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Abstract

A famous phenomenon in circle-maps and synchronisation problems leads
to a two-parameter bifurcation diagram commonly referred to as the Arnol′d
tongue scenario. One considers a perturbation of a rigid rotation of a circle,
or a system of coupled oscillators. In both cases we have two natural pa-
rameters, the coupling strength and a detuning parameter that controls the
rotation number/frequency ratio. The typical parameter plane of such systems
has Arnol′d tongues with their tips on the decoupling line, opening up into the
region where coupling is enabled, and in between these Arnol′d tongues, quasi-
periodic arcs. In this paper we present unified algorithms for computing both
Arnol′d tongues and quasi-periodic arcs for both maps and ODEs. The algo-
rithms generalise and improve on the standard methods for computing these
objects. We illustrate our methods by numerically investigating the Arnol′d
tongue scenario for representative examples, including the well-known Arnol′d
circle map family, a periodically forced oscillator caricature, and a system of
coupled Van der Pol oscillators.

Key words. invariant torus, Arnol′d tongue, quasi-periodic arc, two-point bound-
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1 Introduction

Many interesting problems in science and engineering lead to models involving ei-
ther periodically forced oscillators or coupled oscillators. Natural parameters to
vary in the periodically forced oscillator setting are the forcing amplitude and the
forcing period/frequency. In the coupled oscillator setting, coupling strength is a
natural parameter, with a typical second parameter, often referred to as a “detun-
ing” parameter, controlling the relative frequencies of the two coupled oscillators.
The two settings can be unified by viewing periodically forced oscillators as cou-
pled oscillators, with one-way coupling – the forcing amplitude corresponding to
the coupling strength.

The most prominent phenomenon in these systems is the transition between
phase locking (also called entrainment or synchronisation) and quasi-periodicity.
Phase locking produces a periodic solution which generically persists as parameters
are varied. In contrast, quasi-periodicity is a codimension-one phenomenon which is
thus generically destroyed by perturbation. The result is a well-known bifurcation
diagram in the two-parameter plane called the “Arnol′d tongue” scenario [1, 2, 3, 4,
5, 6, 14, 17, 18, 21, 26, 28, 29, 37]. It has a countable collection of Arnol′d tongues,
emanating from “rational” points on the zero forcing/coupling axis, and opening
up into regions where the coupling strength is turned on. Each tongue corresponds
to phase locked solutions for which the two frequencies of the oscillators satisfy
ω1/ω2 = p/p for some integers p and q. In between the tongues, emanating from all
the “irrational” points on the zero forcing/amplitude axis, are curves of parameters
corresponding to quasi-periodic flow on a torus with an irrational frequency ratio
ω1/ω2. This scenario is generic for weakly coupled oscillators [1, 5]. A similar – but
not identical – Arnold tongue scenario occurs in the neighbourhood of a Neimark-
Sacker curve [6, 26, 37]. We focus in this paper on continuation from zero forcing
amplitude, but arrive at a Neimark-Sacker curve by continuation in the second and
third of our three examples in §4. Look ahead to examples of these two-parameter
bifurcation diagrams in figure 5, figure 9, and figure 13.

There is a variety of ways in which we can model coupled oscillators. The
simplest is as a flow in S × S. Embedding each oscillator in R

ni , i = 1, 2, leads the
more general setting of a flow in R

n1 × R
n2 . In the decoupled case this flow has

an invariant two-torus, which is the product of two limit cycles of the individual
oscillators. Assuming these limit cycles are hyperbolic attractors, this two-torus
will persist, at least for small coupling strengths. This flow in R

n1 × R
n2 is often

studied by reduction to a Poincaré return map of R
n1+n2−1 by sampling the state

of the system, for example, as it passes in a specified direction through a well-
chosen hyperplane. In the periodically forced oscillator case, this return map can
be further reduced to a simple stroboscopic map of the flow in R

n1 at the time
period of the uncoupled limit cycle in R

n2 . This is possible because the flow in
R
n2 is decoupled from the flow in R

n1 . The reduction can also be thought of as
from a periodic non-autonomous flow in R

n1 to an autonomous map in R
n1 . The

invariant two-torus in the original flow becomes an invariant circle for either the
Poincaré map of R

n1+n2−1 or the stroboscopic map of R
n1 . This allows one further

reduction, by restricting attention to the invariant circle, from the maps of R
n to

circle maps. This is the motivation for the Arnol′d sine circle map family which we
study in §4.1.

Because the invariant circle is not guaranteed to persist globally in the parameter
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Figure 1: Some Arnol′d tongues of the system of two coupled Van der Pol oscillators
for ε = 1, computed by fold continuation. Numerical problems prevented most
continuations from reaching α = 0.

space, we study a more general family in §4.2. This family is intended to exhibit
generic properties of a Poincaré return map generated by a periodically forced planar
oscillator. We call this map the periodically forced oscillator caricature map family.
It has been studied previously in [27, 28, 31, 32]. Note that both the Arnol′d
circle maps and the caricature maps provide a significant computational shortcut by
defining the maps directly, rather than requiring integration of differential equations
to define each iterate. Our third family, however, a system of two linearly coupled
Van der Pol oscillators, is defined directly from the following system of differential
equations:

ẍ+ ε(x2 − 1)ẋ+ x = α(y − x),

ÿ + ε(y2 − 1)ẏ + (1 + β)y = α(x− y),

We look briefly at this system now, to preview some of the main results of the paper.
Specifically, we compare the computation of certain Arnol′d tongues via traditional
methods with the computational algorithms introduced in this paper.

The coupled Van der Pol system has been studied previously in [17, 34, 36].
We re-investigate it in more depth in §4.3. This system is in the coupled oscillator
setting introduced above, with coupling strength α and the detuning parameter β.
Hence, the (β, α) parameter plane exhibits the Arnol′d tongue scenario and our goal
is to compute a preferably large set of these tongues. Since the boundaries of an
Arnol′d tongue are loci of saddle-node or fold bifurcations [2, 3, 17], we used the
continuation package AUTO [16] to compute such fold curves for several Arnol′d
tongues. A standard method for computing an Arnol′d tongue is to locate a pe-
riodic point in the tongue, follow it to a saddle-node bifurcation, and then switch
to continue the saddle-node bifurcation curve in α and β as the boundary of the
tongue. Figure 1 shows the first six tongues corresponding to the periods 1, 2, 3, 4
and 5. We found it not only very hard to obtain suitable start data, but we were
also unable to continue the curves all the way down to the zero coupling line α = 0.
This is not due to a limitation of the package AUTO [16]. The continuation of
saddle-node curves seems to be ill-posed near the line α = 0 because the tongues
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are so narrow. Although the tongues generically open at a finite angle [18], the
angle decreases, and therefore the ill-posedness becomes worse, as the period q of
the Arnold tongue increases. We also note that the generic finite angle condition
often fails in common examples such as the Arnold sine map discussed in §4.1 due
to the finite Fourier series expansion of the forcing function sin(x). The continu-
ation problems illustrated in figure 1 should be compared with the results of our
algorithms displayed in figure 13, where we display a large set of tongues, each one
continued from α = 0.

In this paper we present algorithms that allow the numerical investigation of
the Arnol′d tongue scenario in a two-parameter plane. More precisely, we consider
two-parameter families of orientation-preserving maps

x 7→ f(x, α, β), f : R
n× R × R → R

n, (1)

and two-parameter families of ordinary differential equations (ODEs)

ẋ = f(x, α, β), f : R
n× R × R → R

n, (2)

where f is in both cases sufficiently smooth in all arguments. That is, the map f in
(1) is at least of class C2 and the right-hand side f in (2) is at least of class C1+L.
Both functions are assumed to have a higher degree of smoothness if required by a
numerical procedure that we employ. Throughout this paper we assume that the
parameter α plays the role of a coupling strength and that β is a detuning parameter
controlling the ratio of frequencies in the system. The systems are assumed to have
an invariant torus at α = 0, most commonly an invariant circle in the map setting,
and an invariant two-torus in the ODE setting. These two general settings include
all the scenarios discussed above in this introduction. In both settings the (β, α)
parameter plane features Arnol′d tongues with tips at the line α = 0.

The computations of Arnol′d tongues and quasi-periodic arcs are two-parameter
continuations by nature [2, 3, 17, 36]. In all the considerations that follow, we aim
at using pseudo arc-length continuation. That is, we derive algebraic systems that
have one more variable than equations, where the variables include both parameters
α and β. Our arc-length continuation method automatically amends these systems
with a so-called arc-length condition, which leads to systems of equations that have
as many variables as equations. The arc-length continuation method is well-posed if
the objects that are continued form a C1-family in combined parameter and phase
space. Our method for Arnol′d tongues continues families of periodic orbits and
differentiability of these families is a standard result under our assumptions made
above. That quasi-periodic arcs are smooth as well is less trivial and differentiability
results can be found in, for example, [7, 8].

In §2 we generalise ideas introduced previously [27, 32] and construct algorithms
for Arnol′d tongues for general n-dimensional maps and ODEs. In §3 we combine
ideas in [10, 22, 36] with a two-point boundary value problem setting and contin-
uation techniques to compute quasi-periodic arcs that sit in between the Arnol′d
tongues. The performance of our methods is demonstrated with three examples in
§4: an embedded Arnol′d family in §4.1, a generic caricature example in §4.2 and
the system of coupled Van der Pol oscillators in §4.3. We conclude our paper in §5
with a discussion and some future directions.

2 Computation of Arnol′d tongues

For simplicity, we first restrict our discussion to the map case and assume a one-
dimensional invariant circle at α = 0. In this setting, an Arnol′d tongue can be
considered as the projection of a so-called resonance surface to the two-parameter
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Figure 2: A β-family of invariant circles of a planar map forms a tube in the
(β, x1, x2)-space. A pair of period-two orbits exists on the invariant circle for β
values within an Arnol′d tongue, one attracting (solid dots) and one repelling (cir-
cles). These orbits trace a smooth curve on the tube and appear and vanish in
saddle-node bifurcations at the left and right boundary of the 1/2 tongue.

plane [27, 28, 31, 32]. A “p/q resonance surface” is defined as the connected com-
ponent in the phase × parameter space R

n×R×R of period-q points with rotation
number p/q, that is, as a connected set of zeroes of f q(x, α, β) − x. Assuming the
invariant circle is normally hyperbolic and that the rotation number is a hyperbol-
ically monotonic function of β at α = 0, the implicit function theorem guarantees
that the local continuation of the surface is a cylinder. Several parametrisations of
such resonance surfaces for planar maps have been investigated in [32]. Our algo-
rithm generalises a variant of one of these parametrisations to higher-dimensional
maps; later in this section we adapt the same idea to the ODE case. See §5 for a
discussion of potential limitations of this parametrisation for continuation.

We use the following typical example to illustrate both the circular topology of
a constant α cross section and the idea of our arc length parametrisation. Consider
a family of invariant circles of a planar map for parameter values in the vicinity of
a 1/2 Arnol′d tongue as depicted in figure 2, where we superimpose the (β, α) plane
with the (β, x1) plane to show the significance of the 1/2 Arnol′d tongue. However,
we keep α constant as indicated with the constant-α line in the base plane of the
figure. Now imagine a change of β along the constant-α line such that we cross the
1/2 tongue from left to right. The dynamics on the invariant circle is quasi-periodic
or asymptotic to a high-periodic point for β outside but close to the tongue (grey
part of the constant-α line). For β on the boundary of the tongue, a period-two
saddle-node bifurcation occurs and two period-two orbits are born on the invariant
circle. Relative to the circle, one of these is stable (solid dots) and the other unstable
(circles). As we continue to change β along the black part of the constant-α line,
these two period-two orbits move along the invariant circle and collide with new
partners in a period-two saddle-node bifurcation for β at the right-hand boundary of
the 1/2 tongue. The path traced out by the period-two points in the full β × phase
space is a smooth closed figure-eight curve, a closed curve(a periodic one-parameter
family) of period-two orbits. We call this curve a constant-α cross section.

The (α, s) parametrisation of a resonance surface. If we introduce a
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suitable arc-length parametrisation for constant-α cross sections as explained in the
next two sections, then we can think of continuing this entire family of orbits with
respect to the parameter α. Thereby, the constant-α cross sections become closed
coordinate lines on the resonance surface. We call this parametrisation of a reso-
nance surface the “(α, s) parametrisation.” In the actual computation we restrict
the constant-α cross sections to its fundamental domain by identifying permuta-
tions of the same orbit. We can assume that the number of mesh points required
to approximate the fundamental domain with a certain accuracy stays constant as
q increases. Hence, the dimension of our system of equations and the computation
time will grow only linearly with q instead of being proportional to q2.

The considerations above also explain why it is so hard to compute high-period
Arnol′d tongues by fold continuation: the saddle-node bifurcations are the maxima
and minima of β with respect to arc-length. With fold continuation one computes a
locus of local extrema of a function that hardly varies if the tongue is very narrow.
Especially as α approaches zero, the tongue widths approach zero, and β as a
function of the arc length tends to a constant function.

2.1 Algorithm for maps

The above discussion leads to the following algorithm for computing the (α, s)
parametrisation of a resonance surface; the boundaries of the Arnol′d tongue can
then be obtained as the minima and maxima that β assumes. We set up a system
of equations that uniquely determines a circular one-parameter family of periodic
orbits. In the next subsection we replace the periodic orbit condition with a two-
point boundary value problem to obtain a method for ODEs. We denote by xq :=
{xq1, xq2, . . . , xqq} ∈ R

nq the period-q orbit space and by ξ = (xq , a) an ordered pairing
of a period-q orbit and a real number. We define the distance between two such
pairs ξ = (xq , a) and η = (yq , b) in the “orbit cross parameter space” as

d(ξ, η) :=

√

√

√

√

1

q

q
∑

i=1

‖xqi − yqi ‖
2
2 + (a− b)2, (3)

where ‖•‖2 denotes the Euclidean norm in R
n. A smooth closed curve of period-q

orbits can now be represented as a periodic function ξ(s) = (xq(s), β(s)), where s
is the arc-length with respect to the distance d as defined in (3). We approximate
the fundamental domain of such a closed curve by linear interpolation on N mesh
points ξj = (xq

•j , βj), where xq
•j refers to the full j-th period-q orbit. If we demand

that the mesh points are equally spaced with respect to the distance (3), then these
points satisfy the following system of nonlinear equations

xq1j = f(xqqj , α, βj), (4)

xq2j = f(xq1j , α, βj), (5)

...

xqqj = f(xqq−1,j , α, βj), (6)

d(ξj , ξj+1) = h, j = 1, . . . , N − 1, (7)

d(ξN , ξ̄1) = h, (8)

P (ξ) = 0, (9)

where j = 1, . . . , N and ξ̄ := ({xq
π(1), x

q

π(2), . . . , x
q

π(q)}, a) is the ordered pair with the

one-shifted orbit of ξ. The cyclic permutation π is defined as π(i) = i+κ, where κ is
the smallest natural number such that pκ = ±1 mod q. The positive sign denotes a
clockwise and the negative sign an anti-clockwise shift, in our implementation we use
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Figure 3: The permutation π can be interpreted as a composition π := χ−1 ◦ψ ◦χ,
where χ maps the dynamic order 1-2-3 of a 2/3 orbit to the geometric order 1-3-2,
and ψ is the clockwise shift by one. The point x3

1N approaches x3
31, and so on. The

dynamic order is assumed to be clockwise and the dynamics is indicated by the grey
arrows with label f .

the clockwise shift. For example, for a 2/3 tongue we have ξ̄1 = ({x3
31, x

3
11, x

3
21}, a);

see also figure 3.

The variable h denotes the unknown length of the line segments connecting two
successive mesh points. Equations (4)-(9) form a system of nqN +N + 1 equations
for the nqN + N + 1 + 1 unknowns xqij , βj , α and h. The “missing equation” is
the arc-length condition automatically added by our continuation algorithm. The
last equation P (ξ) = 0 is a scalar phase condition, which is necessary to fix the
initial point ξ1 on our branch. A typical phase condition is the so-called Poincaré
condition xq11,k − c = 0 for some suitable value of k ∈ {1, . . . , n} and c ∈ R, that
is, the k-th component of the initial point of the orbit j = 1 is fixed to the value c.
Note that the value p of a p/q Arnol′d tongue enters implicitly in condition (8) by
means of the permutation π.

2.2 Algorithm for ODEs

To obtain an algorithm for Arnol′d tongues of an ODE, we have to replace the
period-q orbit conditions (4)-(6) for maps by a suitable boundary value problem
for periodic orbits of an ODE. The orbit space R

qn for maps is now replaced by
the function space X := {xi : (0, 1) → R

n, i = 1, . . . , q} of segmented paths in the
phase space. We do not explicitly require any smoothness of the paths, but if they
satisfy the two-point boundary value problem in (11)-(14), they will automatically
be smooth as well as periodic with period q. Analogous to the map case, we define
a distance between two ordered pairs ξ = (x, a) and η = (y, b) in the orbit cross
parameter space X × R as

d(ξ, η) :=

√

√

√

√

1

q

q
∑

i=1

∫ 1

t=0

‖xi(t) − yi(t)‖2
2 dt+ (a− b)2. (10)
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A set of N mesh points ξi = (xi, βi) on the fundamental domain of our family of
periodic solutions is determined by the following system of equations.

ẋij = Tijf(xij , α, βj), (11)

x1j(0) = xqj(1), (12)

x2j(0) = x1j(1), (13)

...

xqj(0) = xq−1,j(1), (14)

P1(x) = 0, (15)

d(ξj , ξj+1) = h, j = 1, . . . , N − 1, (16)

d(ξN , ξ̄1) = h, (17)

P2(ξ) = 0. (18)

The time-intervals for the segments xij(t) have been rescaled to 1 and the values of
the Tij are the true time-intervals of the q segments xij(t/Tij − i + 1) of period-q
solutions to the original ODE (2), and these Tij can be different for each index i
and j. Equations (11) and (12)-(14) are the boundary value problem for the qN
n-dimensional unknowns xij , i = 1, . . . , q, j = 1, . . . , N . In our implementation
we solve this boundary value problem by collocation. Equation (15) is a set of
qN scalar phase conditions fixing the initial points x1j(0), . . . , xqj(0) on the path
segments. Equations (16)-(17) are also a set of N scalar equidistribution conditions.
Equation (18) is the same scalar condition as (9). The phase conditions (15) should
be chosen carefully because the choice of initial points affects the distance between
the periodic solutions x•j in our metric, even though it does not affect the geometric
paths traced out by the periodic orbit in the phase space. A good condition seems
to be to place all initial points x1j(0), . . . , xqj(0) in the same hyperplane. Together,
equations (15)-(18) specify qN +N+1 equations for the qN+N+1+1 parameters
T11, . . . , TqN , β1, . . . , βN , α and h.

2.3 Convergence

The computation of a smooth family of periodic orbits as described in §2.1 and §2.2
is an interpolation problem. We compute a piece-wise linear interpolation of the
smooth “functions” ξ(s) = (xq(s), β(s)) for maps and ξ(s) = ([x(•)](s), β(s)) for
ODEs. Since any smooth function can uniformly be approximated by a continu-
ous piecewise linear function, Weierstraß’ approximation theorem implies that the
proposed method is uniformly convergent for h ≈ lN−1 → 0, where l is the total
arc-length of the family. That h = O(N−1) is a basic result for continuously differ-
entiable functions and the convergence is of order O(h2) for two times continuously
differentiable functions.

If we use piecewise linear interpolation, then the boundaries of an Arnol′d tongue
are approximately given by min{βi} and max{βi}. In this case we always have the
inclusion a ≤ min{βi} ≤ max{βi} ≤ b, where a and b denote the true left and
right boundary. Note that the mesh points computed by our algorithm lie on
the family within numerical accuracy, the arc-length condition merely serves as a
distribution condition. Hence, we can also use higher-order interpolation in the arc-
length for the functions ξ, for example, Fourier interpolation, as a post-processing
step and compute the boundaries with high precision, but thereby possibly losing
the inclusion property mentioned above.
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Figure 4: Distribution of mesh points for the adaptation parameters σ = 0, 0.5,
and 1.0 (from left to right) for the test example (2x)8 + y8 = 1.

2.4 Adaptation

The two algorithms (4)-(9) and (11)-(18) are suited for an intrinsic form of adap-
tation. Both systems contain a distribution condition, the arc-length conditions
(7)-(8) and (16)-(17) respectively, which we can replace by a different one. In the
present case, we follow the strategy of equidistribution of the interpolation error
per line segment, which by standard interpolation theory is approximately propor-
tional to (‖ξ′′i ‖ + ‖ξ′′i+1‖)h2

i /16, where ξ′′i is the second derivative with respect to
arc-length, ‖ξ′′i ‖ := d(0, ξ′′i ) and hi is the length of the line segment connecting the
two consecutive mesh points ξi and ξi+1.

We have to take into account the situation that our solution curve may have
segments that are (virtually) straight lines, that is, segments where ‖ξ ′′(s)‖ is (al-
most) zero. Hence, an equidistribution with respect to the interpolation error could
produce a mesh for which the distances d(ξi, ξi+1) do not uniformly tend to zero
as N goes to infinity. In other words, we may lose convergence. To overcome this
problem, we replaced (7)-(8) and (16)-(17) by the equidistribution condition

Ri(ξ) = r, i = 1, . . . , N,

where r is the value of the equidistributed error and the Ri(ξ) are computed ac-
cording to:

Ri(ξ) =
h2
i

16

(

√

(1 − σ)2 + σ‖ξ′′i ‖2
2 +

√

(1 − σ)2 + σ‖ξ′′i+1‖2
2

)

,

ξ′′i =
2

hi + hi−1

(

ξi+1 − ξi
hi

− ξi − ξi−1

hi−1

)

,

hi = d(ξi, ξi+1).

Here, the parameter σ ∈ [0, 1] changes the behaviour of the adaptation. For σ = 0
we obtain the original distribution with constant step sizes hi and for σ = 1 the
interpolation error becomes equidistributed. Any other value of σ leads to a mixed
strategy, which guarantees a uniform decrease of the step sizes hi for N → ∞ as
well as a denser allocation of mesh points in regions with higher interpolation error.
As an illustrative test example we computed the solution curve of the equation
(2x)8 + y8 = 1 depicted in Fig. 4 using different values of σ. Apparently, the choice
of σ = 0.5 seems to be a good compromise between full adaptation and a not too
sparse overall distribution of mesh points.
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3 Computation of quasi-periodic arcs

A variety of algorithms for the computation of invariant circles of maps have been
proposed, some use a suitably generalised Poincaré map [23, 24], some are based
on “ad-hoc” parametrisations [9, 13, 15, 25, 30, 38] and others involve the Denjoy
parametrisation explained below; see [11, 10, 19, 20, 22]. We use a method based on
the Denjoy parametrisation for two reasons: this parametrisation is unique up to a
phase shift, which leads to a particularly simple algorithm; see also [36]. Further-
more, it contains the rotation number explicitly. The latter property is a prerequisite
for applying Newton’s method, because the rotation number is not a differentiable
function of the two parameters α and β. Hence, a condition like rot(α, β) = % would
effectively prevent the use of Newton’s method.

The methods for maps in [10, 19, 20, 22] have also been used to compute tori
of ODEs by replacing the map with the solution of an initial value problem. For
completeness, we briefly review these methods for one-dimensional tori, that is,
for invariant circles, and show how to replace the invariance condition for maps
by a two-point boundary value problem that can be solved with the method of
collocation. Note that this approach is different from the initial value problem
technique described above, which leads to a single-shooting method that is known
to be ill-posed in many cases, in particular, for stiff equations. In what follows, the
term “torus” always refers to either an invariant circle of a map or an invariant
two-torus of an ODE.

A quasi-periodic invariant circle with fixed irrational rotation number % of the
map (1), x 7→ f(x, α, β), is a solution of the invariance equation u(θ + 2π%) =
f(u(θ), α, β). That is, the map restricted to the invariant circle {u(θ) | θ ∈ [0, 2π] }
is conjugate to a rigid rotation with rotation number %. We approximate u by a
Fourier polynomial of order N , that is, uN (θ) =

∑N

k=−N cke
jkθ, where θ lies on

the unit circle parametrised over (−π, π] and j denotes the imaginary unit. We
compute the coefficients ck by collocation, that is, we introduce a uniform mesh
θk = (k + 1)π/(N + 1), k = −N, . . . , N , on the unit sphere and require that the
invariance condition holds on the mesh points. This leads us to the system of
nonlinear equations

uN(θk + 2π%) = f(uN(θk), α, β), (19)

P (uN ) = 0, (20)

where (20) is again a scalar phase condition. This are n(2N + 1) + 1 equations for
the n(2N+1) unknown Fourier-coefficient vectors ck and the two parameters α and
β. Note that we implicitly exploited that c−k = c̄k in this count.

It is essential for this approach that the irrational rotation number is kept con-
stant. In that case the continuation follows a smooth quasi-periodic arc in the
parameter plane. If one would use system (19)-(20) to perform a one-parameter
continuation with % taken as a variable and either α or β fixed, then this path
would intersect Arnol′d tongues. Hence, the rotation number assumes rational val-
ues on an open and dense set along this path. This leads to a failure of the algorithm
because the Denjoy parametrisation exists only for invariant circles with irrational
rotation number; see [36] for example computations illustrating this effect.

The invariance condition (19) for maps can be replaced by the two-point bound-
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ary value problem

ẋk = Tf(xk, α, β), (21)

xk(0) = uN (θk), (22)

xk(1) = uN (θk + 2π%), (23)

P1(x) = 0, (24)

P2(uN ) = 0, (25)

for computing an invariant torus of the ODE (1), ẋ = f(x, α, β). The variable T is
the common return time of all the solutions xk. Equation (25) is the same scalar
condition as (20) and condition (24) is a scalar phase condition to fix an initial point
on some solution of the set x = {x−N , . . . , xN}. Together, equations (21)-(23) are
a 2n(N + 1)-dimensional boundary value problem for the 2N + 1 n-dimensional
unknown functions x−N (t), . . . , xN (t) and the 2N + 1 Fourier coefficient vectors
c−N , . . . , cN . Equations (24)-(25) specify two conditions for the three parameters
T , α, and β. Note that we omitted the trivial ODEs ċk = 0 that need to be included
in (21)-(23) if one wants to use standard continuation software for boundary value
problems such as AUTO [16].

4 Examples

In this section we consider three examples: an embedded Arnol′d family in §4.1, a
generic caricature example in §4.2 and a system of two linearly coupled Van der
Pol oscillators in §4.3; see also §1. For all three examples we compute a large
set of Arnol′d tongues and companion quasi-periodic arcs. The embedded Arnol′d
family is a two-dimensional map that has the unit circle as a global attractor and
its restriction to the unit circle is the well-known Arnol′d family x 7→ x + % +
a sin 2πx (mod 1). The generic caricature family was studied in the prior papers
[27, 28, 31, 32] by computing resonance surfaces and their projections to Arnold
tongues. We compute here a much larger set of Arnol′d tongues, using the algorithms
presented in this paper, and, for the first time, the companion quasi-periodic arcs.
The system of two linearly coupled Van der Pol oscillators is a classic example of an
ODE showing quasi-periodic behaviour and phase-locking; see, for example, [17, 34].
As explained in the introduction, the computation of high-period Arnol′d tongues
is particularly difficult for this system and our computation of a large set of Arnol′d
tongues demonstrates the success of our generalisation of the methods for planar
maps discussed in [32]. All three examples have two parameters α and β, where α
is a coupling strength and β controls the rotation number or the natural frequencies
of the system.

To automate our computations we use two algorithms that produce sets of ro-
tation numbers for which we subsequently compute the Arnol′d tongues and quasi-
periodic arcs. The user needs only to specify the “level” of rotation numbers for
each of these two computations, which are then performed in two loops in a single
computer program. The choice of rotation numbers for Arnol′d tongues is straight-
forward using a so-called Farey sequence of level l. We start with the sequence
L0 = {0/1, 1/1} and compute the sequence Lk+1 by inserting all Farey sums of
successive rationals of Lk into the sequence Lk, where the so-called Farey sum is
defined as o/p⊕q/r := (o+q)/(p+r). We obtain increasingly larger sets of rational
numbers, the Farey sequences L1 = {0/1, 1/2, 1/1}, L2 = {0/1, 1/3, 1/2, 2/3, 1/1},
L3 = {0/1, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1/1}, and so on. Starting with L0 as
above, it is guaranteed that all the fractions are reduced, any rational number is a
member of some sequence, the sequences are ordered and the denominator increases
with the level l.
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It is much more delicate to choose “as irrational as possible” rotation numbers
for the continuation of quasi-periodic invariant tori, because we cannot represent
true irrationals as floating point numbers. We used two sequences, the golden mean
sequence and the symmetric golden mean sequence, that both worked well in our
examples. We start with the sequence G0 = {0, 1} and compute the sequence Gk+1

by inserting all golden mean subdivisions x+ g(y− x) of successive elements x and
y of Gk into the set Gk, where g = 2/(1+

√
5) ≈ 0.6180 . . . We obtain the sequence

of larger and larger sets G1 = {0, g, 1}, G2 = {0, g2, g, 3g − 1, 1}, and so on. Note
that these sets contain the noble sequence {g, g2, g3, . . . } as a sub-sequence. The
symmetric golden mean sequences are computed in the same way, except that we
insert the two subdivisions y−g(y−x) and x+g(y−x). Both sequences eventually
contain the same rotation numbers, but we preferred the symmetric variant for
problems with some symmetry with respect to the rotation number % = 1/2, such
as the embedded Arnol′d family.

The construction of initial solutions is straightforward for the embedded Arnol′d
family and the caricature example. For α = 0 both maps have the unit circle as an
attracting invariant circle and the maps restricted to this circle reduce to a rigid
rotation for any parameter β. Obtaining initial solutions for the system of two
coupled Van der Pol oscillators is more involved. For α = 0 the two oscillators
decouple and the first one has a limit cycle that is independent of β and can be
approximated by a Fourier polynomial. We computed a β-dependent Fourier ap-
proximation for the β-family of limit cycles of the second oscillator. With these
two approximations at hand, we can construct approximate initial solutions for the
boundary value problems (11)-(18) and (21)-(25) by superposition. We used the
Poincaré condition ẏ = 0 and all Ti were initially set to the period of the second
oscillator. This initial approximation needs to be corrected by Newton’s method
before starting the actual continuation with respect to α.

For all three examples the continuation of quasi-periodic invariant tori does
not cause any problems. The arc-length continuation of families of such tori is
well defined as long as the quasi-periodic tori persist. We compute curves of tori
whose projections to the parameter plane are always one-dimensional. Difficulties
arise in the computation of resonance surfaces, because here the solution to our
equations may cease to exist during continuation due to geometric reasons. The
arc-length continuation of constant-α cross sections relies on the fact that these
sections are continuously changing single closed curves. The failure of this cross
sectional assumption is illustrated with the caricature map example. This obser-
vation suggests that one might want use our algorithm for Arnol′d tongues just for
branch-switching from zero forcing or decoupling α = 0, that is, to compute only
the tips of the tongues and switch to fold continuation as soon as the variation in
the parameter β permits it. However, our implementation is designed to proceed as
far as possible and the examples demonstrate that we are, in many cases, able to
compute the entire resonance surface, and particularly the p/q resonance surfaces
for q ≥ 5.

4.1 The embedded Arnol′d family

Our first example is the classic text book example of the Arnol′d family

x 7→ x+ %+ a sin 2πx (mod 1).

See, for example, [1, 4, 14, 17, 21]. To get rid of the modulus, we rewrite the Arnol′d
family as a map acting on the unit circle r = 1 in polar coordinates. We identify
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Figure 5: The left-hand panel shows the Arnol′d tongues for the rotation numbers
in the Farey sequence L5 (grey shaded) and quasi-periodic arcs for the rotation
numbers in the symmetric golden mean sequence G2 \ {0, 1} (thick black) of the
embedded Arnol′d family. The uniform convergence of our method is illustrated
with the boundaries of the 2/5 tongue in the right-hand panel for the adaptation
parameter σ = 0.5 and N = 10, 20, 30 and 40 mesh points. The boundaries for
N = 30 and N = 40 are practically on top of each other.

2πx with the angle θ, which leads to the two-dimensional map

θ 7→ θ + 2πβ + α sin θ, (26)

r 7→ 1. (27)

For the actual computations we used the composite map f := ψ ◦ g ◦ ψ−1, the
embedded Arnol′d family, where g is the map defined by equations (26)-(27) and ψ
is the transformation of polar into Cartesian coordinates. For a and % we have the
relations % = β and 2πa = α.

For completeness and comparison we state here some well-known results of circle-
map theory about the Arnol′d family; see also [2, 3, 14, 17, 21]. We restrict the
map (26)-(27) to the invariant circle r = 1, that is, we consider only the map (26).
Furthermore, we denote the set of rotation numbers depending on α and β with
%αβ . The rotation number is unique for 0 ≤ α ≤ 1 and a closed interval for α > 1
[4]. The map (26) is diffeomorphic for 0 ≤ α < 1, homeomorphic for α = 1 and
non-invertible for α > 1. The line α = 1 is called the critical line. For α = 0 the
map becomes a rigid rotation with rotation number %0β = β. That is, if β = p/q
is rational, then every orbit is q-periodic, and if β is irrational, then every orbit is
quasi-periodic and dense on the circle.

Each point on the line α = 0 for which β = p/q is rational is the tip of a p/q-
Arnol′d tongue, which have the shape of a wedge that opens up for increasing α;
see also the left-hand panel in figure 5. The tongues have non-zero width, but do
not overlap for 0 < α ≤ 1, and the union of all tongues is an open-dense set in
the parameter plane. The width of the Arnol′d tongues decreases rapidly as the
period q increases. For parameter values in a p/q Arnol′d tongue, all orbits under
(26) are asymptotic to a q-periodic orbit. From each point on the line α = 0 for
which β is irrational, a quasi-periodic arc emanates. These arcs sit in between the
Arnol′d tongues and continue up to α = 1. The orbits under (26) are quasi-periodic
and dense on the circle, and the map is conjugate to a rigid rotation with rotation
number %0β = β for parameter values along such an arc. The conjugacy is for α < 1
analytic, if this rotation number is Diophantine and of finite smoothness otherwise.
Irrational numbers that are not Diophantine are called Liouville numbers. The set
of Liouville numbers in [0, 1] is dense, but has zero measure. The conjugacy with a
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Figure 6: Different projections of the 1/4 resonance surface of the embedded Arnol′d
family. The projection onto the (β, α)-parameter plane is the 1/4 Arnol′d tongue
(top left). In the other figures we added the coordinate x1. The colouring for fixed
α is relative to the average value of β and gives an impression of the variation of β.

rigid rotation loses its smoothness as the critical line α = 1 is approached. The in-
tersections of the quasi-periodic arcs with horizontal lines α = const. form a family
Cα of Cantor sets that have positive measure for 0 ≤ α < 1. In particular, we have
µ(C0) = 1 and µ(Cα) → 0 as α → 1. For α > 1, the maps are no longer homeomor-
phisms, and therefore not conjugate to an irrational rotation [4]. Consequently, our
algorithm, which actually solves for a conjugacy with the irrational rotation, fails
beyond α = 1.

Arnold tongues. The results of our numerical computations are shown in
the left-hand panel of figure 5. We computed the Arnol′d tongues for the rotation
numbers in the Farey sequence L5 and the quasi-periodic arcs for the rotation
numbers in the symmetric golden mean sequence G2 \ {0, 1}. Our computations
accurately reproduce the results of circle-map theory stated above. The uniform
convergence of the method for Arnol′d tongues is illustrated in the right-hand panel
of figure 5. By definition of the map, the projection of any resonance surface of the
embedded Arnol′d family to the phase plane is the unit circle, and its constant α
cross sections of resonance surfaces are cylinders for all values of α, even if α > 1.
Therefore, the (α, s) parametrisation is globally defined and it is not a problem to
compute even larger sets of Arnol′d tongues than the ones shown in figure 5.

The sequence of four pictures in figure 6 exemplifies part of the geometric struc-
ture of the 1/4 resonance surface. The top-left-hand panel shows its projection to
the parameter plane, which forms the 1/4 Arnol′d tongue. In the other three figures
we gradually rotate the surface in the (α, β, x1)-space and the typical period-four
saddle-node structure becomes visible. The colouring of the surface is proportional
to the deviation of β from its average value in the corresponding constant-α cross
section and was added for comparison with figure 7.

We visualise the full four-dimensional geometry of the 1/4 resonance surface in
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Figure 7: The 1/4 resonance surface projected onto the (x1, x2, α)-space (left). The
colouring is as in figure 6 and gives an impression of the variation of the surface
in the fourth dimension β. In this projection the resonance surface becomes multi
valued for α > 1. This is clearly illustrated in the right-hand figure, where the
α = 1.5 family is depicted together with the shadow it casts onto the (x1, x2) plane.
Compare this view of the curve with the front edge of the surface in the lower-right
picture in figure 6 – another view of the same curve.

the left-hand panel of figure 7. The projection of the resonance surface onto the
(x1, x2, α)-space is a cylinder with radius one. The colouring is as in figure 6 and is
proportional to its relative variation in the fourth dimension β. The self-intersection
for α > 1 is due to projection. This is made clear in the right-hand panel of figure 7
where the constant-α cross section of the resonance surface for α = 1.5 is shown in
the (x1, x2, β)-space. The vertical projection of this curve onto the (x1, x2)-plane
is the unit circle and the curve overlaps itself in this vertical projection, which is
indicated by the darker shadow that a fold-like structure casts.

The embedding of the Arnol′d family was solely introduced to eliminate a modulo
operation. Hence, one can reduce the dimension of the embedding space of the
resonance surfaces by omitting the trivial coordinate r = 1. This would allow us to
visualise the full geometry of these resonance surfaces in a three-dimensional space.
See a related study in [29].

Quasi-periodic arcs. From the results of our computations of quasi-periodic
arcs we can produce an approximation of the conjugacy under which the map (26)
becomes a rigid rotation. Condition (19) can be read as f ◦ u = u ◦ R%. In other
words, our algorithm computes an approximation to the inverse of a conjugacy
under which the map f restricted to its invariant circle γ becomes a rigid rotation,
that is, h ◦ f = R% ◦ h with h = (u|γ)−1. The graphs of the conjugacy h for the
golden mean rotation number and different values of α are shown in figure 8 as
black curves. The top two panels show this conjugacy for moderate values of α and
the bottom four panels show it for a sequence of α values that closely approach
the critical line where a loss of smoothness occurs. We plotted the graphs of the
derivatives of h as grey curves in logarithmic scale and they indeed seem to reflect
this loss of smoothness. However, one has to exercise some care when interpreting
these figures, in particular, the bottom two panels. In our case we need to check if
and in what sense our method converged to a solution of the invariance condition
(19). For our computations we used Fourier polynomials of increasing orders N
that are powers of two. The graphs are shown for N = 512, which was the highest
such order for that our Fourier polynomial for α = 0.9999 produced an invertible h.
It seems that we reached the accuracy limit of double precision arithmetic at this
point.

To check convergence we computed the five different measures of approximation
errors that are shown in table 1. Let us, for brevity, denote the l2-norm of the
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Figure 8: Graphs of the conjugacy θ = h(φ) (black curves) for different values of
α under which the embedded Arnol′d family becomes a rigid rotation with golden
mean rotation number. We used N = 512 Fourier modes to compute these figures.
The dark diagonal line is the graph of the identity and the light grey curves show
the logarithm of the derivative θ′ = dθ/dφ = dh/dφ.
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α A.E. R.E. A.E.D. R.E.D. L.A.E.D.

0.5000 8.1841e−07 1.4159e−07 1.4792e−05 2.5039e−06 -4.83
0.7000 1.0475e−06 1.6781e−07 1.7399e−05 2.5654e−06 -4.76

0.9000 1.0822e−04 1.5760e−05 1.2783e−03 1.4428e−04 -2.89
0.9900 3.0418e−01 4.0791e−02 3.9073e+00 2.5855e−01 0.59
0.9990 8.2456e−01 1.0782e−01 1.1407e+01 5.3253e−01 1.06
0.9999 9.1878e−01 1.1966e−01 1.2907e+01 5.6515e−01 1.11

Table 1: Estimated errors for the golden invariant circle approximated withN = 512
Fourier modes for different values of α. The columns from left to right show α, the
absolute and relative error of the solution and the absolute, the relative and the
logarithm of the absolute error of the derivative of the solution.

Fourier coefficients of a Fourier polynomial uN by R(uN ) and the l2-norm of the
second half of the coefficients, that is, for k = N/2, . . . , N , by r(uN ). Then, the
columns in table 1 show from left to right the parameter α, the absolute error r(uN )
of uN , the relative error r(uN )/R(uN), the absolute error r(u′N ) of the derivative
u′N = duN/dθ, the relative error r(u′N )/R(u′N) and the logarithm of r(u′N ). The
error measures for uN in columns A.E. and R.E. indicate that the solution uN and,
thus, the conjugacies h are reasonably well approximated. The Fourier coefficients
decay sufficiently fast and the second halves of the Fourier coefficients add up to at
most 12% of the norm of uN (column A.E.). This picture changes if we look at the
derivative u′N . The relative error (column R.E.D.) in the last two rows is greater
than 50%, that is, there is no indication of decay. The absolute error of dh/dφ is at
least of the same order of magnitude as the absolute error of u′

N (column A.E.D.).
Hence, the error in dh/dφ might be as large as the function values of dh/dφ, which
means that the graphs of dh/dφ in the bottom two panels of figure 8 are by no
means reliable. However, this “loss of convergence” in the derivative is in itself an
indicator of a loss of smoothness for α→ 1.

4.2 A generic caricature example

Our second example is a two-parameter family of maps of the plane that is con-
structed to mimic the behaviour of the Poincare return map of a periodically forced
oscillator. Alternatively, this caricature map can be thought of as a periodically
forced oscillator with “impulse forcing” by composing the time-one flow of an au-
tonomous flow in the plane with a map which provides a periodic “kick” to the
solution. The kick is defined as the identity for α = 0 and increasing in magnitude
as α increases. More specifically, this map is defined as

H(β,α) := gα ◦ hβ ,

where hβ(x) is the time-one map of the following differential equation, given in
polar coordinates:

ṙ =
r(1 − r2)

1 + r2
, θ̇ = 2πβ +

1 − r2

1 + r2
,

and gα is the map

(x1, x2) 7→ (1 − α)(x1 − 1, x2) + (1, 0).

Note that in this setup, β is not restricted to be positive, but is allowed to be any
real number. So our parameter space is µ = (β, α) ∈ R × [0, 1).

For α = 0 the unit circle is invariant and attracting. The restriction of the
caricature map to this circle is a rigid rotation with rotation number β (mod 1).
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Figure 9: Some Arnol′d tongues (left) and quasi-periodic arcs (right) of the carica-
ture family. The thick black oval is a period-doubling curve and the dashed black
curve is a locus of Neimark-Sacker bifurcations. The thick gray curves at the left
and right boundaries of the figures are the 1/1 saddle-node curves computed by fold
continuation.
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Figure 10: Some constant-α cross sections of the 1/5 Arnol′d tongue projected to
the phase space (left) and golden invariant circles (right) of the caricature family.
These cross sections and circles collapse for increasing α to a fixed point on a
Neimark-Sacker bifurcation curve.

The invariant circle persists for sufficiently small forcing α > 0, but the dynamics
on the circle will change according to the Arnol′d tongue scenario; see also §4.1.
Arnol′d tongues emanate from the line α = 0 with their tips at points where β is
rational, and quasi-periodic arcs start at points for which β is an irrational. The
left-hand panel of figure 9 shows the Arnol′d tongues for the rotation numbers in the
Farey sequence L6, and the right-hand panel the quasi-periodic arcs for the rotation
numbers in the symmetric golden mean sequence G3 \ {0, 1}.

To elaborate somewhat, we note that an oversimplified but useful crude descrip-
tion of the dynamics in the caricature family is that the invariant circle that exists
at α = 0 shrinks in size as α increases, and the rotation of the phase space increases
as β increases. For large enough α, any invariant circle or periodic orbit has dis-
appeared, leaving only a globally attracting fixed point. This bifurcation generally
happens along a Neimark-Sacker curve (dashed black curve). This suggests that
both the surface of invariant circles in the phase cross parameter space correspond-
ing to a continuation of an irrational arc, and the resonance surfaces corresponding
to the continuation of a tongue, are topological disks. This is corroborated in fig-
ure 10; see also [28, 32]. Exceptions are the period-two surfaces, which are Möbius
strips, and the period-one surface, which is unbounded since it is in the same fixed-
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Figure 11: The 1/1, 1/2, 1/3 and 2/3 Arnol′d tongues of the caricature family
(left). Each of these surfaces had continuation problems because the constant α
cross sections failed to be a topological circle at some value of α. The “problem”
point is the resonant Neimark-Sacker point for the two period-three tongues; it is
a tangency with a period doubling curve in the 1/2 tongue, and it is a cusp point
(saddle-node with a higher order degeneracy) in the period-one tongue. In all four
tongues, the constant-α cross-sections of these tongues develop at least one cusp at
the critical parameter value. The right-hand figures from top-left to bottom-right
show the sections that our algorithm computed for the largest value of α up to
which we could continue the tongue.
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Figure 12: The continuation of constant-α cross sections for Arnol′d tongues that
“bends back” in the parameter plane fails when the line α = constant becomes tan-
gent to one of the tongue’s boundaries. The figure illustrates the merging scenario
of the two cross sections that would occur for a 1/2-tongue.

point component as the repelling fixed point that continues from the origin for the
unforced oscillator.

The tongues in figure 9, connecting zero forcing amplitude to the Neimark-Sacker
curve provide a comparison of the two Arnold tongue scenarios. We have been de-
scribing the local situation near zero forcing in this paper. The closed curve of
periodic orbits corresponding to a cross section of a tongue near a Neimark-Sacker
curve is topologically the same as the cross sections we have been computing and
continuing from zero forcing amplitude. The difference is that the closed curve
shrinks to a point at the Neimark-Sacker curve, while it remains as a “large” topo-
logical circle at the zero forcing point. This suggests that our algorithm could be
adapted to continuation from Neimark-Sacker curves as well. We hope to pursue
this in the future. Also different in the two scenarios are the widths of the projec-
tions to the tongues in the parameter plane. The Neimark-Sacker tongue boundaries
have a tangency of order (q − 2)/2 [1, 37, 33, 26], whereas the zero forcing ampli-
tude tongues have a nonzero opening angle [18]. Furthermore, the case of strong
resonances (periods 1,2,3,4) is distinct in the Neimark-Sacker case [1, 37, 26].
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Continuations of the arcs and tongues terminated for a variety of reasons, some
because the complete resonance surface had been computed, and others due to lim-
itations of our algorithm. Continuations that reach the fixed point on the Neimark-
Sacker curve in either of the two cases are complete; the global arc/tongue has
been computed. A close inspection of the quasi-periodic arcs’ approach to the
Neimark-Sacker curve in the right-hand part of figure 9 reveals that the arcs cross
the Neimark-Sacker curve and turn to the right to finally arrive at the Neimark-
Sacker curve from above. This is due to a “Chenciner point” on the Neimark-
Sacker curve, at approximately (β, α) = (0.75, 0.3), where the bifurcations change
from supercritical to subcritical and the arcs/tongues change from approaching the
Neimark-Sacker curve from below to approaching from above [12]. This poses no
difficulties to arc-length continuation of the quasi-periodic arcs, which are all com-
pletely computed. For the tongues, however, we make an additional cross-sectional
assumption that fails to hold in this and other situations. We require that the
constant-α cross section is circular, but in the region where the tongues “bend
back” we have a more complicated merging of two such circular sections, which is
not representable as a solution of our equations (4)-(9); see figure 12.

The continuations that failed to be complete did so because the constant-α cross
sections ceased to be topological circles at some value of α. These failures included
the tongues toward the right-hand edge of the Neimark-Sacker curve which turn
around and are headed down (in the (β, α) plane) as they approach the Neimark-
Sacker curve, and the strongly resonant cases that are pictured in figure 10. See
[32] for alternative parametrisations of resonance surfaces which do allow complete
computation of tongues for the caricature map.

4.3 Two coupled Van der Pol oscillators

As our final example we return to the system of two linearly coupled Van der Pol
oscillators

ẍ+ ε(x2 − 1)ẋ+ x = α(y − x),

ÿ + ε(y2 − 1)ẏ + (1 + β)y = α(x− y),

which we introduced at the beginning of this paper; see also [17, 34, 36]. The pa-
rameter ε changes the non-linear damping in the system, α is the coupling strength
and β is a detuning parameter that controls the natural frequency of the second
oscillator. The oscillators decouple for α = 0 and their product is a normally attract-
ing invariant torus. This torus will survive for sufficiently small coupling strength
and the two oscillators either synchronise (phase-lock) or oscillate independently
with incommensurate internal frequencies. Hence, we have Arnol′d tongues and
quasi-periodic arcs emanating from the decoupling line α = 0. For large enough
α one of the internal frequencies becomes suppressed in an inverse Neimark-Sacker
bifurcation where the torus collapses to a periodic orbit. The two oscillators will
not desynchronise anymore in this regime. As in the caricature family, continua-
tions of both quasi-periodic arcs and resonance tongues necessarily terminate at the
Neimark-Sacker curve.

The results of our computations for ε = 1 are depicted in figure 13. The left-hand
panel shows the same Arnol′d tongues as figure 1 for comparison and the right-hand
panel the tongues for the rotation numbers in the set {% ∈ L7 | 1/3 ≤ % ≤ 2}. These
results show that our approach successfully regularised the problem and allows the
computation of large sets of Arnol′d tongues, including their tips. In the right-
hand panel of figure 13 we observe the typical distribution of Arnol′d tongues that
is induced by the self-similarity of Devil’s staircase [14, 21]; see also the left-hand
panel in figure 9. Close to the strong resonances we find large regions in parameter
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Figure 13: The left-hand panel shows the results using our method for computing
the same Arnol′d tongues as in figure 1 of the system of two coupled Van der
Pol oscillators for ε = 1. We can easily compute a larger set of Arnol′d tongues,
providing a more complete picture of how the resonance regions are organised in
parameter space (right).

space for which we have predominantly quasi-periodic or desynchronised states, that
is, the quasi-periodic arcs cover a set with large relative measure.

Since the Arnol′d tongues connect to a locus of Neimark-Sacker bifurcations (not
shown), we experience difficulties computing the resonance surfaces of the strong
resonances because they are not cylindrical close to the Neimark-Sacker curve; see
§4.2 for more details. However, except possibly for the tips near the line α = 0,
the boundaries of these tongues can be computed by fold continuation; compare
the boundaries of the 1/1 tongue in figure 1 and in the left-hand panel of figure 13.
Combining both techniques we can obtain the complete picture.

5 Discussion and outlook

The computation of quasi-periodic invariant tori is a problem for which well-tested
algorithms were already available for some time [10, 22], and a two-parameter con-
tinuation of quasi-periodic invariant tori was proposed in [36]. The specific ap-
plication of the algorithm [10, 22] to form a two-point boundary value problem for
quasi-periodic tori of ODEs as described in §3 is new. We combined both techniques
to construct a novel method for computing quasi-periodic arcs in a two-parameter
plane. It is an interesting and somewhat surprising fact that it actually enables the
computation of quasi-periodic invariant tori with standard continuation software
such as AUTO [16].

The computation of resonance surfaces presents a much harder problem and
is the main topic of this paper. A preliminary version of our algorithm (11)-(18)
for ODEs was published earlier in [35]. Since then we made many improvements,
including the restriction to the fundamental domain, its extension to autonomous
ODEs, a more general phase condition, adaptation and the new distance (10) that
now takes the full orbit into account. These improvements resolved the computa-
tional problems observed in [35] for the 1/4 Arnol′d tongue.

The (α, s) parametrisation proposed in this paper extends the applicability of
the previous methods from two-dimensional maps to general n-dimensional maps
and ODEs. The (α, s) parametrisation is guaranteed to work for small coupling
amplitude, but has the limitations discussed in §4.2, namely, that it cannot follow
Arnol′d tongues that “bend back” in parameter space and that it generally does
not provide a global parametrisation of 1/1, 1/2, 1/3, 2/3, 1/4 resonance surfaces,
as was illustrated in figure 11. The first problem can often be solved by moving
from the constant-α cross section to a cross section normal to a two-dimensional
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vector that reflects the average direction of the Arnol′d tongue in parameter space.
This should work for high-period Arnol′d tongues, since their projection to the two-
parameter plane often behaves like a “thick curve”. Note that this modification
seems straightforward but is not entirely trivial since the local parametrisation may
become problematic if the centre of the circle of curvature of one of the boundary
curves lies within the tongue, which could happen at sharp turns. In that case,
parts of the resonance surface may become covered multiple times and it is not
clear how an arc-length continuation would behave.

A solution for the second problem was proposed in [32] by using a so-called
(‖f(x)−x‖, φ) parametrisation (φ = arg(f(x)−x)) for planar maps. This approach
successfully solves the global parametrisation problem for the caricature map, but
this method no longer allows the straightforward computation of the boundaries of
an Arnol′d tongue as the maximum and minimum of the parameter β with respect
to arc-length. However, this idea can also be generalised from the (α, s) parametri-
sation of equations (4)-(9) to a “(‖f(x) − x‖, s) parametrisation,” where α is now
treated as a variable like β:

xq1j = f(xqqj , αj , βj),

xq2j = f(xq1j , αj , βj),

...

xqqj = f(xqq−1,j , αj , βj),

d(ξj , ξj+1) = h, j = 1, . . . , N − 1,

d(ξN , ξ̄1) = h,

1

q

∑q

i=1
‖f(xqij , αj , βj) − xqij)‖2

2 = γ,

P (ξ) = 0.

This is a system of nqN+N+N+1 equations for the nqN+N+N+2 unknowns xqij ,
αj , βj , h and γ, where d is a suitably defined distance. Note that the continuation
parameter for computing the surface is γ. This (‖f(x)−x‖, s) parametrisation may
provide a valid global parametrisation in very general situations. In particular, it
appears to be a good parametrisation, at least locally, for continuing from a p/q
resonant Neimark-Sacker point by increasing γ from zero.

Despite the limitations outlined above, the algorithms and their possible gener-
alisations presented in this paper are likely to work for many, if not most, practical
applications. They are appealing because of their relative simplicity. All one needs
is a one-parameter continuation software for two-point boundary value problems,
for example AUTO [16].
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