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Abstract

The objective of this research is to develop a method of finding a
function which produces a given escape diagram. An escape diagram
is a graphical representation of the set of inputs in the domain of a
function which remain bounded under iteration of the function. This
research considers functions which have domains that are subsets of the
complex numbers, although the functions are not necessarily complex
analytic. The findings of this research include two methods: the fixed
point method, and the conjugate method. The fixed point method pro-
vides a set of conditions which are contingent on the boundary of the
given escape diagram consisting of repulsive fixed points (the bound-
ary must be given as two functions defined on the interval (y1, y2)). If
a function satisfies the conditions, the function will produce the given
escape diagram. The conjugate method uses conjugacy to modify func-
tions which have already known escape diagrams. The resulting func-
tion produces an escape diagram which is a distortion of the escape
diagram of the known function. These methods were tested numer-
ically, using computer programs to determine whether the functions
that they result in produce the correct escape diagrams for multiple
cases. Both of these methods were found to be successful in the cases
tested.
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1 Objective

An escape diagram is a plot which displays the set of all points whose orbit
remains bounded under iteration of a given function. The objective of this
project is to develop a method of finding a function which produces a given
escape diagram. Two methods of accomplishing this have been developed
in this endeavor.

2 Method 1: The Fixed Point Method

One method of finding a function which produces a given escape diagram
utilizes repulsive and attractive fixed points. This will be referred to as the
”fixed point” method. For simplicity, let us consider an escape diagram in
the real numbers. Let this escape diagram be the set of points in the interval
[x1, x3], where x1 6= x3, and let the unknown function which produces this
escape diagram under iteration be a continuous function which maps the
real numbers to the real numbers, f : < 7→ <. Let x1 and x3 be repulsive
fixed points, and let another point x2 be an attractive fixed point which is
between x1 and x3. Let x1, x2, and x3 be the only fixed points under f . Let
it also be the case that for all x ∈ [x1, x3], f(x) ∈ [x1, x3]. This would make
points in the interval [x1, x3] be mapped only to points in the same interval
[x1, x3], and thus, their orbits will be bounded. Points outside of the interval
[x1, x3] will be repelled away from the interval, toward positive or negative
infinity, and thus their orbits will not be bounded. In summary, a function
which satisfies the following three conditions will produce an escape diagram
which is the interval [x1, x3]:

1. x1 and x3 are repulsive fixed points, with an attractive fixed point x2
between x1 and x3, that is, f ′(x1) > 1, |f ′(x2)| < 1, and f ′(x3) > 1.

2. There are no fixed points other than x1, x2, and x3.

3. For all x ∈ [x1, x3], f(x) ∈ [x1, x3].

A reasonable candidate which could satisfy these conditions is a cubic
function

f(x) = x+A(x− x1)(x− x2)(x− x3)
where A is chosen to satisfy f ′(x2) ∈ (0, 1) and x2 is chosen to be the

average of x1 and x3.
The fixed point method can be extended to escape diagrams in the plane,

such that f is redefined as a continuous function which maps <2 to itself
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[f : <2 7→ <2]. For consistency with the next method, we choose to represent
our function as a function on C1 rather than on <2. This is because known
escape diagrams for functions like z2+c (where c is a constant) are written in
complex coordinates. Since our definition of f will not be complex analytic,
this is merely a convenient choice of coordinates. This can be done by letting
x1, x2, and x3 be functions of y, which is the imaginary component of the
complex number z which is the argument of f (z = x+ iy).

x1 −→ x1(y)

x2 −→ x2(y)

x3 −→ x3(y)

Let the set of points in the escape diagram be a region R of the complex
plane with a boundary which can be defined by, x1(y) and x3(y), with y in
the interval (y1, y2) [R = {x + iy : x1(y) ≤ x ≤ x3(y), y1 < y < y2}]. This
can be thought of as solving infinitely many of the real cases, one for each
y-value in the interval (y1, y2).

The cubic function presented in the real case can be extended to the
complex numbers with the function f being

f(z) = x+A(x− x1(y))(x− x2(y))(x− x3(y)) + iy

Where A is chosen to satisfy f ′(x2(y)) ∈ (0, 1) for all y ∈ (y1, y2) and x2(y)
is chosen to be the average of x1(y) and x3(y).

3 Method 2: The Conjugate Method

The second method involves conjugates of functions which have escape di-
agrams which are already known [1]. Suppose that the escape diagram of
a given function g is known, and is the region Rg of the complex plane,
such that Rg = {ρeiθ : 0 ≤ ρ ≤ r(θ), 0 ≤ θ < 2π}. Also suppose that the
escape diagram of the unknown function f is a region Rf , and that Rg can
be distorted into Rf using a homeomorphism h of the complex plane. f can
then be expressed as f = h ◦ g ◦ h−1.

Suppose the escape diagram of f is a region of the complex plane where
the boundary can be expressed using a polar function r = r(θ), that is,
Rf = {ρfeiθf : 0 ≤ ρf ≤ r(θf ), 0 ≤ θf < 2π}. Because it is already known
that the escape diagram of the function z2 is the unit disk, we can let Rg be
the unit disk [Rg = {ρgeiθg : 0 ≤ ρg ≤ 1, 0 ≤ θg < 2π}], and we can let g be
defined by g(z) = z2. We can also let h be defined by h(z) = zr(θ) where
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h−1(z) = z/r(θ) [θ can be expressed in terms of z as θ = θ(z) = cos−1
(
Re[z]
|z|

)
for Im[z] > 0 and θ = θ(z) = −cos−1

(
Re[z]
|z|

)
for Im[z] < 0]. f can therefore

be expressed as

f(z) = (h ◦ g ◦ h−1)(z) = g

(
z

r (θ(z))

)
r

(
θ

(
g

(
z

r(θ(z))

)))
.

4 Tests and Examples

These methods were tested for several escape diagrams to find functions
which produce them under iteration. For the fixed point method, the escape
diagrams were required to have boundaries which can be expressed using
the functions x1(y) and x3(y) as described in section 2. For the conjugate
method, the escape diagrams were required to have boundaries that can be
expressed using a polar function r(θ). For each escape diagram, a program
was used which selected 10,000 random points in the complex plane, and
iterated each point N times using the function that was found using one of
the methods. If a point was within a distance R from the origin after N
iterations, its orbit was considered to be bounded. If a point was beyond
a distance R from the origin after N iterations, its orbit was considered
to not be bounded. The points which had orbits which were considered to
be bounded were plotted in black. The boundary of the intended escape
diagram was plotted in red. The programming language that was used to
write these programs was python.

4.1 Pseudo-code for Testing the Fixed Point Method

The escape diagram is given as a region of the complex plane that has a
boundary which is defined by two given functions, x1 and x3, and a given
interval (y1, y2). The pseudo-code for the program used in the fixed point
method examples was the following:

1. input x1(y)

2. input x3(y)

3. define x2(y) = (x1(y) + x3(y))/2

4. define g(y) = |(x2(y)− x1(y))(x2(y)− x3(y)|
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5. set M to the maximum value of g(y) on the interval (y1, y2)

6. set A to 1/M

7. plot x1(y) and plot x3(y) for y ∈ (y1, y2)

8. for i = 0 to 10,000

(a) set y to a random real number in the interval (y1, y2)

(b) define f(x) = x+A(x− x1)(x− x2)(x− x3)
(c) set x0 to a random real number in a given interval

(d) set x to x0

(e) for n = 0 to 200

i. set x to f(x)

(f) if | x |< R

i. plot (x0, y)

4.2 Pseudo-code for Testing the Conjugate Method

The escape diagram is given as a region of the complex plane which has a
boundary that is defined by a given polar function r(θ). The pseudo-code
used for the program used for the conjugate method was the following:

1. define θ(z) as:

(a) cos−1(Im[z]/|z|) if Im[z] > 0 (where y is the y-component of z)

(b) −cos−1(Im[z]/|z|) if Im[z] < 0

2. input r(θ)

3. define g(z) = Re[z]2 − Im[z]2 + 2iRe[z]Im[z]

4. define h(z) = zr(θ(z))

5. define h−1(z) = z/r(θ(z))

6. define f(z) = h(g(h−1(z)))

7. plot (r(θ)cos(θ), r(θ)sin(θ)) for the interval −π ≤ θ ≤ π

8. for i = 0 to 10,000

(a) set x0 and y0 to random numbers in a given interval
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(b) set z0 to x0 + iy0

(c) set z to z0

(d) for n = 0 to 200

i. if z 6= 0

A. set z to f(z)

(e) if |z| < R

i. plot (x0, y0)

4.3 Fixed Point Method Examples

In the first four examples of the fixed point method, the given escape dia-
grams where ellipses with a semi-major axis a and a semi-minor axis b. In
the first four examples, let x1(y), x2(y), and x3(y) be defined on the interval
−b < y < b as

x1(y) = −

√
a2
(

1− y2

b2

)
+
√
a2 − b2

x2(y) =
√
a2 − b2

x3(y) =

√
a2
(

1− y2

b2

)
+
√
a2 − b2

x1(y) and x3(y) can simply be derived from the equation for an ellipse in
Cartesian coordinates, and x2(y) was chosen so that it vertically divides the
ellipse down its center.

In the fifth example, let x1(y), x2(y), and x3(y) be defined on the interval
−2 < y < 2 as

x1(y) = y2 − 4

x2(y) = (y2 − 4 + sin2(πy/2))/2

x3(y) = sin2(πy/2)

The function used for each example was

f(z) = x+A(x− x1(y))(x− x2(y))(x− x3(y)) + iy
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4.3.1 Fixed Point Method Example 1

In this example, a = 8, b = 4, N = 200, and R = 16. The x-coordinates
of the points were randomly chosen from the interval −2 ≤ x ≤ 16 and the
y-coordinates from the interval −5 < y < 5.

4.3.2 Fixed Point Method Example 2

In this example, a = 15, b = 7, N = 200, and R = 29. The x-coordinates
of the points were randomly chosen from the interval −3 ≤ x ≤ 29 and the
y-coordinates from the interval −8 < y < 8.
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4.3.3 Fixed Point Method Example 3

In this example, a = 5, b = 3, N = 200, and R = 10. The x-coordinates
of the points were randomly chosen from the interval −2 ≤ x ≤ 10 and the
y-coordinates from the interval −4 < y < 4.

4.3.4 Fixed Point Method Example 4

In this example, a = 3, b = 1.25, N = 200, and R = 7. The x-coordinates
of the points were randomly chosen from the interval −1 ≤ x ≤ 7 and the
y-coordinates from the interval −2.25 < y < 2.25.
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4.3.5 Fixed Point Method Example 5

In this example, N = 200, and R = 5. The x-coordinates of the points
were randomly chosen from the interval −5 ≤ x ≤ 5 and the y-coordinates
from the interval −2 < y < 2.

4.4 Conjugate Method Examples

In the first four examples of the conjugate method, the given escape diagrams
were ellipses which are identical to those in the respective fixed point method
examples (where a is the semi-major axis and b is the semi-minor axis). In
the first four examples,

r(θ) =
a(1− e2)

1− ecos(θ)

g(z) = z2

h(z) = z
a(1− e2)

1− eRe[z]/|z|

h−1(z) =
z(

a(1−e2)
1−eRe[z]/|z|

)
where e =

√
1− ( ba)2 is the eccentricity. After substituting these into f(z) =

(h ◦ g ◦ h−1)(z) and simplifying, one arrives at the function

f(z) =
z2

a (1− e2)
1− e

(
Re[z]
|z|

)
1− e

(
Re[z2]
|z2|

)
In the fifth example,

r(θ) = 1 + cos2(θ)
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g(z) = z2

h(z) = z

(
1 +

(
Re[z]

|z|

)2
)

h−1(z) =
z

1 +
(
Re[z]
|z|

)2
After substituting these into f(z) = (h−1 ◦ g ◦ h)(z) and simplifying, one
arrives at the function

f(z) = z2
1 +

(
Re[z2]
|z2|

)2
(

1 +
(
Re[z]
|z|

)2)2

4.4.1 Conjugate Method Example 1

In this example, a = 8, b = 4, N = 200, R = 16. The x-coordinates of
the points were randomly chosen from the interval −2 ≤ x ≤ 16 and the
y-coordinates from the interval −5 ≤ y ≤ 5.
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4.4.2 Conjugate Method Example 2

In this example, a = 15, b = 7, N = 200, R = 29. The x-coordinates
of the points were randomly chosen from the interval −3 ≤ x ≤ 29 and the
y-coordinates from the interval −8 ≤ y ≤ 8.

4.4.3 Conjugate Method Example 3

In this example, a = 5, b = 3, N = 200, R = 10. The x-coordinates of
the points were randomly chosen from the interval −3 ≤ x ≤ 10 and the
y-coordinates from the interval −4 ≤ y ≤ 4.
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4.4.4 Conjugate Method Example 4

In this example, a = 3, b = 0.5, N = 200, R = 7. The x-coordinates
of the points were randomly chosen from the interval −1 ≤ x ≤ 7 and the
y-coordinates from the interval −1.5 ≤ y ≤ 1.5.

4.4.5 Conjugate Method Example 5

In this example, N = 200, R = 7. The x-coordinates of the points were
randomly chosen from the interval −3 ≤ x ≤ 3 and the y-coordinates from
the interval −2 ≤ y ≤ 2.

5 Conclusion

The objective of this research was to develop a method of finding a function
which produces a given escape diagram. In this process, two methods were
developed. The first method is called the fixed point method. It provides a
set of conditions based on the positioning of fixed points, which guarantee
that a function with those conditions produces the given escape diagram.
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The second method is called the conjugate method. It utilizes conjugacy to
distort escape diagrams of known functions to find functions which produce
the given escape diagram. Both of these methods appear to be successful.
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