed some
machinery in Chapter 3 in order to enable us to prove in Chapter 5 some results about
the structure of certain resonance surfaces. The questions we now ask are:

1) How reasonable are the assumptions of our theorems? Can we expect to see
in practice examples of the fixed points that appear in our theorems?

2) How close to "typical” is the example of Chapter 47 What features are most
likely to vary from case to case?

We will begin by considering each resonance horn individually. Comparisons
are facilitated by existing numerical examples in the existing literature: a periodically
forced CS8TR [KAS], a periodically forced Brusselator [KT, AMKA], a forced
bimolecular surface reaction model [MSA], and two impulse forcing models [SDCM],
similar to our example. The last two, [MSA] and [SDCM] offer the best view of the
complete parameter space bifurcation diagrams of which we are aware at this time.

FANKCA] has the most detail of possible bifurcations inside a single horn.
JACuA]

6.1 Assumptions on the system

Assumption 1: I“glq is compact.

As mentioned in Chapter 4, for small forcing amplitude we can consider the
system

d
T-F + e Gro1), o0 {2.11}
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dx .
as a perturbation of the unforced system g7 = F(x), and for large forcing amplitude as a

d .
perturbation of the "forcing system,” “&‘? = G(x,wt). If, as happened in our example,
both equations have recurrence restricted to a bounded region of phase space, then we
dx
would expect the same to hold for all . If the time 1/ map of Fr = G(x,0t) has a

unique attracting fixed point, then for large enough o, we expect any individual I“gq,

q22, 10 cease to exist. Because the second parameter controls the self rotation number
of an orbit, which is constant on a given l"g 9, that resonance surface should exist only

in a finite interval of (y/w's.

Caution: For =0, the resulting planar map will usually exhibit nongeneric behavior,
besides having a restricted physical interpretation. Furthermore, as @—0, integration of
return maps can become very expensive. We avoided this problem in our caricature by
varying ey instead of . In addition, the integrability of the unforced oscillator system

allowed us to completely avoid any numeric integration.

Assumption 2: {I‘ﬂfq] is orientable.

The the comments after the proof of Theorem 5.1 gives us a hint of how
"messy" the system must be in order to obtain a nonorientable [1"‘%’“]. We note that we
are aware of no example in the literature where {Zg’q] consists of anything other than
[CSNP/9] and possibly a fixed point bifurcation. If If}’q has a fixed point bifurcation,
then we already have what we want, while without any further components of {Z‘gq],
[I“E/ 9) is always orientable. The least complicated way to form a nonorientable manifold
is with three components of [I‘gj M [ngq], each with two holes, one identified with each

of the other two components. This would form a Klein bottle. In general, we need a
chain of components of [rgg‘q} \ [Zpéq} : [X1], ..., [Xm], each connected to its

46



il Wa

2
7
-

B:a KA

2

neighbors, with [X1] = [S], and [Xm] = [N], and orientations arranged so that all
boundary pairs don't cancel each other.

The most "reasonabie” complications we would expect to see are:

1. A Handle: a saddle-node boundary curve {not [CSN]) along which [S] and [N]
are identified to make a “handle” on [l"gq]. See Figure 6.1.

2. An Interior Fold: a saddle-node boundary curve between one of [S] or [N] (say
[S]) and a third component, [X], is caused by an extra fold which appears on
[S]. See Figure 6.2.

3. A Boundary Fold: This is similar to the interior fold just described, except that
the extra fold occurs at the "edge” of the surface, involving both the [S] and
[N] surfaces.

A handle adds a new singular component (in addition to [CSNP/4]) but no new
surfaces to the component "chain.” An interior fold adds a surface component, but the
chain terminates after that addition. When this happens, [X] is a topological disk. If the
index of the saddle-node curve along which it attaches to [S) is not zero, then X would
necessarily have a fixed point. Thus, adding such a fold cannot change the index of
[Cq] or the orientability of [I‘g{q]. A boundary fold adds neither a singular component

nor a surface component. (Neither fold changes the topology of T‘xgq.) In all three
cases, {.[‘gq} remains orientable, so the corresponding resonance surfaces must all have

fixed points associated with them.

Note the cubic nature of the cross sections at the beginning and end of the fold in
Figures 6.2 and 6.3, slice B. Such folds can only occur in conjunction with the two
corresponding cusps. Studying Figure 6.3 shows why the two cusps must occur on the
interior of the horn for the boundary fold. The self intersection point P in the parameter
space must generically correspond to two different phase points. Thus four distinct
surfaces exist that project to the interior of our loop. They are paired by the saddle-node
bifurcations, say surface 1 with 2 and 3 with 4. As we travel around the loop, this
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pairing must change from 1 with 2 at one end to 3 with 4 at the other. If no fixed points
are involved, the only local codimension-two bifurcation that involves more than two
periodic orbits is the cusp bifurcation, which involves three. Consequently, two cusps
are needed in order to make the exchange. In our example, we first exchange 3 for 1,
and then 4 for 2.

Both [MSA] and [SDCM] have found examples of boundary folds, but we are
not aware of examples of the other two "complications.”

Assumption 3: The (pseudo) Hopf Curve (which exists by Assumption
1) is unique, and the self rotation number varies monotonically along the

curve.

This assumption, which has not been used to obtain any of the resulis in this
paper so far, can be thought of as a "reasonableness of parameter dependence”
assumption. Although one can easily imagine systems in which there exist more than
one Hopf bifurcation curve, this assumption (which appears to be satisfied by all the
examples cited above) severely limits the possibilities for the full bifurcation structure.
This monotonicity assumption, which also appears to be satisfied in all the examples
cited in the chapter introduction, while not expected to hold for arbitrary two-parameter
families of maps, wilf tend to hold for forced oscillator bifurcation diagrams, because by
construction, one of the parameters is effectively a rotation number. Thus we expect
rotation numbers to increase in general as the rotation number parameter is increased.
This, along with the expectancy of crossing the Hopf curve as one increases the forcing
amplitude, causes the Hopf curve to roughly run parallel to the rotation number axis.

With assumptions 1 and 3, the r%fq resonance surfaces for g even {and > 2),

have only one road to follow: from the bottom tip of the horn to the Hopf point with
rotation number p/q. Furthermore, because the rational numbers with q even are dense
in the reals, it would require an extremely nonlinear map to allow the "odd” surfaces to
g0 anywhere but to the appropriate point on the Hopf bifurcation curve next to their
well-behaved even brothers. In fact, by the same arguments used for the resonance

surfaces emanating from the zero forcing axis, the only way for the tips of a p/q
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resonance horn to fail to connect is to have both corresponding quotient surfaces be
distinct nonorientable surfaces. With assumption 2, of course, this is not an issue.

6.2 Individual Resonance Horns

Modulo the folds and handles that were mentioned under the assumption 2
discussion above (which could be eliminated by a broader monotonicity assumption
than Assumption 3), the topelogical character of the resonance horns must be the same
as in our example for g23: I“g 9is a topological disk.

For 25, the bifurcation structure can have any of the complicated internal
structure described in JACHM], although the larger the period q, the narrower the
resonance homn, and the less "room” for complications to develop. For instance, the
first step in the breakup of the invariant circle Cp, the changing of the sink eigenvalues
from real to complex, doesn't even appear to occur in our examples. The invariant
circle appears to persist throughout the entire resonance horn.

E) . . .
We have seen that for =3, the "V1" point must occur as an isolated singular

4
point. The "v1" point may be an isolated point, or it may appear as do all other 31
points: at the intersection point of the 2q saddle-node rays as in Figure 4.3 for q=5.

As promised, Figures 6.4, 6.5, and 6.6 show some rather detailed bifurcation
diagrams for typical period 1, 2, and 3 horns, respeciively. We believe these (o be
complete bifurcation diagrams modulo the following equivalences.

1. We have indicated both local and global codimension-one bifurcations by curves
in the parameter space. The global bifurcations, of course, because they
involve manifold crossings, typically occur in a region of parameter space, not
on a curve. In some but not all cases, we have included the vector ficld
approximation to these global bifurcations: manifolds are shown as coincident.
The actual manifolds for the map generically cross each other infinitely many
times, but are not coincident. In regions of homoclinic crossings, for
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instance, it is known that there is an infinity of topologically inequivalent
maps. We have conveniently identified them as a single equivalence class,

2. In the p/q resonance horn, all self rotation numbers are typically very close to
p/q. We think of q as our "base period” and require equivalent maps to all
have the same number, orientation, and stability of period q orbits. The basins
of attraction and stability for other recurrent sets should be the same, but these
recurrent sets, not being of our base period, we do not require to be
topologically equivalent. This comment applies to any of the periodg = 1, 2,
or 3 phase portraits in which a nontrivial invariant curve appears, with a (self}
rotation number other than p/q. Phase locking at different frequencies on these
"other" invariant curves makes these phase diagrams topologically
inequivalent. We treat them, however as equivalent.

We will make some brief comments on the bifurcation diagrams, indicating
what features are typical of period  resonance surfaces, and indicating what features are
most likely to vary from system to system. All local bifurcation curves we have been
able to confirm using our continuation techniques. The knowledge of global bifurcation
curves which originate at local codimension-two bifurcation points comes from the
corresponding unfolding. The orientation of the global curves when they interact with
codimension-one local curves is the feature of which we are least certain. See, for
example, the point on the period doubling curve in the period-two horn where almost all
the dashed global lines converge. Symmetry, some suggestions from [ACHM], and
some (hopefully) educated guesses all played roles in determining these curves,

q=3

All bifurcation curves and points necessarily appear except possibly the equal
eigenvalue curve, inside which the period-three sink becomes complex. If this equal
eigenvalue curve were larger, it could intersect the saddle-node curve to give a
Bogdanov point. Stability arguments imply the Bogdanov points always occur in pairs.
If the equal eigenvalue curve were smaller, it might not intersect the global stable
manifold crossings bounding the bottom of regions 4 and 6, respectively, in Figure 6.6.
These two crossing "curves”" could then connect with each other to form the top
boundary of region 2.
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Assumption 3 implies there are exactly two double -1 points with self rotation
number p/2. The unfoldings of these points imply the existence of period doubling
curves through each. The generic unfoldings of period doubling curves imply ¢ach
component is a closed curve. Stability arguments (period doubling of a saddle or a
node) imply both double -1 points must lie on the same period doubling curve.

The gap in the Hopf bifurcation curve between the two double -1 points allows
routes from the attracting invariant circle Cg for the unforced oscillator to the globally
attracting fixed point for large amplitude of forcing that don't involve a Hopf bifurcation
of the fixed point. Typically, this route involves the period-two saddle "undoubling” as
we enter the period doubling circle from the bottom, and the period-iwo sink
undoubling as we leave the period doubling circle at the top. (Recall Figure 4.4.) This
is possible only if there exist two degenerate period doubling points where the period
doubling bifurcation changes from supercritical to subcritical: on the "bottom half” we
undouble on the way into to period doubling circle; on the top half we undouble on the
way gut of the circle. The resulting "ice cream cone" period-two resonance horn is
therefore typical.

Note that Arnol'd has split the q=2 unfoldings into two cases (Figure 2.7),
depending on whether the period-two orbit which appears is a saddle or a node/focus.
In Figure 6.5, the right hand side double -1 is the former; the left hand side double -1 is
the latter. The Bogdanov point B2 (Figure 6.3) for the period-two orbit appears in
conjunction with the node/focus double -1 point; the secondary Hopf bifurcation curve
runs between these two points. If the double -1 points were both of the "saddle"” type or
both of the "node/focus” type, the period-two Bogdanov point wouldn't necessarily

appear,
g=1

Assumption 3 implies there are exactly two Bogadanov points with self rotation
number p/l. Saddle-node curves pass through each. The generic unfoldings of saddle-
node curves imply each component other than CSNP/! is a closed curve. Stability
arguments imply both Bogdanov points must lie on the same saddle-node component.
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All CSNI¥! resonance homs we have seen bound a triangular regions (with cusp points
at the top two comers) and do, in fact, contain two Bogdanov points (with self rotation
number p/l).

If there are no other saddle-node curves with self rotation number p/1, then the
two cusps and two Bogdanov points will always appear on the CSNP/1, This is
because the gap in the Hopf bifurcation curve between the Bogdanov points allows a
route in the parameter space from the bottom to the top without ever encountering a
Hopf bifurcation. Because the self rotation numbers will all tend to be near p/1, no
period doubling curves will be involved either. The only remaining bifurcation is the
saddle-node.

Inside the triangle, we have, for the most part (at least near the bottom tip) one
saddle, one stable node/focus, and one unstable node/focus. (Figure 4.4, again} In
order to be left with the stable node/focus at the "top” of the parameter space, the saddle-
node bifurcation along the top of the saddle-node curve must involve the saddle and the
unstable node/ffocus (originally the "center” fixed point in low forcing amplitude phase
portraits) instead of the saddle and the stable node/focus which we know interact at the
sides of the hom near its bottom tip. The two cusp points are where this exchange takes
place, while the change in the stability of the node is the saddle-node bifurcation takes
place at the Bogdanov points. Note that the cusp bifurcations can take place only
between a saddle and two nodes which have the same stability. In Figure 6.4, both
nodes are sources in the top left comer of the triangle, while both are sinks in the top
right comer.

The relative position of the cusps and the Bogdanov points also determines the
criticality of the Hopf bifurcation curve emanating from the Bogdanov points. In the top
Ieft comer, we have a subcritical Hopf bifurcation curve. The corresponding bifurcation
diagrams are more complicated than those for the region near the supercritical Hopf
bifurcation in the top right corner of the homn.

6.3 Global Global Theory

We have discussed above, some global aspects of individual resonance surfaces
and resonance homs. Figure 4.4 shows how the global homs fit together to form the
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global global picture for our example. From the above comments, we consider this
figure to be typical of resonance horns when they do all close.

Because we have only pictured a few of the resonance horns in Figure 4.4, one
aspect we have failed to address is the overlapping of these horns. As mentioned in the
previous section, phase portraits corresponding to the p/q resonance horn with g25 (as
far as we could determine) always had a globally attracting invariant circle. In such
cases, we know the resonance horns cannot overlap. On the other hand, when an
invariant curve is part of a phase portrait (as we saw several times in the period 1, 2,
and 3 bifurcation diagrams), we expect regions of overlapping horns. Because these
invariant curves occur in the universal unfoldings of codimension-two points such as
the Bogdanov point, the double negative one point, and the period-three resonant Hopf
bifurcation point, near these points we will always have overlapping resonance horns.
Figure 6.7 shows the placement of some of these resonance horns in the full bifurcation
picture.

By following "curves" of homoclinic orbits, which again exist in the
neighborhood of the same three codimension-two points, we can identify regions of
chaotic behavior. These "curves” are labelled b in Figure 6.7.

Our caricature example had one additional codimension-two bifurcation point: 2
degenerate Hopf bifurcation. This bifurcation is roughly similar to the degenerate
period doubling bifurcation described in Section 2.2, At this point, the Hopf
bifurcations change between supercritical and subcritical. Because the Hopf
bifurcations at the "left hand” Bogdanov point are subcritical, and the Hopf bifurcations
at the right hand double negative one are supercritical, there must be at least one point
along the Hopf bifurcation line connecting the two points where the criticality changes.
Chenciner [Ch] has discussed this bifurcation in great detail, although the complicated
nature of the resonances involved in the problem make a complete description virtually
impossible.
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7. PARTING COMMENTS

The applicability of the tools and results developed in this paper is not limited fo
the forced oscillator problem. We list a few of them here.

7.1 Hopf Bifurcation Resonance Horns

The cross sections of resonance surfaces near the Hopf bifurcation tip are
topologically the same as cross sections near the "unforced oscillaior” tip for ¢=5. Thus
most of the giobal theory derived above for horns emanating from a line in the parameter
space representing an unforced oscillator can be applied to horns emanating from a line
of Hopf bifurcations. In particular, if in section 3.2, we redefined

rg’q = the component of T'P4 containing the point at the Hopf bifurcation line with
linearization e2%iVg

then in order to close, these surfaces must encounter a second Hopf bifurcation point.
Topologically, these surfaces would typically be spheres instead of disks, because the
unforced oscillator "hole” for the forced oscillator resonance surfaces does not appear.

7.2 (p,p=1

Throughout this paper, we have assumed we were working with p/q resonance
surfaces with (p,q)=1. If this is not the case, the surface can be thought of as a
"secondary” bifurcation surface. Such a surface can still have period q orbits and fixed
points, but it may also have period r orbits for any r that divides both pand q. A
classification of all possible bifurcation points for this surface must include these
nonfixed points as well. When r is the lowest period of an orbit involved in a
bifurcation, r copies of a bifurcation of ff will appear.
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7.3 Orientation at Coalescence of Orbits with Real Eigenvalues

The continuity of ﬁas’x,#(q), including {a=0}, as used in the proof of Lemma

3.14, gives us an interesting way to corroborate the orientation of the period-two points
of Amol'd's unfolding in Figure 2.7 for g=2. The period-two points all have

~r

Ra.& ’x‘n{2} = p. At a=0, however, only 8 = O,n mod (2n), corresponding to the
eigenvectors of -1 for the linear part of the normal form, have ﬁa,elx#(Z) £ D.
Consequently, as g approaches the bifurcation value, the period-two points must

coalesce to the fixed point tangent to the eigendirections. This does indeed happen, for
the period-two points all lie in {y=0}.

We can get a similar result on the fixed point surface I'(1), although not quite as
easily. The quantity ﬁag,x,u(l) = B, where A=£3+210 j5 one of the eigenvalues of the

fixed point. Consequently, the sets of fixed points with constant ﬁa‘esx#(l} are

typically curves along the fixed point surface when the eigenvalues are complex, and
full two-dimensional regions on the fixed point surface when the eigenvalues are real.
As in the g=2 case in the above paragraph, the eigenvectors corresponding to the 1
eigenvalue are described by y=0. At the very least, the saddle, with its real eigenvalues,
must approach the bifurcating fixed point (0,0) tangent to the x axis in the phase plane
as the parameter approaches the Bogdanov bifurcation point. In the actual unfolding,
both saddle and node fixed points, when they exist, occur with y=0,

7.4 Self Rotation Numbers for Fixed Points of Nondiffeomorphisms

In Section 3.3, we discussed the fact that for diffeomorphisms {fy,}, DI,(y)

always exists and is nonsingular, This facilitated defining the self rotation number of a

fixed point. If DIj(y) is singular, but nonzero, we can still define the self rotation

number because 8y ;,(0,0) = i:fﬂ R(a, 8, vo, po) still exists even though it can no

o058

c
Dlhugly0) (sinii }
, as we did in {3.16}. If Dfy(y) is zero,
cost
IDfpﬂ(yO)[ ] l

longer be expressed as
siné
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then higher order terms must be considered to find an appropriate extension of the self
rotation number to fixed points.
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