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Abstract

In this paper we explore an area of dynamical systems that we call non-analytic continuations of

analytic maps. These could have many forms, but we are interested in:

Fβ,c (z) = zn + c+
β

zd
,

where c, β ∈ C, z is the complex conjugate of z ∈ C or Ĉ, and n, d ∈ N. We are particularly

interested in the case c = 0 with n = d. When viewed as a map of the real plane, this �simplest�

map decouples into a modulus map, Mβ , and argument map, Aβ . Analyzing the modulus map

using one-dimensional dynamics yields some interesting results. Among the most signi�cant is the

Modulus Trichotomy to where there exists only three possible dynamic planes, one of which �nds

the set of bounded orbits empty. This is not possible for complex analytic maps. In the two other

cases, most dynamic planes contain a chaotic attractor contained in the interior of the set of bounded

orbits. So the set of points which behave chaotically for these maps need not be restricted to the

boundary of the set of bounded orbits, which di�ers from complex analytic maps. Throughout this

paper we display some fascinating images and provide descriptions of these complicated topological

spaces as we explain these non-analytic continuations.
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1 Introduction

Singular Perturbations have been a popular topic in complex dynamical systems in recent years.

These maps could take a variety of forms, but we are interested in the form

Fβ,c (z) = zn + c+
β

zd
, (1)

where c, β ∈ C, z is the complex conjugate of z ∈ C or Ĉ, and n, d ∈ N. For the majority of this paper

β serves as the primary parameter while c, n, and d serve as secondary or auxiliary parameters. To

further simplify the study, we restrict n ≥ 2 and n ≥ d with particular interest to the case where

c = 0 and n = d.

We view Fβ,c as a discrete dynamical system. That is, given a seed, z0, Fβ,c generates the orbit

z0, z1, z2, ..., zn, zn+1, ... where zk = Fβ,c (zk−1) = F
(k)
β,c (z0). Our aim is to study and classify all

possible orbits for Fβ,c. But �rst, let us explain the title non-analytic singular continuations of

complex analytic dynamical systems. We start with a complex analytic dynamical system that is

�well understood.� For (1), this well understood family of functions is de�ned by fc : z 7→ zn + c.

Then, fc serves as a basis for comparison for Fβ,c. That is, when β = 0 we understand the dynamics

of F0,c because F0,c ≡ fc. For richer dynamics, we simply allow β to be nonzero and we have

continued fc with a non-analytic family of maps with a pole at the origin, where a pole is any value

that is mapped to the point at in�nity. Furthermore, Fβ,c leaves the class of polynomial mappings

and joins the class of rational maps. What makes Fβ,c particularly interesting is for β = 0 it is

complex analytic, whereas this fails to be true for β 6= 0. However, when Fβ,c is viewed as a map

of the real plane, R2, Fβ,c is always real rational. It is this reason why the majority of this paper

switches between maps of C and (equivalent) maps of R2. Moreover, real maps will be denoted R

and complex maps will be denoted F , and this change of coordinates is diagrammed below:

C F−→ C

h ↓ ↓ h

R2 R−→ R2

where h (x+ i · y) = (x, y). Since F and R are conjugate, their dynamical properties are the same.
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Secondly, the parameters β and c can be viewed as well in C or R2 via β = β1 + i · β2 ↔ (β1, β2)

and c = c1 + i · c2 ↔ (c1, c2). In every case it should be clear by context in which space (C or R2)

the dynamic variables or parameters live. Also, an abuse of terminology occurs when I say these are

maps of the plane. The space we are actually working with is the closure of the plane, or the one

point compacti�cation of the plane, Ĉ = C ∪ {∞} or R̂2 = R2 ∪ {∞}; we allow the point at in�nity

to be a variable in both contexts. Still, we can think of Fβ,c as a map of the plane with an additional

point at in�nity. For all the maps we consider in this paper, in�nity is an attracting �xed point.

The motivation for this paper is based on the topics in [Dr], [Pe1], [Pe2] and the family studied in

[De2], [De3], [De4], and [De5] de�ned as follows:

Gλ,c (z) = zn + c+
λ

zd
, (2)

where c, λ ∈ C and n, d ∈ N with n ≥ 2 and n ≥ d. The maps de�ned in (2) look very similar to

those de�ned in (1). Both Fβ,c and Gλ,c have the same �well understood� base function, zn + c. So

when β = λ = 0, the maps are equivalent. However, when λ, β 6= 0 the dynamics are no longer the

same. Some results hold for both families, while others do not. At various points in this paper we

will state these similarities or di�erences, some of which are minor while others are quite signi�cant.

An example of this compares the escape trichotomy proved in [De4] with the modulus trichotomy

Figure 1.1: Examples of the three possible Julia sets for Devaney's trichotomy for z4 + λ/z4 (Left)
λ = 0.04 corresponding to the Julia set being a Cantor set of simple closed curves (Middle) λ = 0.23
corresponding to the Julia set being a Cantor set (Right) λ = 0.125i corresponding to the Julia set
being a Sierpinski curve. Given any point in the dynamic plane, its color tells its fate. The darker the
color, the longer the point takes to escape. Black points do not escape, but remain bounded.
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proved later in this paper. In the escape trichotomy the authors proved in the case where the critical

orbit escapes to in�nity, there are only three possible Julia sets: a Cantor set, a Cantor set of simple

closed curves, and a Sierpinski curve, as displayed in Figure 1.1. We have a similar result for Fβ,0,

but we also consider the case where the critical orbits are bounded. There are only three possible

bounded sets: a closed annulus for the bounded critical orbit and a Cantor set of circles or an empty

set for an unbounded critical orbit, displayed in Figure 3.6. For Fβ,c and Gλ,c they both have a case

where a Cantor set of circles is possible. However, they di�er in the other cases.

Figure 1.2: Examples of various dynamic plane escape sets for Fβ,c.

(Top Left) z2 + (−0.75 + 0.75i)/z̄2 (Top Middle) z2 + 1 + 0.238/z̄2 (Top Right)
z2 + 0.25− 0.005/z̄2 (Bottom Left) z2 − 1− 0.001/z̄2 (Bottom Middle)
z3 + (0.49− 0.49i)− 0.001/z̄3 (Bottom Right) z3 + i− (0.6 + 0.1i) /z̄2

Here is the same color scheme as described in Figure 1.1.

This paper starts by verifying the fact that Fβ,c satis�es an escape criterion, Theorem 2.1. We then

go on to study the simplest case where n = d and c = 0. We are able to fully explain the dynamics
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for Fβ and compare the results to those of (2). We do this by observing that Fβ can be reduced

to the modulus map,Mβ , which maps R+ to R+. The mapsMβ turn out to always be unimodal

and results in one-dimensional dynamics help to understandMβ , and equivalently Fβ,c. Among the

theorems proposed is the Modulus Trichotomy (mentioned brie�y earlier), which states that there

are three possible escape/non-escape sets depending on the orbit of a critical circle. Here there are

only three possible sets for the orbits that remain bounded under iteration of Fβ : an empty set,

a closed annulus, and a Cantor set of geometric circles. Then, a result proved in [deM vSt] allows

us to conclude that when the critical orbit is bounded (the closed annulus case above), there exists

one of three attractors. It turns out these attractors are always transitive under Fβ (Theorem 3.10)

and in many cases can behave chaotically. In the cases the attractor is chaotic, it is contained in

the interior of the closed annulus. However, a well known result in analytic dynamical systems

states that the set of points that behave chaotically is on the boundary of the set of bounded orbits.

This is a signi�cant di�erence from the well studied analytic dynamical systems. We then go on to

discuss bifurcation curves and why the case where n = 2 is di�erent from n > 2. Lastly we �nish by

proposing some open questions and conjectures for the more general family of functions de�ned in

(1) and provide some numerical observations.
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2 An Escape Criterion

Definition: Escape Criterion - A condition de�ned for a iterative map that guarantees all ele-

ments that satisfy it necessarily escape, or are attracted to the point at in�nity.

Fβ,c has such a criterion with the more general result is proved in Theorem 2.1. Then, proving

Lemmas 2.2 and 2.3 we justify an escape criterion for the family of functions de�ned in (1). Some

of the results are proved for functions in the complex plane (C) while others are proved for those in

the real plane (R2). However, through the change of coordinates mentioned in the introduction the

result holds true for both spaces.

Theorem 2.1: Let β ∈ R2 and suppose Fβ is a function of the form

Fβ (x, y) = f (x, y) +
β

g (x, y)
,

where f, g are functions from R2 to R2 and two conditions are met:

1. f itself satis�es an escape criterion: there exists some K > 0 such that |(x, y)| > K implies
|f (x, y)| > 3 |(x, y)|,

2. there exists some L > 0 such that |(x, y)| > L implies |g (x, y)| > |β| / |(x, y)|.

Then, |(x, y)| > max {K,L} implies |Fβ (x, y)| > 2 |(x, y)| and Fβ has an escape criterion.

Proof: Let |(x, y)| > max {K,L}. Then by the triangle inequality, the following is

true.

|Fβ (x, y)| ≥ |f (x, y)| − |β|
|g (x, y)|

> 3 |(x, y)| − |β|
|β| / |(x, y)|

= 2 |(x, y)|

Therefore, |(x, y)| > max {K,L} implies |F (x, y)| > 2 |(x, y)|. �
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Next, Lemma 2.2 proves zn + c satis�es condition 1 of Theorem 2.1.

Lemma 2.2: Given the function fc : z 7→ zn + c, |z| > max
{

41/(n−1), |c|
}
implies |fc (z)| > 3 |z|.

Proof: Let |z| > max
{

41/(n−1), |c|
}
. With that, |z| > |c| and |z| > 41/(n−1) which

implies |z|n−1
> 4. Then by the triangle inequality, the following is true:

|fc (z)| ≥ |z|n − |c|

> |z|n − |z|

=
(
|z|n−1 − 1

)
|z|

> (4− 1) |z|

= 3 |z| .

Therefore, |z| > max
{

41/(n−1), |c|
}
implies |fc (z)| > 3 |z|. �

It is important to note that the second condition met in Theorem 2.1 is fairly weak. If any polynomial

plays the role of g, then condition 2 is automatically met. We justify this is the case for Fβ,c in

Lemma 2.3.

Lemma 2.3: Given β ∈ C and d ∈ N, the function g : z 7→ zd, |z| > |β|1/(d+1)
implies |g (z)| >

|β| / |z|.

Proof: Let |z| > |β|1/(d+1)
. It then follows that |z|d+1

> |β| and |g (z)| =
∣∣zd∣∣ = |z|d =

|z|d = |z|d+1
/ |z| > |β| / |z|. Therefore, |z| > |β|1/(d+1)

implies |g (z)| > |β| / |z|. �

Corollary 2.4: Fβ,c as de�ned in (1), satis�es an escape criterion. More speci�cally, |z| >
max

{
41/(n−1), |β|1/(d+1)

, |c|
}
implies |Fβ,c (z)| > 2 |z|.
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Proof: Lemmas 2.2 and 2.3 justify the two conditions of 2.1. �

It is worth commenting that this is by no means the best, or most e�cient criterion. These values

were chosen for simplicity and convenience in the proofs to justify that some criterion exists. An

escape criterion is extremely useful because all elements that satisfy it can be characterized as having

the same dynamics: they are all attracted to the �xed point at in�nity. We say the points that satisfy

this criterion are in the basin of attraction of ∞, denoted Bβ . Furthermore, it allows us to create

the standard dynamic and parameter plane images that frequently appear in dynamical systems

textbooks and papers. We program the computer to perform the iterative process de�ned by our

map. Our algorithm relies on the fact that we can terminate the iteration process if a given point

satis�es an escape criterion because we know from there it will continue to in�nity. This gives us

the �rst dichotomy in the dynamic plane: orbits of some points remain bounded, while others don't

(those satisfying an escape criterion).
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3 The Simplest Case

To gain understanding of Fβ,c, it is useful to consider special cases of it. Speci�cally, we �rst

investigate the case where n = d and c = 0 de�ned in (3).

Fβ (z) = zn +
β

zn
(3)

In (3), z, β ∈ C with n ∈ N and n ≥ 2. An mentioned in the introduction, it can be useful to view

Fβ as a map of the real plane as opposed to a map of the complex plane. For easier calculations, we

consider z in its polar representation. If z = reiθ with r, θ ∈ R, we have the following relationship.

Fβ
(
reiθ

)
↔ Rβ

 r

θ


Throughout this paper we also use rectangular and polar coordinates for parameters. These are

represented as β = β1 + β2i and β = |β| eiφ respectively, where β1, β2, |β| , φ ∈ R. Then the

relationship C↔ R2 for β is as follows: β ↔ (β1, β2)↔ (|β| , φ). For the remainder of the paper the

choice for rectangular or polar coordinates depends on which makes calculations easier.

3.1 De�ning Rβ

The �rst result is that the modulus component of Rβ decouples from the angular component of Rβ .

That is, circles in the plane centered at the origin map to circles in the plane centered at the origin.

To justify this we need to compute
∣∣Fβ (reiθ)∣∣, where |·| is the usual Euclidean norm and z = reiθ.

Fβ
(
reiθ

)
=

(
reiθ

)n
+

β

(re−iθ)
n

= rneinθ +
β

rn
einθ

=

(
rn +

β

rn

)
einθ (4)

This implies ∣∣Fβ (reiθ)∣∣ =

∣∣∣∣(rn +
β

rn

)
einθ

∣∣∣∣ =

∣∣∣∣rn +
β

rn

∣∣∣∣ .
8



The fact that
∣∣Fβ (reiθ)∣∣ does not depend on θ justi�es the fact that circles centered at the origin

map to circles centered at the origin. Now let β = β1+iβ2 where β1, β2 ∈ R and we get the following.

∣∣Fβ (reiθ)∣∣ =

∣∣∣∣rn +
β1 + iβ2

rn

∣∣∣∣
=

∣∣∣∣(rn +
β1

rn

)
+

(
β2

rn

)
i

∣∣∣∣
=

√(
rn +

β1

rn

)2

+

(
β2

rn

)2

=

√
r2n + 2β1 +

β2
1 + β2

2

r2n
≡Mβ (r) (5)

The equation de�ned in (5) describes the modulus component of Fβ , which we refer to asMβ from

here on out. Again,Mβ is independent of the angle of z and purely dependent on r (the modulus

of z). Therefore,Mβ is a one-dimensional map from R+ to R+ that depends on β ∈ R2.

r eiΘ

r

FΒIr eiΘM

rn

Β

rn

FΒIr eiΘM

Figure 3.1: A general portrayal of how a circle of radius r, centered at the origin, maps to a circle of
radius

∣∣Fβ (reiθ)∣∣. Furthermore, it shows how a speci�c point, reiθ, on the circle maps to a new point
on the image of the circle. Another interesting property of this map is that every circle maps n to 1 onto
the image circle; the initial circle is wrapped n times around the image circle. This observation helps in
later proofs in this paper.

9



The angular component of Fβ
(
reiθ

)
can be calculated in a similar fashion, except we �nd arg

(
Fβ
(
reiθ

))
instead of

∣∣Fβ (reiθ)∣∣. Continuing from (4), we can de�ne arg
(
Fβ
(
reiθ

))
as follows.

arg
(
Fβ
(
reiθ

))
= arg

(
rn +

β

rn

)
+ nθ ≡ Aβ (r, θ) (mod 2π)

Combining the modulus calculation along with the angular calculation, we can �nally de�ne Rβ .

Fβ
(
reiθ

)
↔ Rβ

 r

θ

 =

 Mβ (r)

Aβ (r, θ)

 =


√
r2n + 2β1 +

β2
1+β2

2

r2n

nθ + arg
(
rn + β

rn

)


Before we proceed, we should emphasize again that Rβ : R2 → R2 and every variable or parameter

in the de�nition now lives in R or R2. An observation from Rβ 's de�nition is thatMβ depends only

upon r, while Aβ depends on both r and θ. Such maps are usually referred to as skew symmetric

maps of the plane. Furthermore, since Mβ depends only on r, we can analyze the dynamics of

Mβ : [0,∞] → [0,∞], which will give us valuable insight about the dynamics of Fβ and Rβ . Note

that we are viewing Mβ as the closure of the real line, R ∪ {∞}. But since r is the modulus of

z, we further restrict Mβ to the non-negative reals or in�nity, [0,∞]. The point is that Mβ is a

one-dimensional real map, and we have many tools at our disposal to understand the dynamics. In

the next sub-section we do just that.

3.2 The Modulus Component

As observed previously, the modulus component,Mβ , decouples from the angular component. This

is true becauseMβ is a function only of r. This leads to the fact that circles centered at the origin

in the plane, map to circles centered at the origin; these circles are invariant under Fβ (in C) or Rβ

(in R2).

Since Mβ is a function of a single variable, r, we need to know how to interpret the behaviors of

orbits underMβ , and more importantly, how to interpret these behaviors under the full maps, Fβ

or Rβ . The easiest way to visualize the relationship would be to consider a single value in [0,∞].

Call it r0. We then can study the orbit r0, r1, ..., where rk =Mβ (rk−1). In this context, the orbit is

10



a sequence of non-negative real numbers or ∞. However, under the maps of the plane, each orbit is

a sequence of points on circles centered at the origin with radii r0, r1, r2, ... . But before we classify

the possible orbits of these radii, let us de�ne some notation.

M(k)
β (r) =

k-times︷ ︸︸ ︷
(Mβ ◦Mβ ◦ · · · ◦Mβ) (r)

K (Mβ) =
{
r ∈ R :M(k)

β (r) 6→ ∞ as k →∞
}

Kc (Mβ) =
{
r ∈ R :M(k)

β (r)→∞ as k →∞
}

J (Mβ) = ∂K (Mβ)

Even though these sets are de�ned in the same fashion as the �lled Julia set, Julia set, and Fatou set

in complex dynamics, we will avoid calling them this. But rather, we will address the set K (Mβ)

as the set of all r values whose orbits remain bounded under Mβ , the set Kc (Mβ) as the set of

all r values whose orbits converge to ∞ under Mβ , and J (Mβ) as the boundary of the set of r

values whose orbits remain bounded under Mβ . Even though the terms �lled Julia set, Julia set,

and Fatou set may make sense in the context of Mβ , we will �nd that it will be a severe abuse of

terminology in the context of the full maps of the plane.

The �rst dichotomy we consider is which orbits of r remain bounded underMβ and which do not.

These are the sets K (Mβ) and Kc (Mβ) respectively. This is a fairly standard approach for such

maps. Existing results in one-dimensional dynamics can be applied since Mβ is unimodal for all

n and β (look ahead to Figure 3.3). Furthermore, the study can be simpli�ed by considering the

Schwarzian derivative ofMβ .

Definition: Schwarzian derivative - given a function P ∈ C3, its Schwarzian derivative is as

follows.

SP (x) =
P ′′′ (x)

P ′ (x)
− 3

2

(
P ′′ (x)

P ′ (x)

)2

As stated in [De1], the Schwarzian derivative is one of the stranger tools in dynamics. It may also

be one of the most important because of the following theorem.

Theorem 3.1: [De1] If SP (x) < 0 for all x (in the domain of P ) and x0 is an attracting periodic
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point for P , then either there is a critical point of P whose orbit is attracted to the orbit of x0 or

the immediate basin of attraction for x0 extends to ±∞.

Unfortunately, the Schwarzian derivative forMβ need not be negative for all r ∈ [0,∞]. However,

we can employ a trick. Let us consider a change of coordinates.

r
Mβ−→ R

h ↓ ↓ h

r2 −→
M̃β

R2

In the commutative diagram above, the down arrows are the change of variables de�ned by h : r 7→ r2.

Also M̃β : s 7→ sn + 2β1 +
(
β2

1 + β2
2

)
/sn. Since the domain for Mβ is the non-negative reals, h

is continuous, one-to-one, onto, and has a continuous inverse. It is a homeomorphism. Therefore,

any topological property that holds for the �square map�, M̃β , also hold for the modulus mapMβ .

The reason we introduce this change of coordinates is because even though Mβ does not satisfy

the hypothesis for Theorem 3.1, it turns out M̃β does. To verify this, we consider β in its polar

representation. Assume |β| ≥ 0 and 0 ≤ φ < 2π is the argument of β. Then the following is true.

β1 = |β| cosφ

β2
1 + β2

2 = |β|2

(M (r))
2

= M̃β

(
r2
)

= r2n + 2 |β| cosφ+
|β|2

r2n
(6)

M̃β (s) = sn + 2 |β| cosφ+
|β|2

sn

M̃′β (s) = nsn−1 − n |β|
2

sn+1

M̃′′β (s) = n (n− 1) sn−1 + n (n+ 1)
|β|2

sn+2

M̃′′′β (s) = n (n− 1) (n− 2) sn−2 + n (n+ 1) (n+ 2)
|β|2

sn+3

12



SM̃β (s) =
M̃′′′ (x)

M̃′ (x)
− 3

2

(
M̃′′ (x)

M̃′ (x)

)2

=

(
1− n2

) (
|β|4 + s4n

)
− 2

(
1 + 5n2

)
|β|2 s2n(√

2s
)2 (|β|2 − s2n

)2 (7)

We will avoid the cases where s = 0 and s = |β|1/n because the we know that M̃β(0) is pre�xed at

in�nity and SM̃β

(
|β|1/n

)
is unde�ned. Therefore we can note that s > 0, |β| ≥ 0, n ≥ 2 and it

is easy to verify that (7) is negative for all s ∈ (0,∞]\
{
|β|1/n

}
. First, the denominator is always

non-negative because it is a product of squares. Next, the �rst term in the numerator is always

negative because 1− n2 is always negative and |β|4 + s4n is always positive. Also, the second term

in the numerator is always positive as well by inspection. Thus we have something of the form

[(−)− (+)] / (+), which is always negative. Therefore, M̃β satis�es Theorem 3.1. We should also

state that the immediate basin of attraction for some attracting periodic point cannot extend to

±∞ because of the escape criterion proved in Corollary 2.4.

Using M̃β , let us now solve for the critical points.

d

ds
M̃β (s) = 0

nsn−1 − nβ
2
1 + β2

2

sn+1
= 0

sn−1 =
β2

1 + β2
2

sn+1

s2n = β2
1 + β2

2

s =
(
β2

1 + β2
2

)1/2n
Identifying the fact that β2

1 + β2
2 = |β|2 , it is true that the critical point for M̃β is |β|1/n. Then

using h−1, we �nd the critical point for the original modulus map,Mβ , is |β|1/2n. Since the domain

ofMβ and M̃β is the non-negative reals, there is only one critical point. Also note that under the

full maps of the plane, this corresponds to a single critical circle.

At this point we will ignore M̃β for the time being. It was only introduced because the topological

properties of it are equivalent to those of Mβ . And, the fate of critical point under M̃β will have
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identical fates to critical point underMβ . So even though Theorem 3.1 does not apply directly to

Mβ , we can still use the result.

Furthermore, throughout the paper we useMβ where β = β1+iβ2 or equivalently β = |β| (cosφ+ i sinφ).

The forms are (8) and (9) respectively.

Mβ (r) =

√
r2n + 2β1 +

β2
1 + β2

2

r2n
(8)

Mβ (r) =

√
r2n + 2 |β| cosφ+

|β|2

r2n
(9)

3.3 The Parameter Plane

Since we veri�ed in the previous sub-section that there exists only one critical point forMβ , we can

generate the standard images of the dynamic and parameter planes. For complete details on how to

program the iteration into the computer, see Algorithms and Codes in the Appendix.

Figure 3.2: The β parameter plane forMβ , Fβ , and Rβ . (Left) - the parameter plane for n = 2 on
[−2.5, 0.5] × [−1.5, 1.5] i. (Right) - a zoomed in window centered at the origin. A β = β1 + iβ2 value
chosen inside the black parabola-like region corresponds to a critical circle whose orbit remains bounded
under Fβ .

Figure 3.2 shows the parameter plane for n = 2. There is a parabola-like black region which identi�es

speci�c parameter values whose critical circles remain bounded under iteration of Fβ . The shading
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of the colors is also signi�cant because the darker the color, the longer the the critical circle takes

to escape. Furthermore, the parameter planes for n > 2 all look similar to those of Figure 3.2.

(For n = 3 see Figure 3.4. ) However, there are signi�cant di�erences which are addressed in the

sub-section Bifurcation Curves and Why the Case n = 2 is di�erent.

From generating the images in Figures 3.2 and 3.4, we can immediately observe a few properties

of the parameter plane for Mβ . First, any parameter, β, and its complex conjugate, β, have the

same dynamics. Visually, this can be seen by the symmetry about the horizontal axis. This can be

con�rmed algebraically.

Let β = β1 + iβ2 and β = β1 − iβ2 where β1, β2 ∈ R. Then, the following is true.

Mβ (r) =

√
r2n + 2β1 +

β2
1 + β2

2

r2n
=

√
r2n + 2β1 +

β2
1 + (−β2)

2

r2n
=Mβ (r)

We know boundedness forMβ corresponds to boundedness for Rβ and Fβ . So recall that the shading

in the parameter plane has signi�cant meaning. Any point in the β parameter plane represents a

β value, which has a corresponding critical point (for Mβ) or a critical circle (for Rβ and Fβ). A

point colored lightly corresponds to a β parameter value whose critical circle escapes quickly under

iteration of Fβ . The lighter the color, the quicker it escapes, whereas a black point corresponds to

critical points/circles that remain bounded under iteration of Fβ . Then, another observation is that

the color is the lightest along the negative horizontal axis. To justify why this occurs, �x a ray out

from the origin at an angle of π, β = |β| ei·π and consider the fate of the critical orbit |β|1/2n. Using

Mβ as de�ned in (9), the following is true.

Mβ

(
|β|1/2n

)
=

√√√√√(|β|1/2n)2n

+ 2 |β| cosπ +
|β|2(

|β|1/2n
)2n

=
√
|β| − 2 |β|+ |β|

= 0

SinceMβ (0) =∞, and in�nity is a �xed point, we say thatMβ

(
|β|1/2n

)
is �xed at in�nity after two

iterates; it escapes very quickly and this is noticeable since the color along the negative horizontal

axis is the lightest. We then can say that every parameter value on the ray de�ned earlier is in the
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same equivalence class, �xed at in�nity after two iterates. In addition to that, there seems to be

some distinct structure to the β parameter plane. To analyze its structure, we need to study the

critical orbit and understand why it escapes or remains bounded.

3.4 The Critical Orbit and the Dynamical Plane

We know that there is signi�cant meaning by following only the orbit of the critical orbit, but in

some contexts it can be just as useful looking at the �rst two iterates of the critical orbit.

|β|1/2n →Mβ

(
|β|1/2n

)
→M(2)

β

(
|β|1/2n

)
→ · · ·

From our de�nition in (9), we can explicitly state the previous expression.

|β|1/2n →
√

2 |β| (1 + cosφ)→

√
2n |β|n (1 + cosφ)

n
+ 2 |β| cosφ+

|β|2

2n |β|n (1 + cosφ)
n → · · ·

(10)

It is interesting to point out that the �rst iterate of the critical point does not depend on n. In

addition, graphical iteration plays a huge role in observing di�erent types of behaviors. (See Figure

3.3.) For any β parameter,Mβ is always a unimodal map. It assumes one absolute minimum that

occurs at the critical point. It is this fact that makes the dynamics ofMβ analogous to the classic

family of functions, x2 + c. What situations are possible for x2 + c and how are they similar toMβ?

From Figure 3.3, we can see for case A that the critical orbit grows monotonically towards in�nity,

much like c > 1/4 for x2 + c. For case B, the graph of Mβ is tangent to the reference line, as for

c = 1/4. For cases C through D the critical orbit remains bounded. Then, in case E the critical

orbit is pre�xed at the repelling �xed point, as in c = −2. And �nally, for case F the critical orbit

tends to in�nity, but it does so in a non-monotonic fashion. It is in this case, analogous to x2 + c

(for c < −2), to where a Cantor set of points is left behind. The node of Mβ breaks through the

invariant box (the dashed box in Figure 3.3). It was alluded to earlier that the �rst two iterates of

the critical orbit play a role in the dynamics. We can split up the unbounded critical orbits into two

categories:
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1. Mβ

(
|β|1/2n

)
> |β|1/2n or

2. Mβ

(
|β|1/2n

)
< |β|1/2n .

These correspond to graphs A and F respectively in Figure 3.3. Here the critical orbit converges to

∞ either monotonically (case 1/graph A) or non-monotonically (case 2/ graph F ). This dichotomy

plays an important role in the modulus trichotomy, stated later in this section. Also for Figure 3.3

B − E, an invariant interval is also displayed.

A B C

D E F

Figure 3.3: Displayed here are six possible graphical iterations for n = 3 and β = |β| eiπ/3 . That
is, the magnitude of the β parameter value varies between six values and the angle of the β parameter
value is �xed at π/3. The β values are chosen to display key bifurcations in the critical orbit. Also, the
points A− F are also labeled on the parameter plane in Figure 3.4.

After observing some of the scenarios displayed in Figure 3.3, we would like to know how they are

related to the β parameter plane. In Figure 3.4, a ray is �xed at an angle of π/3 and along that ray

are six di�erent points of varying magnitudes. These points correspond to the graphical iterations

in Figure 3.3. And from this, we have some valuable insight about the β parameter plane. Clearly if

the critical orbit remains bounded, then the β value must lie in the black band in Figure 3.4. Even

more, we can explicitly calculate one of the curves contained in the black band, the �xed critical
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orbit (displayed in Figure 3.3 C).

Mβ

(
|β|1/2n

)
= |β|1/2n√

2 |β| (1 + cosφ) = |β|1/2n

2 |β| (1 + cosφ) = |β|1/n

2 (1 + cosφ) = |β|(1−n)/n

[2 (1 + cosφ)]
n/(1−n)

= |β| (11)

The equation displayed in (11) is an explicit curve (in polar coordinates) in the β parameter plane

that yields β values whose critical point is �xed, like Figure 3.3 C. This curve is displayed in

Figure 3.4 for n = 3. Furthermore, we can say that any β value chosen on the green curve has

equivalent dynamics and this is an example of an equivalence class. We mention these equivalence

classes/bifurcation curves later, but we can make some observations by exploring the parameter

plane.

Observation 3.1: Everything Escapes - all parameter values which yield Mβ (r) > r for all

r ≥ 0 produce no orbits that remain bounded. This case is illustrated in Figure 3.3 A. From this

observation the set of parameter values which yield bounded orbits is empty, K (Mβ) = ∅. Since

Mβ (r) > r, every seed produces an unbounded strictly monotonic increasing sequence: r0 → r1 →

r2 → · · · where r0 < r1 < r2 < · · · . Obviously if this is the case for all orbits, it is true for the critical

orbit; the critical orbit is strictly monotonic increasing. In the β parameter plane, any value chosen

to the right of the black band yields this situation and the set of points which remain bounded is

empty.

Observation 3.2: Point of Tangency - there exists a set of β values, where the graph of Mβ

is tangent to the reference line, see Figure 3.3 B. Any parameter chosen on the right boundary

of the black band in the β parameter plane yields such a graph. Here, critical orbits behave in

a strictly monotonic increasing sequence, but unlike Observation 3.1, they are bounded above by

the point of tangency/�xed point, Mβ (p) = p. Therefore if s0, s1, s2, ... is the critical orbit, then

s0 < s1 < s2 < · · · < p. SinceMβ is a unimodal map opening upward, this is analogous to c = 1/4

for the famous map x2 + c.
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Figure 3.4: (Right) The β parameter plane for n = 3 on [−2.5, 0.5]× [−1.5, 1.5] i and (Left) a zoom
of the same plane. The letters represent parameter values whose critical orbit are displayed in Figure 3.3.

Also, the green curves are traced out by |β| = (2 (1 + cosφ))
−3/2

. Any parameter value chosen on this
curve corresponds to a critical orbit that is �xed.

Observation 3.3: Fixed Critical Point - there exists an unbounded curve de�ned by (11) in

the parameter plane where the critical orbit is �xed. The fact that this curve is unbounded and is

contained in the black band tells us the black band is also an unbounded set.

Observation 3.4: Periodic Bifurcation Curves - much like the the �xed critical point curve in

Observation 3.3, there exists curves that yield periodic critical orbits. We will further explain this

in the sub-section about bifurcation curves.

Observation 3.5: Pre�xed Critical Orbit - there exists a set of parameters which yield graphs of

Mβ where the critical point is �xed after two iterates. See Figure 3.3 E. Any parameter chosen on

the left boundary of the black band in the β parameter plane yields such a graph. Here, the critical

orbit is s0, s1, s2, s2, ... where s1 < s0 < s2. This situation is analogous to c = −2 for x2 + c.

Observation 3.6: Unimodal Breakthrough - lastly, any β value chosen to the left of the black

band yields a graph of Mβ whose critical point breaks through an invariant box whose vertices

include the points (p+, p+) and
(
Mpre

β (p+) ,Mpre
β (p+)

)
, where p+ is the larger of the repelling

�xed points andMpre
β (p+) is its other preimage. (See Figure 3.3 F ). This is analogous to the case

where c < −2 for x2 + c. Here the critical orbit escapes, but does so non-monotonically.

Since the β parameter plane only tracks the fate of a single (critical) orbit, it is natural to wonder
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how the critical orbit plays into other orbits. That is, if we know the fate of the critical orbit, can

we say anything about the other possible orbits in the dynamic plane? We address that question

next.

From understanding the previous observations, it turns out there exists only three possibilities for

the set of bounded points, K (Fβ), in the dynamic plane: an empty set, a closed annulus, or a Cantor

set of geometric circles. In any case, the fate of the critical orbit tells us the structure of K (Fβ).

Theorem 3.2: The Modulus Trichotomy

Let s0, s1, s2... be the orbit of the critical point forMβ .

1. If the critical orbit remains bounded, then the set of points which remain bounded is a closed
interval forMβ , or equivalently a closed annulus for Fβ .

2. If the critical orbit tends to in�nity and si < sj for all i < j, then all orbits for Mβ (and
equivalently Fβ) tend to in�nity. That is, K (Mβ) = K (Fβ) is empty.

3. If the critical orbit tends to in�nity, but s1 < s0 < s2, then K (Mβ) is a Cantor set and K (Fβ)
is a Cantor set of geometric circles.

Justifying claim 1: Observe that Mβ is a unimodal map opening upward. It is

well known that the set of points that remain bounded will be a closed connected set,

much like x2 + c for −2 ≤ c ≤ 1/4. This closed, connected set will have to be a closed

connected interval in R+. Full the full map, Fβ , wrapping this set around the origin will

yield a closed annulus under Fβ . �

Justifying Claim 2: If the critical orbit tends to in�nity in a strictly monotonic

sequence, then the same is true for all r in the domain of Mβ . This stems from the

properties explained in Observation 3.1. Next, if all r ≥ 0 tend to in�nity under Mβ ,

then all circles of positive radius grow in�nitely large under Fβ , with a special note that

the origin is �xed at in�nity after one iterate. Then, no points remain bounded under

eitherMβ or Fβ , K (Mβ) = K (Fβ) = ∅. We remark that this case is not possible for

complex analytic dynamical systems. �

Discussing Claim 3: We were not able to prove claim 3, but the numerical evidence

suggests that this is the case. We can however state that the set of points that remain

bounded has a Cantor-like structure. To illustrate this, consider Figure 3.5. First, B is
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the immediate basin of attraction and T is the �trap door�, which is mapped onto B.

Thus the only possible points that remain bounded are in [p, p+]. However, we can see

that G is mapped into T and then tends to ∞. So we discard G. Then consider taking

the preimage of G and we �nd that we throw out an open set in the middle of A0 and

A1. Continuing this process results in discarding the middle of the possible bounded

intervals, like the Cantor middle thirds set. However it is very di�cult to prove that

each component of the set that remains bounded is a single point. The proof is tricky

becauseMβ is not symmetric about the critical point and explicit expressions are not as

nice as other well studied unimodal maps, such as x2 + c or the logistic map, for which

this claim is true. But, through the many numerical calculations and images created,

we have no reason to believe that this is not the case. We will note that along the real

positive axis of the parameter plane, any β value chosen to the left of the black band is

indeed a Cantor set of geometric circles. If z, β ∈ R, then Fβ ≡ Gβ (Devaney's map)

and [De4] proves these are Cantor sets of concentric circles.

Figure 3.5: example of the case where the critical orbit breaks through the invariant box. This also
illustrates the basin of attraction, B, the trap door, T , and how G maps into the trap door. Note:
∗p+ ≡M

pre
β (p+).

The previous theorem plays a huge role in this study because it essentially shows that there are only

three possible sets of points which remain bounded under Mβ : an empty set , a closed interval,

or a Cantor set. Equivalently, under Fβ , the three possibilities are an empty set (Figure 3.6 Left),
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a closed annulus (Figure 3.6 Middle), or a Cantor set of geometric circles (Figure 3.6 Right). The

drawback in the theorem is that is says nothing about how the bounded points behave. But, we

have not used the angular component, Aβ , of Rβ . As soon as we take Aβ into account, we will �nd

that chaotic dynamics are not only possible, but inevitable for most maps in case 2 and all maps in

case 3 of the modulus trichotomy.

Figure 3.6: examples of the three possible sets of bounded orbits: (Left) an empty set, (Middle) a
closed annulus, and (Right) a Cantor set of geometric circles.

3.5 Things Get Chaotic

Recall the angular component de�ned earlier:

Aβ (r, θ) = arg

(
rn +

β

rn

)
+ nθ.

It is not important to understand the exact value of arg (rn + β/rn) in Aβ , but rather that it is

some function of r. We will denote this as Ωβ as follows.

Aβ (r, θ) = Ωβ (r) + nθ

Now we can make an observation about the nature of how angles change as iteration is performed.

Observation 3.7: Angular Iteration - let r0e
iθ0 be an arbitrary seed for Fβ . Here r0e

iθ0 is the
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start of the sequence r0e
iθ0 , Fβ

(
r0e

iθ0
)
, F

(2)
β

(
r0e

iθ0
)
, · · · = r0e

iθ0 , r1e
iθ1 , r2e

iθ2 , · · · . That is, the

modulus orbit is de�ned by r0, r1, r2, · · · and the angle orbit is de�ned by θ0, θ1, θ2, · · · . Then, the

angle of F
(k)
β

(
r0e

iθ0
)
can be generalized by the following.

θ1 = nθ0 + Ωβ (r0)

θ2 = n (nθ0 + Ωβ (r0)) + Ωβ (r1)

= n2θ0 + nΩβ (r0) + Ωβ (r1)

θ3 = n
(
n2θ0 + nΩβ (r0) + Ωβ (r1)

)
+ Ωβ (r2)

= n3θ0 + n2Ωβ (r0) + nΩβ (r1) + Ωβ (r2)

...

θk = nkθ0 +

k−1∑
i=0

ni · Ωβ (rk−1−i) (12)

So the angle of the kth iterate can completely be de�ned in terms of the initial angle (θ0) and the

previous moduli (r0, r1, · · · , rk−1). This observation is quite helpful in the next sequence of lemmas.

x +∆rHxL

x -∆rHxL

Θ0 - ∆ΘHxL

Θ0 + ∆ΘHxL

x

W HxL

Figure 3.7: the chunk of a wedge about x ∈ C given δr (x) and 0 < δθ (x) < π.
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Also, we use a special neighborhood about a given point that [De1] calls a chunk of a wedge.

Definition: Chunk of a Wedge - Given x = |x| eiθx ∈ C, 0 < δθ (x) < π and δr (x) > 0, the chunk
of a wedge about x is de�ned as follows.

Wδr,δθ (x) =
{
reiθ : |x| − δr (x) ≤ r ≤ |x|+ δr (x) , θx − δθ (x) ≤ θ ≤ θx + δθ (x)

}
.

An illustration of the chunk of a wedge about x is given in Figure 3.7. For the remainder of this

paper, we generally consider a �xed δr (x) and δθ (x). So, to simplify notation we refer to the chunk

of a wedge about x as just W (x) instead of Wδr,δθ (x).

Lemma 3.3: Chaotic Fixed Circle - Let p ∈ R+ be a �xed point for Mβ and Cp ={
peiθ : 0 ≤ θ < 2π

}
. Then, Fβ |Cp is chaotic.

x

x

W HxL

BΕHxL

Cp

Ξ-

Ξ+

Figure 3.8: displays how a chunk of a wedge about any x can �t inside any open ball with radius
ε about x. For this particular case, Cp is a �xed circle (in magnitude) under Fβ and W (x) ∩ Cp is
represented by the red curve.

Proof: Since p is a �xed point for Mβ , then Cp =
{
peiθ : 0 ≤ θ < 2π

}
is a �xed

circle (in magnitude) under the full map, Fβ . To show Fβ |Cp is chaotic, consider any

x = peiθx ∈ Cp and let an arbitrary ε > 0 be given. Given the open ball of radius ε about

x, Bε (x), we can choose a small enough δθ (x) and δr (x) such that W (x) ⊂ Bε (x) .

Next, choose k ∈ N such that k > logn (π/δθ (x)). Finally iterate W (x) ∩ Cp k times.
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For an idea of what these sets look like, see Figure 3.8. W (x) ∩ Cp is displayed as the

red curve in Figure 3.8 Right and is a closed set. We can also explicitly de�ne this red

curve as follows.

W (x) ∩ Cp =
{
peiθ : θx − δθ (x) ≤ θ ≤ θx + δθ (x)

}

Furthermore, we say the interval of angles for W (x) ∩ Cp is [ξ−, ξ+] ⊂ R , where ξ± =

θx± δθ (x). We then de�ne the distance between ξ− and ξ+ to be the Euclidean distance

in R, |ξ+ − ξ−| ∈ [0,∞). Note that angles under the full map are taken to be modulo

2π, but this need not be true for the interval of angles de�ned above. Since we have

already iterated k > logn (π/δθ (x)) times, we can �nd the distance in the angular interval

between the kth iterates of the endpoints, ξ− and ξ+, denoted ξ
(k)
− and ξ

(k)
+ . From (12),∣∣∣ξ(k)

+ − ξ(k)
−

∣∣∣ can be calculated as follows.

∣∣∣ξ(k)
+ − ξ(k)

−

∣∣∣ =

∣∣∣∣∣
[
nk (θx + δθ (x)) +

k−1∑
i=0

ni · Ωβ (rk−1−i)

]

−

[
nk (θx − δθ (x)) +

k−1∑
i=0

ni · Ωβ (rk−1−i)

]∣∣∣∣∣
=

∣∣nkθx + δθ (x)nk − nkθx + δθ (x)nk
∣∣

=
∣∣2δθ (x)nk

∣∣
= 2δθ (x)nk

Since k was chosen such that k > logn (π/δθ (x)), the following is true.

k > logn (π/δθ (x))

nk > π/δθ (x)

2δθ (x)nk > 2π

Since
∣∣∣ξ(k)

+ − ξ(k)
−

∣∣∣ = 2δθ (x)nk > 2π and W (x) ∩ Cp is a subset of the �xed circle of
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magnitude p, it follows that

F
(k)
β (W (x) ∩ Cp) =

{
peiθ : ξ

(k)
− ≤ θ ≤ ξ

(k)
+

}
. (13)

Under the context of Fβ , where angles are taken to be modulo 2π, (13) can be rede�ned

as

F
(k)
β (W (x) ∩ Cp) =

{
peiθ : 0 ≤ θ < 2π

}
= Cp.

Therefore, W (x)∩Cp is mapped onto Cp after k iterates. With that observation, we can

conclude that Fβ |Cp exhibits dense periodic points and is topologically transitive. First,

since W (x) ∩ Cp is mapped onto Cp, there must exist some peiψ ∈W (x) ∩ Cp ⊂ Bε (x)

such that F
(k)
β

(
peiψ

)
= peiψ by the intermediate value theorem and we have found a

period k point within ε of any x ∈ Cp. Periodic points are dense in Cp. Secondly, since

F
(k)
β (W (x) ∩ Cp) ⊃ Cp after k iterates, we can �nd some z ∈W (x) ∩ Cp ⊂ Bε (x) such

that after k iterates F
(k)
β (z) ∈ Bε (y) for any y ∈ Cp. Said di�erently, z is within ε

of x and after k iterates is within ε of y. Fβ |Cp is a topologically transitive set. Since

topological transitivity and dense periodic points imply chaotic dynamics [Ba], Fβ |Cp is

chaotic. �

We remark that Lemma 3.3 is similar to the unit circle being chaotic under zn for any n ≥ 2, but

with a shifted nth map for its angle map. The key component in the proof is that any arbitrarily

small interval on any circle will eventually wrap around a circle completely. Lemma 3.3 was special

in the sense that we only considered one circle, and it was �xed (in magnitude). We will generalize

below, but we need to introduce the idea of a topological attractor.

Definition: Topological Attractor [deM vSt] - We say that an invariant set A is a topological

attractor, or attractor for short, if its basin B (A) = {x, ω (x) ⊂ A} satis�es

1. the closure of B (A) contains intervals;

2. each closed forward invariant subset A′ such is strictly contained in A has a smaller basin of

attraction: cl (B (A)) \cl (B (A′)) contains intervals.
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Attractors for one-dimensional l−modal maps have been thoroughly studied in [deM vSt] and since

Mβ is unimodal (l = 1), we can use the following result. But, note that the previous de�nition is

in one-dimension. The analogous two-dimensional attractor would simply be A × S1, or wrapping

the attractor A about the origin.

Theorem 3.4: UnderMβ , if a parameter value is chosen such that the critical orbit is bounded,
then the set of bounded orbits has a topologically transitive attractor AMβ

and there is only three
possibilities for AMβ

:

1. AMβ
is a periodic orbit,

2. AMβ
is a minimal Cantor set, or

3. AMβ
is the orbit of a periodic interval.

As a consequence of Theorem 3.4, if the orbit of the critical circle under Fβ remains bounded, there

exists an analogous attractor, AFβ , that is: (1) a periodic orbit of circles, (2) a minimal Cantor set

of circles, or (3) is the orbit of periodic annuli. To illustrate the two-dimensional attractor, consider

Lemma 3.3 under the context of the critical point being attracted to the �xed point, p, underMβ .

We then know an interval of points is attracted to p under Mβ . This corresponds to the critical

circle and the corresponding annulus being attracted to Cp under the full map, Fβ . Since we proved

Cp was chaotic, Fβ would have a chaotic attractor.

Since Theorem 3.4 applies to critical points/circles that remain bounded under iteration, we can

attempt to explain the dynamics of the black band in the β parameter plane. To generalize Lemma

3.3, we next consider any periodic point of Mβ instead of a �xed point. The proof is very similar

to Lemma 3.3.

Lemma 3.5: Chaotic Periodic Circle - Suppose there exists a period k orbit under Mβ ,

r0, r1, · · · , rk−1, r0 · · · . Then, Fβ |A is chaotic, where A =
⋃k−1
i=0

{
rie

iθ : 0 ≤ θ < 2π
}
.

Proof: Let x = r0e
iθx ∈ A and ε > 0 be given. We know x ∈ Cr0 =

{
r0e

iθ : 0 ≤ θ < 2π
}

and exactly like Lemma 3.3, we know there exists some δr (x) > 0 and 0 < δθ (x) < π

such that W (x) ⊂ Bε (x). Furthermore, choose N such that N · k > logn (π/δθ (x)) .
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SinceM(k)
β (r0) = r0, by assumption, it is clear thatM(Nk)

β (r0) = r0 as well. From here

the argument is the same as Lemma 3.3: de�ne the interval of angles for W (x)∩Cr0 as

[ξ−, ξ+] ⊂ R , where ξ± = θx ± δθ (x) and from (12),
∣∣∣ξ(k)

+ − ξ(k)
−

∣∣∣ can be calculated as

follows.

∣∣∣ξ(k)
+ − ξ(k)

−

∣∣∣ =

∣∣∣∣∣
[
nNk (θx + δθ (x)) +

Nk−1∑
i=0

ni · Ωβ (rNk−1−i)

]
=

−

[
nNk (θx − δθ (x)) +

Nk−1∑
i=0

ni · Ωβ (rNk−1−i)

]∣∣∣∣∣
=

∣∣nNkθx + nNkδθ (x)− nNkθx + nNkδθ (x)
∣∣

=
∣∣2nNkδθ (x)

∣∣
= 2nNkδθ (x)

Again since we chose Nk > logn (π/δθ (x)), the following is true.

Nk > logn (π/δθ (x))

nNk > π/δθ (x)

2nNkδθ (x) > 2π

Therefore, F
(Nk)
β (W (x) ∩ Cr0) ⊃ Cr0and an identical argument as Lemma 3.3 justi�es

Fβ |Cr0 has dense periodic points and is transitive. Thus, Fβ |Cr0 is chaotic. It then follows

that any Cj ∈ A for j ∈ {r0, r1, · · · , rk−1} can be identi�ed as Cr0 above. Therefore,

every Cj ∈ A is chaotic and Fβ |A is chaotic as well. �

Therefore, Lemma 3.5 proves that if the attractor mentioned in Theorem 3.4 is type 1, then Fβ |AFβ
is chaotic. That is, almost all bounded orbits will eventually be attracted to a chaotic orbit. This

is a signi�cant result, especially since every attractor of this type is contained completely inside

K (Fβ). A well known result for complex analytic dynamical systems states that the set of points

that behaves chaotically is ∂K (Fβ), which is not the case here. However, ∂K (Fβ) does have either

chaotic or eventually chaotic dynamics. Figure 3.9 illustrates this fact for a �xed circle attractor.
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First, the white circle is the attractor (chaotic �xed circle) for this particular β value and through

graphical iteration, we can observe that any seed chosen in the black annulus tends to the chaotic

attractor. With graphical iteration, it is just as easy to see the fates of the inner and outer boundary

of the closed annulus. First the magenta/outer boundary is mapped to itself and thus is chaotic by

Lemma 3.3. Then, the green/inner boundary is mapped onto the outer boundary and is �xed from

there on out. So we say the inner boundary is eventually chaotic. Since Theorem 3.2.1 states closed

annuli are the only possibility when the critical orbit is bounded, this is also the case for every β

value chosen in the black band of the β parameter plane.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 3.9: (Left) is graphical iteration of the critical orbit for M0.1 and n = 2. (Right) is the
dynamical plane for F0.1. The dynamical plane is equivalent to wrapping the horizontal axis of Left
around the origin. The colors help distinguish the di�erent regions.
Yellow - Any seed chosen in the yellow is attracted to the point at in�nity, while all other colors remain
bounded.
Magenta - A seed chosen on the magenta boundary is �xed (in modulus) on the repelling �xed
point/circle.
Green - A seed chosen on the green boundary is pre�xed on the repelling �xed point/circle (magenta).
White - A seed chosen on the white value is �xed on the attracting �xed point/circle.
Black - Any seed chosen in the black tends to the attracting �xed point/circle (white).

With Lemmas 3.3 and 3.5, we can completely understand Case 1 of Theorem 3.4. Now we aim to

understand the other two cases. [deM vSt] proved each attractor is transitive for all three cases in

Theorem 3.4. Thus, we know that the attractor for K (Mβ) is always a topologically transitive set.
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However, that doesn't necessarily mean the attractor for the full map, Fβ , is topologically transitive.

However, with a little work we can show that this is the case. We will need the following de�nition

and Theorem 3.6.

Definition: Hitting Time Set for Mβ - For open sets X,Y ⊂ [0,∞], the hitting time set

H (X,Y ) =
{
k : X ∩M−k (Y ) 6= ∅

}
.

Theorem 3.6 [Ko]: If Mβ |A is topologically transitive, then for every pair of non-empty open

subsets X and Y , the hitting time set H (X,Y ) is in�nite.

Lemma 3.7 Transitivity under Mβ Implies Transitivity under Fβ - Suppose β is chosen such
that the set of bounded orbits under Mβ has a topologically transitive attractor, AMβ

. Then the
attractor under full map, AFβ , is also transitive under Fβ .

Proof: This proof will consist of two parts. First, we will show that circles passing

through chunks of wedges eventually are wrapped around circles (as previously done

twice). Second, we will show that in AFβ there exists a circle close to any given circle

that maps close to another given circle .

Preliminaries: Suppose β is chosen such that KMβ
= K (Mβ) is non-empty. Then

Theorem 3.4 tells usMβ has an attractor, AMβ
, and Mβ |AMβ

is transitive. Since KMβ

is non-empty, K (Fβ) = KFβ is also non-empty and AFβ is the equivalent attractor under

Fβ . Consider any x, y ∈ AFβ with an arbitrary ε > 0. For notational purposes, let the

polar representation for x and y be rxe
iθx and rye

iθy respectively. It follows that the

circles of radii rx and ry (Crx and Cry ) are also in KFβ . Then, consider the open ε balls

centered at x and y, denoted Bε (x) and Bε (y). We know there exist some δr (x) > 0

and 0 < δθ (x) < π such that W (x) ⊂ Bε (x). (See Figure 3.10.) The same is true for y:

there exists some δr (y) > 0 and 0 < δθ (y) < 2π such that W (y) ⊂ Bε (y). However, we

remark that the choice for δr (x) may not work for δr (y) and vice verse. Same is true

for δθ (x) and δθ (y). But de�ning δθ = min {δθ (x) , δθ (y)} and δr = min {δr (x) , δr (y)}

will avoid this minor issue.
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BΕHyL

BΕHxL

W HxL

x

Crx

Crz

Ξ+

Ξ-

Figure 3.10: (Left) shows the circle of radius rx (black), the circle of radius ry (blue) and the circle
of radius rz (green). In addition Bε (y) and Bε (x) are visible. (Right) shows a zoom of Bε (x) and some
of the key players of the proof of Lemma 3.7. Note that the red interval, Crz ∩W (x) , is eventually
wrapped around and displayed near Cry in Left.

Part 1: Let x = rxe
iθx and consequently Crx =

{
rxe

iθ : 0 ≤ θ < 2π
}

be given.

Consider W (x) de�ned by δθ and δr in the preliminaries and suppose some circle,

Crz =
{
rze

iθ : 0 ≤ θ < 2π
}
passes through W (x). Then F

(k)
β (Crz ∩W (x)) forms a

geometric circle.

We can de�ne Crz as follows.

Crz ∩W (x) =
{
rze

iθ : θx − δθ ≤ θ ≤ θx + δθ
}
.

This is illustrated in Figure 3.10 Right as the red curve contained in W (x). Choose

k ∈ N such that k > logn (π/δθ). Since any z ∈ Crz has the same magnitude (they lie

on the same circle) and using the fact that circles centered at the origin map to circles

centered at the origin, we know the magnitude of the kth iterate for each z with have the

same magnitude as well,M(k)
β (rz). Like Lemmas 3.3 and 3.5, consider the endpoints of

the interval of angles for Crz ∩W (x) , de�ned to be ξ− = θx−δθ and ξ+ = θx+δθ. From

(12),
∣∣∣ξ(k)

+ − ξ(k)
−

∣∣∣ is as follows.

31



∣∣∣ξ(k)
+ − ξ(k)

−

∣∣∣ =

∣∣∣∣∣
[
nk (θx + δθ) +

k−1∑
i=0

ni · Ωβ (rk−1−i)

]

= −

[
nk (θx − δθ) +

k−1∑
i=0

ni · Ωβ (rk−1−i)

]∣∣∣∣∣
=

∣∣nkθx + δθn
k − nkθx + δθn

k
∣∣

= 2δθn
k

Since k was chosen so that k > logn (π/δθ), it follows that
∣∣∣ξ(k)

+ − ξ(k)
−

∣∣∣ > 2π and

F
(k)
β (Crz ∩W (x)) =

{
M(k)

β (rz) e
iθ : ξ

(k)
− ≤ θ < ξ

(k)
+

}
.

However, under the context of Fβ , where angles are taken modulo 2π, we get

F
(k)
β (Crz ∩W (x)) =

{
M(k)

β (rz) e
iθ : 0 ≤ θ < 2π

}

and F
(k)
β (Crz ∩W (x)) forms a complete geometric circle.

Part 2: Now for the second part, suppose any two circles of radius rx and ry (Crx and

Cry ) are given in AFβ and suppose some δr > 0 and 0 < δθ < π are chosen (as in Part 1).

The two circles correspond to rx and ry in R+ under Mβ by the properties developed

earlier in the paper. Next consider the one-dimensional open neighborhood of radius

δr about rx and ry, denoted Nδr (rx) and Nδr (ry). Since Mβ is transitive and both

Nδr (rx) and Nδr (ry) are non-empty open sets, their hitting times are in�nite (Theorem

3.6).

Hrx,ry = H (Nδr (rx) , Nδr (ry)) = {k1, k2, k3, · · · }

Since Hrx,ry is an in�nite subset of N, there must exist some k ∈ Hrx,ry (really an in�nity

of k's) such that k > logn (π/δθ). Then, k corresponds to some rz ∈ Nδr (rx) such that

M(k)
β (rz) ∈ Nδr (ry). Finally under the full map, Fβ , the analogous reasoning says the

same k implies Crz starts within δr of Crx (in magnitude) and after k iterates is within

δr of Cry (in magnitude).

Putting Part 1 and Part 2 together, let x = rxe
iθx , y = rye

iθy ∈ C be given along with

some ε > 0. There exists some δr > 0 and 0 < δθ < π such that W (x) ⊂ Bε (x) and
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W (y) ⊂ Bε (y). Then, Part 2 results inW (x)∩Crz 6= ∅ for some Crz and k > logn (π/δθ).

Furthermore, W (x) ∩ Crz is the red curve in Figure 3.10 Right and F
(k)
β (W (x) ∩ Crz )

is within δr of Cry (in magnitude). Since k > logn (π/δθ), F
(k)
β (W (x) ∩ Crz ) forms a

complete geometric circle and it follows that F
(k)
β (W (x) ∩ Crz ) ∩W (y) is non-empty.

With that observation, there exists some z ∈ W (x) ∩ Crz ⊂ Bε (x) such that F
(k)
β (z) ∈

F
(k)
β (Cr ∩W (x))∩W (y) ⊂ Bε (y). The point z starts withing ε of x and iterates within

ε of y. Therefore if Mβ |AMβ
is transitive, then Fβ |AFβ is transitive. �

Now suppose periodic points are dense in the attractor underMβ . We can state a similar result to

Lemma 3.7 as follows.

BΕHzL

BΕHzL

W HzL

Cl

Crz

z

Figure 3.11: (Left) shows a circle of radius rz and an ε−neighborhood of the point z on that circle.
Since periodic points are dense under Mβ , there must be a circle (blue) that passes through W (z).
(Right) shows a zoomed in portion of Left along with the red set, Cl ∩W (z) that is guaranteed to exist
by the argument in Lemma 3.8.

Lemma 3.8 Dense Periodic Points underMβ Implies Dense Periodic Points under Fβ - Suppose
β is chosen so that periodic points are dense in the attractor, AMβ

, under Mβ . Then, periodic
points are dense in the equivalent attractor, AFβ , under Fβ .
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Proof: Suppose K (Mβ) and K (Fβ) are non-empty. Then the attractors AMβ
and

AFβ exist and by assumption periodic points are dense in AMβ
under Mβ . Let z =

rze
iθz ∈ AFβ and it must be true that rz ∈ AMβ

. Also, let an arbitrary ε > 0 be given

and consider the open ε ball about z, Bε (z). As with the previous arguments, there

exists an δr (z) > 0 and 0 < δθ (z) < π such that W (z) ⊂ Bε (z). Since periodic points

are dense underMβ , there must exist some period l circle, Cl, within δr (in magnitude)

of Crz and thus Cl ∩ W (z) is nonempty. Choosing l · k > logn (π/δθ) implies that

F
(l·k)
β (Cl ∩W (z)) = Cl, similar to Lemma 3.5. The red interval in Figure 3.11 Right

is wrapped around Cl and there must exists some p = rpe
iθp ∈ Cl ∩W (z) such that

M(l)
β (rp) = rp and A(k)

β (rp, θp) = θp. Therefore p is a period lcm {l, k} point within ε of

z, an arbitrary point in AFβ . �

Corollary 3.9: Chaos under Mβ implies Chaos under Fβ - Suppose an attractor under Mβ

exists and is chaotic. Then the equivalent attractor under Fβ is chaotic.

Proof: See Lemmas 3.7 and 3.8. �

Theorem 3.10: Let there exist an attractor, AMβ
, under Mβ and let AFβ be the analogous

attractor under Fβ .

1. If AMβ
is periodic, then AFβ is chaotic.

2. If AMβ
is a minimal Cantor set, then AFβ is transitive, but not chaotic.

3. If AMβ
is the orbit of a periodic interval, then AFβ is chaotic.

Proof:

(1): If AMβ
is a periodic point, then AFβ consists of periodic circles. In any case Lemma

3.5 proves AFβ is chaotic.

(2): If AFβ is a minimal Cantor set of Circles, then AMβ
is a minimal Cantor set of

points. Here, Mβ |AMβ
is transitive by Theorem 3.4. So Fβ |AFβ is transitive as well

(Lemma 3.7). However, since AMβ
is a minimal Cantor set of points, there exists no
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invariant subsets of AMβ
. Since periodic orbits are invariant subsets, AMβ

does not have

any periodic orbits and it follows that AFβ is not chaotic.

(3): If AFβ is the orbit of a periodic interval, then AFβ is transitive (Theorem 3.4).

Therefore Fβ |AFβ is transitive as well (Lemma 3.7). Also, since AMβ
is the orbit of

a periodic interval, it is clear that periodic points are dense. Thus periodic points are

dense for AFβ under Fβ . Therefore, Fβ |AFβ is chaotic. �

We should remark that every attractor for Fβ must be transitive because of Theorem 3.10. It also

follows that most of the attractors behave chaotically, with the exception to the minimal Cantor set

case. However, there are few β values that yield a minimal Cantor sets. Thus most of the attractors

are chaotic attractors.

The �nal case is as follows and covers all β values to the left of the black band in the β parameter

plane.

Theorem 3.11: If K (Mβ) is a Cantor set, then K (Fβ) is a chaotic Cantor set of geometric

circles.

Proof: If K (Mβ) is a Cantor set, then K (Mβ) is both transitive and has dense

periodic orbits underMβ . ThereforeK (Mβ) is chaotic and Theorem 3.2.3 and Corollary

3.9 provide insight as to why K (Fβ) is a Cantor set of geometric circles whose dynamics

are chaotic under Fβ . �

In the previous sub-section we were able to breakdown all possible fates of orbits by classifying them

into three distinct types of sets, two of which have sets of points whose orbits remain bounded under

iteration of Fβ (The Modulus Trichotomy). Then, in this sub-section Theorems 3.10 and 3.11 give

further insight into the dynamics within those sets and we can update the Modulus Trichotomy

stated in Theorem 3.2.
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An Updated Dynamical Trichotomy - Given the map Fβ de�ned in (3), then the dynamics fall into
one of three categories.

1. If the critical orbit tends to in�nity strictly monotonically, then the set of points which remain

bounded is an empty set. All points are attracted to ∞. This corresponds to the area to the

right of the black band in the β parameter plane (Theorem 3.2.1).

2. If the critical orbit remains bounded, then the set of points that remain bounded has an

attractor AFβ , and in every case this attractor is transitive. In most cases this attractor is

chaotic. This corresponds to parameter values chosen in the black band in the β parameter

plane.

3. If the critical orbit tends to in�nity, but non monotonically, then the set of points that remain

bounded is a Cantor set of geometric circles whose dynamics are chaotic (Theorem 3.11). This

corresponds to parameter values chosen to the left of the black band in the β parameter plane.

At the beginning of this section, we set out to understand the complete dynamics for the simplest

case, Fβ , of these non-analytic singular perturbations and the previous summary does just that.

However, we will address some further properties of the bounded orbits in the next sub-section.

3.6 Bifurcation Curves and Why n = 2 is Di�erent.

In the previous sub-section, we were able to summarize all possible dynamics. However, in this

sub-section we want to provide some further insight into the structure of the black band in the β

parameter plane, and more speci�cally, illustrate the bifurcation curves. Earlier we had mentioned

the unbounded curve contained in the black band that yields �xed critical orbits. Furthermore,

we were able to �nd an explicit equation for this curve in (11). Through numerical continuation

algorithms we can �nd other curves in the black band that yield other superattracting periodic

critical orbits. You can �nd the Mathematica code using Newton's Method to �nd and plot these

curves in the appendix of this paper. Figure 3.12 shows a few of these bifurcation curves in the β
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parameter plane. Figure 3.12 Left and Middle display the same windows as Figure 3.4 for n = 3,

with an additional zoom in Figure 3.12 Right. Any β value chosen on the the green curve yields a

superattracting �xed critical orbit. The red, orange, and blue curves yield superattracting periods

2, 4, and 3 respectively. The black curve is the left boundary of the black band where the critical

orbit is �xed after two iterates.

Β2

Β1

Β2

Β1

Β2

Β1

Figure 3.12: The β parameter plane for n = 3. (Left) displays a window of [−2.5, 0.5]× [−1.5, 1.5] i
with successive zooms (Middle) and (Right). Right also shows the open set about the origin that does
not intersect the pre�xed curve.
The colors represent a critical orbit that is a
Green - Superattracting Fixed Point,
Red - Superattracting Period 2 Orbit,
Orange - Superattracting Period 4 Orbit,
Blue - Superattracting Period 3 Orbit, and
Black - Pre�xed after two iterates.

It is interesting to point out that all of these curves are smooth, but for the superattracting periodic

curves greater than 1 appear to bend backwards. At �rst, it was unclear that these curves were

indeed smooth, but numerical experiments suggest that this is the case. Furthermore, if you �x

φ 6= π for β = |β| eiφ and vary |β| as in Figure 3.4 you will �nd that as |β| → 0, the function Fβ goes

through the period doubling route to chaos as it crosses these bifurcation curves. Also, these curves

all appear similar for n ≥ 3 and [Pe3] shows that as n → ∞, every one of these curves approaches

a single limiting parabola . Also, Figure 3.12 Right illustrates the fact that there exists an open set

about the origin that does not intersect the left boundary of the black band (black curve). We will

see that this is not the case for n = 2.
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Β2

Β1

Β2

Β1
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Β1

Β2

Β1

Figure 3.13: the β parameter plane for n = 2 and successive zooms. Note that every open set about
the origin intersects the (black) pre�xed curve, a di�erence from the n > 2 cases.
The colors represent a critical orbit that is a
Green - Superattracting Fixed Point,
Red - Superattracting Period 2 Orbit,
Orange - Superattracting Period 4 Orbit,
Blue - Superattracting Period 3 Orbit, and
Black - Pre�xed after two iterates.

Figure 3.13 shows the same bifurcation curves for n = 2, but it is easy to see that things are slightly

di�erent. First, we notice that the pre�xed and period 2, 3, and 4 curves are very close to the origin.

This di�ers from the cases n ≥ 3. We can explicitly calculate why this is the case. Fix the angle,

φ, of the β value such that −π < φ < π. Then consider the second iterate of the critical point as

calculated in (10).

M(2)
β

(
|β|1/2n

)
=

√
2n |β|n (1 + cosφ)

n
+ 2 |β| cosφ+

|β|2

2n |β|n (1 + cosφ)
n
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Limiting towards the origin yields the following.

lim
|β|→0

M(2)
β

(∣∣∣β1/2n
∣∣∣) =


∞ n > 2

1
2(1+cosφ) n = 2

The above calculation shows that for n > 2 we can make the second iterate arbitrarily large as the

magnitude of the β value decreases. This is not the case for n = 2 and it is precisely this reason why

we cannot draw an open set about the origin for the case n = 2. The above calculation also tells us

that the black/pre�xed curve is not smooth as it passes over the horizontal axis. The second iterate

never passes through the trap door, T , for certain small β values. For Devaney's family, [De3] gets

a similar result distinguishing the cases n > 2 from n = 2.

One last result deals with these bifurcation curves. Initially it was proposed that since the pre�xed

(black) curve is not smooth for n = 2, there may be other bifurcation curves for di�erent periods

that are also non-smooth. [Pe3] proved that given any period k curve that passes close to the origin,

that there must exist a period k + 1 curve that passes between the origin and the period k curve,

providing the evidence that every superattracting periodic curve is smooth and crosses the positive

β1 axis.

That concludes our study of the simplest case of the family de�ned in (1). We had some nice

properties that allowed us to simplify the arguments and we were able to prove some nice results.

This will provide valuable insight into other cases of (1) as well. However, all other cases do not

result in a decoupled modulus map, which makes the study more di�cult. The next section describes

various paths that this study is heading down in the future as well as proposing some nice open

questions and conjectures.
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4 Further Study

Due to the time restrictions of the study, the simplest case (n = d and c = 0) was the only family

we could describe with certainty. However, we have done many experiments to help understand and

hypothesize about the other cases. This section points the reader into the direction of where this

study is heading in future.

4.1 (z, z̄) Coordinates

Like [Pe1] and [Pe2], another way to de�ne the full map would be using (z, z̄) coordinates. Recall

the (slightly modi�ed) de�nition in (1).

Fβ,c (z, z̄) = zn + c+
β

zd

Without justifying the details, we can de�ne Rβ,c as follows.

Rβ,c

 z

z̄

 =

 fβ,c (z, z̄)

gβ,c (z, z̄)

 =

 Fβ,c (z, z̄)

Fβ,c (z, z̄)

 =

 zn + c+ β
zd

z̄n + c̄+ β̄
zd



[N1] and [N2] study the importance of critical curves, J0, and their orbits under iteration. In our

context, J0 would be solutions to
∣∣JRβ,c∣∣ = 0 where JRβ,c is the Jacobian matrix of Rβ,c.

∣∣JRβ,c ∣∣ =

∣∣∣∣∣∣∣
∂fβ,c
∂z

∂fβ,c
∂z̄

∂gβ,c
∂z

∂gβ,c
∂z̄

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
nzn−1 − dβ

z̄d+1

− dβ̄
zd+1 nz̄n−1

∣∣∣∣∣∣∣
=

(
nzn−1

) (
nz̄n−1

)
−
(
dβ

z̄d+1

)(
dβ̄

zd+1

)
= n2 |z|2(n−1) − d2 |β|2

|z|2(d+1)
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Now we can solve
∣∣JRβ,c ∣∣ = 0.

n2 |z|2(n−1) − d2 |β|2

|z|2(d+1)
= 0

n2 |z|2(n−1)
=

d2 |β|2

|z|2(d+1)√
n2 |z|2(n−1)

=

√
d2 |β|2

|z|2(d+1)

n |z|n−1
=

d |β|
|z|d+1

|z|n+d
=

d

n
|β|

|z| =

(
d

n
|β|
) 1
n+d

(14)

Here, the critical curve is still a circle but for a much more general family of maps. Now recall when

n = d, the critical circle was |z| = |β|1/2n, which agrees with n = d in (14). However, we derived

them in two di�erent contexts. Either way, the critical set J0, is a geometric circle about the origin

and we hypothesis that the dynamics for (1) depend somehow on J0.

4.2 Parameter Plane Arrays

No knowledge of critical sets is needed to create dynamic plane images. So before any of the theory of

this project was derived, we were creating bounded/unbounded dynamic plane images. To visualize

what a parameter plane may look like, we made an array of dynamic planes to form the parameter

plane array. The parameter plane array displayed in Figure 4.1 gives clues to the structure of the

parameter plane. By observing the individual dynamic spaces contained in the parameter plane

array in Figure 4.1 Left, we were able to guess that there exists only three dynamics planes possible

(The Modulus Trichotomy) and that they occured in some parabola like band in the parameter

plane. It's an interesting method for making conjectures and for that case, it turned out to be

correct.
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Figure 4.1: A parameter plane array (Left) gives us an idea of what the actual parameter plane

(Right) is for z3 + β/z̄3.

Figure 4.2: A parameter plane array for z2 +β/z̄. A guess for its actual parameter plane is displayed

in Figure 4.3.
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Figure 4.3: A guess for the parameter plane for z2 + β/z̄ (Left) and a zoom (Right). These images
tracked three critical points on the critical circle de�ned above. If all three critical points remain bounded
under iteration, then the point is colored white. In general the darker the color, the quicker the critical
point(s) escapes. The lighter non-white regions suggest that some critical points remain bounded while
others do not.

Figure 4.4: A parameter plane array for z3 + β/z̄2 (Left) and a zoom (Right). A guess as to the

actual parameter plane is displayed in Figure 4.5.
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Figure 4.5: A guess for the parameter plane for z3 + β/z̄2 (Left) and a zoom (Right) with the color

scheme described in Figure 4.3.

Let us explain the images above. The parameter plane arrays give actual dynamic planes laid out

in such a way that the structure of the parameter plane might be visible. The images with guesses

of the parameter planes are a little more involved. First, it is clear that the critical circle derived

earlier is very important in the structure of the parameter plane as well as the individual dynamic

planes. However, it is di�cult to iterate an entire circle because an in�nity of points lie on it. So

Figures 4.3 and 4.5 choose only three values on the critical circle and iterate them under Fβ . If all

three points remain bounded under iteration, we color the point white. In this case, this suggests

that the entire circle remains bounded. The white or lighter colors indicate that some points on the

critical circle remain bounded. Another tricky aspect here is that the critical circle does not have

to behave in a symmetric fashion. That is, it is possible that some parts of the critical circle remain

bounded while others do not. So the images created in Figures 4.3 and 4.5 are a crude guess to the

actual parameter plane. In the future, we would like to improve this algorithm as we explore more

of the theory to either verify or improve our guesses. However, we have enough information to make

a conjecture to verify in the future.

Conjecture: Given Fβ (z) = zn + β/z̄n−1 for n ≥ 3, the bounded sets under Fβ can never have
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positive measure.

To illustrate the conjecture, see Figures 4.4 and 4.5. In Figure 4.4, there are no dynamic planes

that seem to have bounded sets with positive measure. No black sets. Furthermore, in Figure 4.5

it appears that the set of white points has zero measure. This observation has been con�rmed for

n = 3 with d = 2, n = 4 with d = 3, and n = 5 with d = 4. As a contrast, see Figures 4.2 and

4.3. Here it is clear that there exists some dynamic spaces in Figure 4.2 that have sets of bounded

orbits with positive measure. Then in Figure 4.3, we see many white points. Enough it appears, to

create a set with positive measure in a butter�y like arrangement. Another observation is that the

planes with black sets in Figure 4.2 correspond to white points in Figure 4.3, as one might expect.

The �nal remark is that these experimental plane images appear nothing like that of the simple case

n = d studied for the majority of this paper. So there is much more to study, not only in this �eld,

but in this speci�c family of maps.
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5 Algorithms & Codes

5.1 Parameter Plane

Below is code, written in QtOctave, for creating images of parameter planes. All of the parameter
plane images use code similar to below.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% Parameter Plane %%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n=2; %% power of F0 and pole

imin=-1.5; %% imaginary part minimum

imax=1.5; %% imaginary part maximum

rmin=-1.5; %% real part minimum

rmax=1.5; %% real part maximum

step=.001; %% step size/ distance between nodes

itmax=20; %% maximum number of iterates allowed

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rnum=floor((rmax-rmin)/step+1); %% number of imag. nodes

inum=floor((imax-imin)/step+1); %% number of real nodes

A=zeros(rnum,inum); %% empty array: parameter values

B=zeros(rnum,inum); %% empty array: function values

ITER=zeros(rnum,inum); %% empty array: num. of iterations

function f=f(w,l1,l2,n) %% function of magnitudes squared

f=w^n+2*l1+(l1^2+l2^2)/(w^n);

endfunction

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% Iteration Scheme %%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for j=1:rnum

for k=1:inum

A(j,k)=(rmin+step*(k-1))+(imax-(j-1)*step)*I;

B(j,k)=2*sqrt(real(A(j,k))^2+imag(A(j,k))^2)+

2*real(A(j,k)); %% critical value

its=1; %% after 1 iterate

while (norm(B(j,k))<10&&its<itmax)

B(j,k)=f(B(j,k),real(A(j,k)),imag(A(j,k)),n);

its++;

endwhile

ITER(j,k)=its;

endfor

percent=j/rnum*100 %% updates status of iteration

endfor
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%% Image %%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

colormap(hot(itmax));

image(-(ITER-itmax))

axis('square','nolabel','off')

5.2 Dynamic Plane

Below is code, written in QtOctave, for creating images of dynamic planes. All images of dynamic
planes have code similar to this.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% Dynamic Space %%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% Parameters %%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n=2; %% Power of the function

imin=-1.5; %% imaginary minimum

imax=1.5; %% imaginary maximum

rmin=-1.5; %% real minimum

rmax=1.5; %% real maximum

step=0.01; %% step size/ distance to the next node

itmax=25; %% maximum number of iterates allowed

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rnum=floor((rmax-rmin)/step+1); %% num. of imag. nodes

inum=floor((imax-imin)/step+1); %% num of real nodes

A=zeros(rnum,inum); %% array of func. values

ITER=zeros(rnum,inum); %% array of # of iterations

function f=f(z,c,n)

f=(z^n)+c/(conj(z)^(n));

endfunction

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% Iteration Scheme %%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

lambda=whatever_you_want;

for j=1:rnum

for k=1:inum

A(j,k)=(rmin+step*(k-1))+(imax-(j-1)*step)*I;

its=0;
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while (norm(A(j,k))<10&&its<itmax)

A(j,k)=f(A(j,k),lambda,n);

its++;

endwhile

endfor

endfor

h=figure(1);

colormap(hot(itmax));

image(-1(ITER-itmax));

title(['\z^',num2str(n),'+',num2str(lambda),'/conj(z)^'

,num2str(n)])

axis('square','nolabel','off');

print(h,'-djpeg',['plot',num2str(ind),'.jpeg'])

5.3 Bifurcation Curves

Below is an abbreviated code, written in Mathematica, for the continuation method for calculating
bifurcation curves. It gives the basic algorithm. Then the bifurcation curves appear in two halves.
Here plotper1 and plotper2 are these halves. Then simply call the ListPlot command inMathematica.

M[r_,B_,P_,n_]:=Sqrt[r^(2n)+2B*Cos[P]+B^2/r^(2n)]

Mk[k_,r_,B_,P_,n_]:=Nest[M[#,B,P,n]&,r,k]

n=3; %%Specify map power

step=.001;

endangle=5Pi/6;

num=Floor[endangle/step]+1;

start1=0.125; %%make start guesses from graphs

start2=0.06125;

start3=0.0275;

start4=0.0458;

starth=0.0165;

k1=1; %%Enter whatever period here

per1=Table["",{i,1,num}];

Off[FindRoot::lstol]

For[

i=2,

i<num,

i++,

per1[[1]]=B/.FindRoot[Mk[k1,B^(1/(2n)),B,0,n]-B^(1/(2 n)),{B,start1}];

per1[[i]]=B/.FindRoot[Mk[k1,B^(1/(2n)),B,(i-1)*step,n]-B^(1/(2n)),

{B,per1[[i-1]]}];

]

plotper11=Table[{Re[per1[[i]]E^((i-1)*step*I)],Im[per1[[i]]E^((i-1)*step*I)]},

{i,1,num-1}];

plotper12=Table[{Re[per1[[i]]E^(-(i-1)*step*I)],Im[per1[[i]]E^(-(i-1)*step*I)]},

{i,1,num-1}];
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