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NOTE: This technical report is an expanded version of a paper by the same authors
entitled “A Bifurcation Analysis of a Differential Equations Model for Mutualism.” The
shorter version was accepted on August 9, 2005 and is expected to appear in the Journal
of Mathematical Biology in 2006. Much of the work in both papers appeared first as
part of a Masters of Science project report written by W. Graves under the direction of B.
Peckham and J. Pastor (Graves 2003).

Abstract:

We develop from basic principles a two-species differential equations model which
exhibits mutualistic population interactions. The model is similar in spirit to a commonly
cited model (Dean 1983), but corrects problems with singularities in that model. In
addition, we investigate our model in more depth. The behavior of the system is
investigated by varying the intrinsic growth rate for each of the species and analyzing the
resulting bifurcations in system behavior. We are especially interested in transitions
between facultative and obligate mutualism. The model reduces to the familiar Lotka-
Volterra model locally, but is more realistic globally in the case where mutualist
interaction is strong. In particular, our model supports population thresholds necessary
for survival in certain cases, but does this without allowing unbounded population
growth. Experimental implications are discussed for a lichen population.



1 Introduction

Mutualism is defined as an interaction between species that is beneficial for both
species. A facultative mutualist is a species that benefits from interaction with another
species, but does not absolutely require the interaction, whereas an obligate mutualist is a
species that cannot survive without the mutualist species. There are many interesting
examples in ecology of mutualist interactions, and there exists a number of mathematical
models for two-species mutualism in the literature, although the volume of work on
mutualism is dwarfed by the volume of work dealing with predator-prey and competition
interaction. For a review and discussion of mutualism models through the mid 1980°s —
still frequently referred to — see Wolin (1985).

In this paper we develop a model that can be used to describe both obligate and
facultative mutualism, as well as transitions between the two. These transitions may be
of interest in understanding populations whose birth rates are influenced by controllable
factors such as the environment (see, for example Hernandez 1998). Transitions between
different types of mutualism are also important from an evolutionary perspective.

One commonly cited reference, developed to account for both facultative and obligate
mutualism, was presented in Dean (1983). To limit population growth, Dean introduced
a model for two mutualistic populations where each population’s carrying capacity
saturated as the other population increased. Thus positive feedback between the two
mutualists could not cause the solutions to grow without bound. Modeling mutualism
through effects of each species on the other’s carrying capacity is a common technique in
mutualism models (Wolin 1985). In particular, obligate mutualists are assigned a
negative carrying capacity in isolated growth whereas facultative mutualists have a
positive carrying capacity in isolation, albeit a lower one than when grown in the
presence of the other species.

We found Dean’s model appealing, but upon examination determined that there was a
problem with the derivation of the equations and therefore in applying the model to the
case of obligate mutualism and therefore to the transition between facultative and
obligate cases. Briefly, as carrying capacity passed through zero, a singularity in the
model moved into the first quadrant of the phase space and made the interpretations
incorrect when either population was obligate (see the Appendix for further explanation).

The model we present here is similar in spirit to Dean’s model. We call it the “limited
per capita growth rate mutualism model’:
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Like Dean’s model, it features saturating benefits to both populations but unlike Dean’s
model it assumes that each mutualist asymptotically enhances the other’s growth rate
rather than directly affecting carrying capacity. It produces results qualitatively similar to
Dean’s model when both populations are facultative, but eliminates the difficulties
encountered with Dean’s model when either mutualist is obligate. Thus, our model can
be used to describe facultative-facultative (r10>0, 20>0), facultative-obligate (r10>0, r20<0
or r10<0, r20>0), obligate-obligate (r10<0, r0<0) mutualism as well as smooth dynamical
transitions that may occur between and among these types of mutualism. It may therefore



be useful in guiding further experimental studies and in the theory of the evolution of
different types of mutualism.

We analyze the models in this paper using a bifurcation point of view. In our
approach we identify two of our parameters as “primary” and the remaining as
“auxiliary.” We choose r1p and r,o, the parameters which determine the birth rates of
each of our populations in the absence of the other (their signs determining facultative vs.
obligate), as our primary parameters. In general, we fix a set of auxiliary parameters,
compute bifurcation curves which divide the r10-720 parameter plane into equivalence
classes, and provide representative phase portraits for each class. We then use the
bifurcation diagrams and phase portraits to determine the implications for the ecology of
the populations. This amounts to a courser division of the parameter space than obtained
via bifurcation theory because we include only bifurcations that cause changes to the first
guadrant of phase space. Finally, we attempt to classify the r1o-rp bifurcation diagrams
as the auxiliary parameters are varied. Bifurcation analysis is relatively new to ecology
(see Kot 2001 for some examples), and to our knowledge has not been applied to
understanding how different types of mutualism relate to one another.

The remainder of the paper is organized as follows. The limited per capita growth
rate model is developed in Section 2. In Section 3, we analyze the model. It turns out
that, to lowest order terms, our model reduces to the well-known Lotka-Volterra model.
Thus, a byproduct of our analysis is a bifurcation analysis of the Lotka-Volterra model.
In Section 4 we describe a lichen symbiosis to which our model can be applied. We also
suggest possible experiments to which our model might be applied. Results are
summarized in Section 5, and we point out the singularity in the original Dean model in
the Appendix.

We consider the following to be new in this paper: identification of the singularity in
the Dean model, the development of our limited growth rate model (although Kot (2001)
presents a brief discussion of a model in which the mutualist decreases the density
dependence of birth rate but has no effect on death rate of the other species), the
bifurcation analysis of the limited growth rate model, including the bifurcation analysis
of the Lotka-Volterra model.

2 Development of the model
We now develop our two species model with the following assumptions:

Al: The logistic assumption: Each species behaves according to the logistic
model.

A2: The growth rate assumption: Each species affects the other species’ per
capita growth rate, but not its self limitation.

A3: The mutualism assumption: The increase in each species cannot harm the
other species.

A4: The limited benefit assumption: There is a maximum per capita growth
rate attainable for each species.

Ab: The proportional benefit assumption: The marginal rate of change of the
per capita growth rate of each species due to the increase of the other
species is proportional to the difference between the maximum growth rate
and the current growth rate.

Assumptions Al and A2 lead to the following general form:
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Assumption A3 can be stated mathematically as R;’(y)>0 and R,’(x)>0. Assumption
A4 can be stated mathematically as the existence of maximum growth rates 11 for species
x, and r,; for species y, satisfying Ri(y) <ri1 and Ra(x) <rp;. Assumption A5 can be
restated as Ry ’(y)=ki(ri1 — Ri(y)) and R, ’(x)=Ka(r21 — R2(x)). These two linear differential
equations can be easily solved to obtain
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where the parameters 19 and o are the respective unaided growth rates of each species:
rio=R1(0), and r,x=R,(0). The combination of equations (2) and (3) above leads to the

form of the main model studied in this paper: the limited per capita growth rate
mutualism. This system was already stated in the introduction:
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Assumption Al requires a;>0 and a,>0; assumption A3 requires r1p < r11 and ryo < 771;
assumption A5 requires k;>0 and k>>0. Note that for species x (v) to have any chance of
survival, it must be true that 711 > 0 (721 > 0).

Discussion: The development of our model parallels the development in Dean
(1983) with the significant difference that we saturate the per capita growth rate instead
of the carrying capacity. An alternative model could have been developed assuming that
the mutualism was effected through the quadratic term instead of or in addition to the per
capita growth rate term, but we chose to stay with the growth rate term because it seemed
to fit the population interaction we had in mind. In addition, the resulting model
exhibited both key behaviors we expected from realistic mutualist populations: bounded
population growth and the existence of threshold population values below which
populations die out and above which populations persist.

Parameter (non)reduction. A common mathematical technique at this point is
to rescale both the x and y variables to eliminate (that is, “make equal to one”) parameters
arand a;. We choose not to make this parameter reduction in order to retain the original
interpretation of the parameters.

3. Analysis of the model

In this section we perform a bifurcation analysis of the limited per capita growth
rate mutualism model in equation (1). For fixed values of the auxiliary parameters our
general goal is to divide the r10-720 parameter plane into “equivalence classes,” where two
differential equations are defined to be equivalent if their “phase portraits” are



qualitatively the same. (The formal equivalence is called “topological equivalence.”
See, for example, Guckenheimer and Holmes (1983), Strogatz (1994), Robinson (2004)).
We display our results via a bifurcation diagram in the r1o-r0 parameter plane that
illustrates the equivalence classes, and accompanying phase portraits in the x-y plane, one
for each equivalence class, which illustrate the corresponding dynamics. The phase
portraits include the following: nullclines (dashed lines), equilibria (at the intersections of
nuliclines), accompanying equilibria labels (according to the tables in sections 3.2 and
3.3), stability of the equilibria (filled circle for attracting, open circle for repelling, half
circle for saddle), and the stable and unstable manifolds of any saddles; arrows on the
two branches of the unstable manifold (the two distinguished orbits which approach the
saddle equilibrium point in backward time) point away from the saddle equilibrium point,
while arrows on the two branches of the stable manifold (the two distinguished orbits
which approach the saddle equilibrium point in forward time) point toward the saddle
equilibrium point.

Because the Poincare-Bendixon theorem (see for example Guckenheimer and
Holmes 1983, Hirsch, et. al. 2004, Strogatz 1994, Robinson 2004) guarantees that, for
two-dimensional differential equations, orbits that stay away from equilibrium points
must either be, or limit to, a periodic orbit, we include periodic orbits when they exist.
We note that periodic orbits are impossible in the first quadrant of phase space for
mutualism models in the general form of equation (2) and satisfying assumptions Al, A2,
and A3 in Section 2. This result can be proved geometrically by contradiction: if there
were a periodic orbit, the conditions on the dx/dt equation would allow only a clockwise
flow, while the conditions on the dy/dt equation would allow only a counterclockwise
flow (It can also be proved algebraically that equilibria cannot have complex eigenvalues
by showing that the discriminant of the Jacobian derivative is always positive in the first
quadrant of phase space. This precludes the possibility of the birth of a periodic orbit
through a Hopf bifurcation.)

We divide the analysis of our model into two steps: local and global. It turns out that
locally (in variables x, y, r10, 720) our model reduces to the familiar Lotka-Volterra model
of mutualism, so we treat the Lotka-Volterra case first. (A similar approximation is
mentioned by Goh (1979) for the phase variables x and y only.) There are two subcases
to consider: weak mutualism and strong mutualism. Then we consider the full model. In
each of the two steps of our analysis, we first investigate only the equilibria and their
bifurcations. Subsequently we consider the full bifurcation diagrams. Some bifurcation
curves are determined analytically, while others are numerically followed using the
dynamical systems software To Be Continued ... (Peckham, 1986-2006). Finally we use
the bifurcation diagrams to identify transitions which affect the first quadrant of the phase
space, and are therefore “ecologically significant.”

The bifurcation curves we encounter in this study are all standard “codimension-one
bifurcations” in dynamical systems theory: transcritical (the crossing of a solution with
either x=0 or y=0 by another solution) ), saddle-node (the birth of a pair of equilibrium
points), Hopf (the change in stability of an equilibrium point with complex eigenvalues,
accompanied by the birth of a limit cycle), homoclinic (the crossing of a branch of the
stable manifold of a saddle equilibrium point with a branch of the unstable manifold of
the same point) and heteroclinic (the crossing of a branch of the stable manifold of a
saddle equilibrium point with a branch of the unstable manifold of a different saddle



equilibrium point). See introductory dynamical systems texts (Guckenheimer and
Holmes 1983, Strogatz 1994, Hirsch et. al. 2004, Robinson 2004) for further explanation.

3.1 Local reduction to the Lotka-Volterra model
By expanding the exponential terms in equation (1) in a Taylor series, one can rewrite
the limited growth rate model - up through quadratic terms in the phase variables and the
primary parameters together - as.
dx
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The “big-Oh” terms are higher order terms. Thus, at least for values of x, y, r;9, and
ro0 close to zero, the dynamics of our limited growth rate model should match that of the
Lotka-Volterra interaction model:
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with parameters r1o, 20, @1, a2, b1, b in the Lotka-Volterra model corresponding to
parameter combinations rig, 720, a1, az, k1 r11, k2 21, respectively.

Note that the Lotka-Volterra model could have been derived on its own using
assumptions A1-A3 in Section 2, but replacing assumptions A4 and A5 with the
assumption that the change in the per capita birth rate of each species depends linearly on
the other. This results in the same general form of equation (4), but with Ry(y)=r10 + b1 y
and Rx(x)=rx+ b, x. Assumption A4 no longer holds since neither population’s growth
rate is bounded. Because of our assumptions on the coefficients in equation (1), b1 and b
are assumed to be nonnegative, and a; and a; are assumed to be positive.

3.2 Local analysis: Lotka-Volterra interaction

Since the analysis of the Lotka-Volterra equations will determine the local dynamics
for our model, we begin by analyzing equation (5). Certain aspects of this analysis have
been well-known for a long time (see, for example, Vandermeer and Boucher1978, Goh,
1979, Wolin 1985, Kot 2001), but the bifurcation diagrams we present here appear to be
less widely known. For this reason, and for completeness with respect to our model, we
begin with the Lotka-Volterra analysis.

Equilibria. Each nullcline, dx/dt=0 or dy/dt=0, is easily seen to be one of the
axes and an additional straight line. By solving simultaneously, one can find the four
equilibria of this system. They are listed along with their eigenvalues in table 1.
Equilibria 0, 1 and 2 are trivial cases representing survival of at most one population.
Equilibrium 3 is the coexistence equilibrium. The corresponding entries for the Jacobian
evaluated at this equilibrium are complicated expressions. We do not explicitly include
the Jacobian or the corresponding eigenvalue expressions here.



Bifurcation analysis. It is well-known (Vandermeer and Boucher 1978; but see also
Goh 1979) that this 2-D system has a stable and feasible coexistence equilibrium only
when

a,a, > b,b, (6)
which corresponds to requiring that the product of the self-limiting coefficients be larger
than the product of the coefficients that confer inter-specific benefit. We call the case
when inequality (6) is satisfied weak mutualism. The opposite inequality we call strong
mutualism. Fig. 1 shows the b, vs. by plane (a different parameter plane from all others in
this paper!) and the different kinds of interactions between the two species. The
coefficients a; and a; of the self-limitation terms are assumed to be fixed positive
constants. The curve that divides the first quadrant into strong versus weak mutualism is
determined by setting a1 a, = b1 b,. The area below the curve in the first quadrant is the
region of b, vs. by parameter space that would give rise to weak mutualism (with bounded
populations), whereas the area above the curve is the area of the parameter plane that
yields strong mutualism (with unbounded populations). Interestingly, the curve a; a; = by
b, also appears in the third quadrant where it divides the cases of weak competition (that
need not exhibit competitive exclusion) from strong competition (that must exhibit
competitive exclusion).

In the following two subsections we display and explain the r19-r0 bifurcation
diagram for each of the two cases: weak and strong mutualism. It turns out that the
bifurcation diagrams are required to be relatively simple as guaranteed by the following
lemma.

Lemma: The rig-ryo bifurcation diagrams for the Lotka-Volterra population models are
all straight line rays from the origin. (Aside: this lemma is true for competition and
predator prey models as well as for mutualism.)

The lemma can be proved by showing that any differential equation on a ray in the
parameter plane can be converted into any other differential equation on the ray by
rescaling the two phase variables and time. Two systems being related by a change of
variables implies that the two systems are equivalent. See introductory dynamical
systems texts such as Strogatz (1994) or Hirsh-Smale-Devaney (2004).) An interesting
further consequence of this rescaling is that the phase portrait on the “negative” of a ray
can be obtained by reflecting the phase space about the x and y axes, and reversing the
direction of the time flow arrows.

3.2.1 Lotka-Volterra weak mutualism case: a; a, > b; by, self-limitation dominates.
The dynamics of the weak mutualism case is summarized in the »;o-r» bifurcation
diagram in Fig. 2 and the accompanying phase portraits. In Fig. 2i, the nuliclines have
tilted from horizontal and vertical — where they would have been if there had been no
mutualism (b1=b,=0) - to oblique. The coexistence equilibrium occurs at the intersection
of the two oblique nullclines. This results in coexistence population values which are
greater for each species than the respective carrying capacity for each species in the
absence of the other.

The four transcritical bifurcation curves can easily be found analytically by
computing the Jacobian matrix, evaluating it at one of the equilibrium points, and setting
the determinant equal to zero. The only computational “trick” we use is to evaluate the



Jacobian with the “easier” equilibrium point when two equilibria interact. For example,
in computing the 0-2 transcritical bifurcation curve, we evaluate with equilibrium 0.
More significantly, for bifurcations involving equilibrium 3 (the coexistence
equilibrium), we use equilibrium 2 or 1, whichever is involved in the bifurcation. This
allows us to avoid using the unwieldy expressions for equilibrium 3. The resulting
transcritical bifurcation formulas, with the corresponding equilibrium labels in
parentheses, are: rio =0 (0-1), =20 (0-2), ro0 = -(bz/al) 710 (1-3), 0 = -(az/bl) 710 (2-
3).

Lotka-Volterra weak mutualism population behavior summary. The
bifurcation curves in Fig. 2 which are “ecologically significant” are the ones which effect
changes in the first quadrant of the x-y space. This results in four broad classes, separated
in the bifurcation diagram by the thicker bifurcation curves.

1. Stable coexistence occurs in regions i, ii, and ii’;

2. astable x-monoculture occurs in regions iii, iv;

3. astable y-monoculture occurs in regions iii’, iv’;

4. both populations become extinct in region v.

Note especially that in regions ii and ii’ the stable coexistence occurs even though one of
the populations is an obligate mutualist. One could argue that cases ii and ii’ are
ecologically different from case i, but we choose to combine them due to their similar
behavior in the open first quadrant [compare with Fig. 1 in Vandermeer and Boucher
(1979) where they list four subcases for weak (called “stable” in their paper) Lotka-
Volterra mutualism]. Their four cases S1-S4 correspond to our cases i, v, ii, and iv,
respectively. They do not, however, provide a parameter space bifurcation diagram
organizing the cases.

3.2.2 Lotka-Volterra strong mutualism case: a; a; < by bp, mutualism dominates.

The dynamics of the strong mutualism case is summarized in the r1o-r2 bifurcation
diagram in Fig. 3. We first look at how the phase portrait in the first quadrant of the -
ro0 bifurcation diagram arises by starting from the corresponding phase portrait in the
weak mutualism case and allowing the coefficients »; and b, to increase. One way to
visualize this transition is via the evolution of the nullclines. Consider, for example, Fig.
2i. The dx/dt = 0 nullcline always passes through equilibrium 1 but its slope decreases as
by increases. In contrast, the dy/dt = 0 nullcline always passes through equilibrium 2, but
its slope increases as b, increases. Consequently, as either or both of 51 and b, increase,
the attracting coexistence equilibrium location goes off to infinity in the first quadrant of
the phase space. When a1 a; = b1 by, the two nullclines are parallel, and the coexistence
equilibrium has “gone off to infinity.” This is the transition between bounded and
unbounded population behavior in this model.

As by and b, continue to grow, the nulliclines intersect again, but now in the third
quadrant. This leaves us with the phase portrait in Fig. 3i. We will now follow a circle in
the r10-120 parameter space of Fig. 3 to understand the rest of the transitions for this strong
mutualism case. The four transcritical bifurcations are similar to the weak mutualism
case: 0-2 bifurcation from i to ii, 2-3 bifurcation from ii to iiiy, 1-3 bifurcation from iv;, to
v, and the 0-1 bifurcation from v to vi.

The transitions between iiiy and ivy in the fourth quadrant of the parameter space are
quite different from the weak mutualism case. In some sense they are not so relevant to



the ecology of the system since the dynamics in the first quadrant of phase space is
unaffected in this sequence of transitions. On the other hand, the transitions involving
other quadrants of phase space are important in order to “set up” the first quadrant
changes. And they are certainly of interest from a dynamical systems point of view. The
transition from iii, (not shown) to iiiy, is a change from real eigenvalues to complex
eigenvalues for equilibrium 3. The borderline case is a pair of equal (real) eigenvalues.
These two cases are labeled as iii, and iii, because either can be obtained from the other
via a change of variables. Thus they are formally equivalent. On the other hand, from a
visual perspective, spiraling toward the equilibrium (when it has complex eigenvalues) is
different from approaching tangent to a straight line (when the equilibrium has real
eigenvalues).

The transition from iii, to iv, is actually a double bifurcation curve: a “Hopf” curve
and a heteroclinic curve. On the bifurcation curve the eigenvalues of equilibrium 3 are
pure imaginary and there is a heteroclinic connection from equilibrium 1 to equilibrium
2. As the parameters are varied from region iii, to region iv, equilibrium 3 changes from
repelling to attracting. (This is not a true Hopf bifurcation because there is no birth of a
limit cycle.) Simultaneously, there is a crossing of the right hand branch of the stable
manifold of equilibrium 2 with the left hand branch of the unstable manifold of
equilibrium 1. At the transition point, the two branches coincide, creating the
heteroclinic connection. The coincidence of the two bifurcation curves is not typical of
nonlinear models. It is present because of the truncation of the differential equation at the
quadratic terms, and it separates into two distinct curves — a heteroclinc curve and an
actual Hopf curve — in the bifurcation diagram for the full model.

We again have an equal eigenvalue transition for equilibrium 3 between iv, and ivy
(not shown). This leaves the eigenvalues of equilibrium 3 real in preparation for the 2-3
transcritical bifurcation between iv, and v.

The formulas for the transcritical curves are the same as in the weak mutualism
case. The other bifurcation curves were numerically continued using the software 7BC
(1986-2006).

Lotka-Volterra strong mutualism population behavior summary. All phase
portraits in this strong mutualism case have orbits in the first quadrant for which both
populations grow without bound. No region exhibits a stable feasible (open first
quadrant) coexistence equilibrium. There are four distinct regions of behavior:

1. inregions i, ii, ii’, iii, iii’, iv, and iv’, all orbits in the open first quadrant are

unbounded;

2. inregion v, there is a threshold curve (the stable manifold of equilibrium 3, which
is a saddle) which separates first quadrant initial conditions which have
unbounded orbits from those that approach an x-monoculture (and are therefore
bounded). Orbits exactly on the stable manifold of equilibrium 3, of course,
approach equilibrium 3;

3. similarly, in region v’, the threshold curve separates unbounded orbits from those
for which populations approach a y-monoculture;

4. inregion vi, the threshold curve separates unbounded orbits from those for which
both populations die out.

Compare these results with Fig. 1 in Vandermeer and Boucher (1979), this time
with the four cases for strong (called “unstable” in their paper) Lotka-Volterra
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mutualism. Their four cases U1-U4 correspond to our cases i, vi, ii, and v, respectively.
Again, they do not provide a parameter space bifurcation diagram organizing the cases.

Lotka-Volterra summary. In summary, the logistic model with Lotka-Volterra
interaction terms allows either stable coexistence or threshold behavior, but not both for
the same parameter values. This drawback is eliminated in the limited growth rate model
of the next section.

3.3 Analysis of the full limited per capita growth rate model

We now analyze our limited growth rate model of eq. (1), repeated below for ease of
reference.

dx by
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Equilibria. Solving first for the % =0 nullclines, we obtain x =0and
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Considering all four nullclines, there are possibilities for three to five equilibria, counting
multiplicity, depending on the eight parameter values. We summarize in table 2.

Equilibrium O is the trivial solution. Equilibria 1 and 2 are monoculture solutions.
Equilibria 3 and 4 are coexistence solutions resulting from the intersection of the two
nonlinear nullclines of equations (7) and (8). Since both nonlinear nullclines have

asymptotes, all equilibria are confined to exist to the left of the line x="1 and below the
a,

line y="2
a,

Furthermore, it can be seen from equations (7) and (8) that when 15 and/or -, are
sufficiently negative, the two nonlinear isoclines will not intersect; for these parameter
combinations, equilibria 3 and 4 will not exist. Note also that several pairs of these
equilibria could coincide; coincidence typically happens at a transcritical bifurcation, or a
saddle-node bifurcation, or a further degenerate bifurcation. For example, if both r1o=0
and r,0=0, then equilibria 0, 1, 2, and either 3 or 4 (or both, in the special case where the
two nonlinear equilibria are tangent) coincide.

Bifurcation Analysis: We follow the lead of the analysis of the Lotka-Volterra
equations in the previous subsection and separate our model into two primary classes:
locally weak mutualism and locally strong mutualism. The two cases are determined by
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the auxiliary parameters. It turns out that the division of the auxiliary parameter space
into two classes for the limited growth rate model is too coarse, but we will proceed in
the interest of focusing on the main features. Some clarification is provided at the end of
the section.

Recall from the derivation of the model in Section 2 that 7o < r;; and rpg < 771,
so only the “quadrant” of the 1o - 720 parameter plane determined by these inequalities is
relevant for our mutualism model.

3.3.1 Full model locally weak mutualism case: a; a, > kj iy kp 1, self-limitation
dominates.

This case (Fig. 4) should be compared to the weak mutualism case of the Lotka-
Volterra model (Fig. 2). The locally weak mutualism inequality guarantees that when
r10=0 and r=0, the dy/dt=0 nullcline passes through the origin in the x-y plane with a
shallower slope than the dx/dt=0 nullcline. This matches the weak mutualism case for
the Lotka-Volterra interaction. Because of the shape of nonlinear nullclines, this forces
the two nonlinear nullclines to intersect a second time in the third quadrant. The
bifurcation scenario near the origin in the r1o-2 plane is also analogous to the weak
Lotka-Volterra bifurcation scenario in the r1p-r2 plane. The labels of the bifurcations are
adjusted because they involve equilibrium 4, instead of the equilibrium labeled 3 in the
Lotka-Volterra analysis. Thus, the 2-4 transcritical bifurcation curve passes through the
origin in the r1o-ro bifurcation diagram of Fig. 4 with a steeper negative slope than the
slope of the 1-4 transcritical bifurcation curve.

Away from the origin in the r1o-r2 plane, we see a new feature: the saddle-node
bifurcation curve. Equilibria 3 and 4, which exist for parameter values above this curve,
coincide along the curve, and cease to exist below the curve. This transition is illustrated
in the corresponding adjacent phase portraits (for example v to viii, and iv or vi to vii).
We do not dwell on the details of this bifurcation since the relevant dynamical transitions
do not affect the first quadrant of the phase space.

Full model locally weak mutualism population behavior summary.

The first quadrant population behavior for the limited growth rate model is analogous
to that for the weak mutualism Lotka-Volterra model: the parameter space is divided into
four regions corresponding to

1. stable coexistence in regions i, ii, ii’;

2. astable x-monoculture in regions iii, iv, vi, Vvii;

3. astable y-monoculture in regions iii’, iv’, vi’, vii’;

4. extinction in regions v and viii.

3.3.2 Full model locally strong mutualism case: a; a, < Ky ri1 Kz rz1. Mutualism
coefficients dominate.

The locally strong mutualism inequality now guarantees that when r1,=0 and
r20=0, the dy/dt=0 nullcline passes through the origin in the x-y plane with a steeper
slope than the dx/dt=0 nullcline. This matches the strong mutualism case for the Lotka-
Volterra interaction. But because of the shape of nonlinear nullclines, this forces the two
nonlinear nulliclines to intersect a second time in the first quadrant, resulting in a stable
coexistence equilibrium, unlike the case for strong mutualism in the Lotka-Volterra
model in which stable coexistence was not possible. With the exception of the coincident
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“Hopf/heteroclinic" bifurcation curve of Fig. 3A, the bifurcation scenario near the origin
in the r10-720 plane of Fig. 5A is exactly analogous. The labels on the bifurcating
equilibria are even the same. Thus, the 1-3 transcritical bifurcation curve passes through
the origin in the r10-r50 bifurcation diagram of Fig. 5A with a steeper negative slope than
the slope of the 2-3 transcritical bifurcation curve. The Hopf and heteroclinic bifurcation
curves are now distinct (but appear to be tangent at the origin, consistent with their
coincidence in Fig. 3A), allowing for the existence of a limit cycle (in the fourth
quadrant) for parameter values in between them.

Away from the origin in the r1o-r0 plane, we have several new features that differ
from the strong mutualism Lotka-Volterra bifurcations. One key feature (which we have
already seen in the locally weak mutualism case) is the saddle-node bifurcation curve.
Equilibria 3 and 4, which exist for parameter values above the saddle-node curve, come
together on the curve, and cease to exist below the curve. This transition is illustrated in
the corresponding adjacent phase portraits (for example vii to viii and vi to ix). There are
several other bifurcations in Fig. 5A that are significant and interesting from a bifurcation
point of view, but not so significant from an ecological point of view. Some of these
bifurcations curves are outside the range of parameters plotted in Fig. 5A. As mentioned
in the Lotka-Volterra case, these “insignificant” bifurcations are necessary in order to set
up the “significant” bifurcations. So we let the phase portraits in Fig. 5B speak for these
transitions.

For completeness and clarification, we include several additional views of the
bifurcation diagram of Fig. 5A and the corresponding Fig. 5B phase portraits.
Specifically, we include a schematic of Fig. 5A which is complete in the full 710-720
parameter space, and schematics for Fig. 5B which also include nullclines as dashed
lines. Additional numerically computed (Peckham 1986-2006) versions with two
enlargements follow as well for comparison with the other versions of Fig. 5A.

Full model locally strong mutualism population behavior summary.

Although the bifurcation analysis near the origin matches that of the strong
mutualism Lotka-Volterra model, the full dynamical behavior does not. This is because
of the existence of the attracting equilibrium number 4 away from the origin in the phase
space when the parameters r1o and ro are both zero. Thus unbounded population growth
from the Lotka-Volterra model is replaced by an approach to a stable coexistence
equilibrium. More significantly, we now have regions of parameter space (regions vi, vi’,
vii) which allow behavior not seen in the Lotka-Volterra model: the existence of
thresholds between stable coexistence and extinction of one or both of the species. There
are seven distinct regions in Fig. 5a.

1. in regions i, ii, iii, iv, v, ii’, 1ii’, iv’, and v’ all open first quadrant initial
populations eventually approach a stable coexistence equilibrium;

2. in region vi, there is a threshold (the stable manifold of equilibrium 3)
between a stable x-monoculture and the stable coexistence equilibrium;

3. in region vi’ there is a similar threshold between a stable y-monoculture
and the stable coexistence equilibrium.

4. in all other regions of the fourth quadrant, all first quadrant orbits

approach the x-monoculture equilibrium;
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5. similarly, in all other regions of the second quadrant, all first quadrant
orbits approach the y-monoculture equilibrium;

6. in region vii, there is a threshold between orbits which approach the
extinction of both species and the stable coexistence of both species;
7. in region viii, both populations become extinct.

Further bifurcation discussion.

Our strategy of dividing parameters into primary and auxiliary has a more formal
interpretation: we are studying bifurcations (in the auxiliary parameter space) of
bifurcation diagrams (in the primary r10-720 parameter plane). Two points in the auxiliary
parameter space are defined to be equivalent if their corresponding bifurcation diagrams
in the primary parameters “look the same.” *“Look the same” is made formal by the
existence of a homeomorphism of primary parameter planes that map corresponding
bifurcation curves in one primary parameter plane to bifurcation curves of the same type
in the other primary parameter plane.

Our local analysis guarantees that the primary parameter plane bifurcation
diagrams for our limited growth rate model must be divided into at least two equivalence
classes: auxiliary parameters that correspond to locally weak versus locally strong
mutualism. It turns out that there are further subdivisions of the auxiliary parameter
space when we consider the global r10-720 parameter space. For example, we found an
example of a locally weak mutualism set of auxiliary parameter values (r11=20, r21=2,
k1=0.5, k,=0.25, a;=1, a,=1) for which the two transcritical curves cross two times
(instead of not intersecting as in in Fig. 4) in the fourth quadrant. Thus it is not true that
all locally weak bifurcation diagrams are equivalent. On the other hand, the senior author
proved in her M.S. thesis that locally weak mutualism (the first inequality in the
statement of the Theorem below) along with an additional condition (the second
inequality) will guaranty that the two transcritical curves will not cross in the fourth
quadrant, suggesting that a large class of locally weak mutualism models have r1-720
bifurcation diagrams which might be equivalent:

a,a,

Theorem (Graves 2003): I[f—=—>1, and if

ik, N,
curves displayed in Fig. 4 will not intersect in the fourth quadrant.

In the locally strong mutualism case, although it is clear that the two transcritical
curves in the fourth quadrant of Fig. 5 must cross at least once, as they do for our choice
of auxiliary parameters, we have not analytically checked to see whether other numbers
of crossings are possible. In other words, we do not know whether the locally strong
auxiliary parameters are all in the same equivalence class. In this sense, our bifurcation
study is incomplete. On the other hand we have established the existence of a model
exhibiting the ecological features we were seeking, including the boundedness of all
orbits and the existence of threshold behavior for sufficiently strong mutualism.

a

>1, the transcritical bifurcation
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4. Experimental Implications

The basic assumption of our model which distinguishes it from other
models of mutualism is that each of the mutualists asymptotically increases the other’s
growth rate. This allows a smooth transition between facultative and obligate mutualisms
without singularities, in contrast to the case in the Dean (1983) model in which each
species asymptotically increased the other’s carrying capacity rather than increase the
other's growth rate.

There is considerable evidence that at least some important symbioses operate
through asymptotic increases in growth rates rather than in carrying capacities. Some of
the most-studied such cases are nitrogen-fixation symbioses between higher plants and a
nitrogen-fixing microorganism such as Rhizobium (with soybean) or Frankia (with
alder). It has long been known that rates of photosynthesis in the plant increase
asymptotically with increased abundance of the nitrogen-fixing microorganism and that
nitrogen fixation rates in the microorganism are in turn strongly controlled by supply of
photosynthate from the plant. Nitrogen fixation rates in the symbiotic microorganism are
strongly controlled by supply of photosynthate because the energetic cost of nitrogen
fixation enzyme systems is high and carbohydrate reductants are required in the N-fixing
reactions (Nutman 1976).This suggests that mutualism in nitrogen-fixing symbioses
operates by each participant increasing the other’s growth rate (the asumption of our
model) rather than increasing the other's carrying capacity (the assumption of the Dean
(1983) model and others).

A particularly interesting class of systems with nitrogen-fixing symbiosis are
lichens, with a nitrogen-fixing cyanobacteria in symbiotic association with a fungus.
These symbioses are especially relevant to our model since they can be facultative -
facultative, facultative-obligate, and obligate-obligate associations. Lichens of the genus
Peltigera may be an especially good model system for experimental investigation of our
model because they grow relatively fast (Ahmadjian 1967). The Peltigera fungus is
obligate whereas the N-fixing cyanobacteria (usually Nostoc, but also Gloeocapsa, and
Chroococcidiopsis; Stewart 1980; Biidel 1992; Pandey et al. 2000) are usually facultative
and can be separated from the fungus to form free living colonies. When environmental
nitrogen supply is low, less than 10% of free-living Nostoc form specialized cells known
as heterocycts in which N-fixation takes place. However, when in association with
Peltigera fungus, these cyanobacteria are sequestered in specialized cephalopods and
greater than 20% of them form heterocycts. The rate of N-fixation in lichenized Nostoc
increases in proportion to rate of formation of heterocycts (see review by Rai 1988),
suggesting that the Peltigera fungus increases growth rate and metabolism of the Nostoc
symbiont compared with free-living Nostoc. In some species of Peltigera fungus, greater
than 90% of the fixed atmospheric N ends up not in the Nostoc but in the fungus, where it
is used in protein synthesis (Rai 1988). Thus, available data indicates that the symbiosis
between Peltigera and Nostoc operates by each mutualist increasing growth rates and
metabolism of the other, which supports the major assumption of our model.

In addition, new molecular methods offer promise in further quantifying the effect
of Peltigera and Nostoc on each other’s growth rates. Sterner and Elser (2002) have
presented strong evidence that growth rate in many algae and other species is correlated
with ribosomal RNA content, ribosomes being the site of protein synthesis. Both rDNA
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and ribosomal RNA markers have recently been identified for both Peltigera fungus and
the algal Nostoc symbiont (Miadlikowska and Lutzoni 2003, Miadlikowska et al. 2004).
Isolation and quantification of RNA markers of Nostoc and of Peltigera could provide
indices of their growth rates. Positive and asymptotic correlations of these growth rates
with each other and also with independent measurements of N-fixation by the Nostoc
would be a strong test of the basic assumption of our model and also a way to
parameterize Eq. 1.

5 Summary and Discussion

In addition to the development of our limited per capita growth rate mutualism
model, we are clearly advocating in this paper the bifurcation approach to analysis of
ecological models. We feel this approach is useful for analyzing models, for inferring
physical/ecological behavior, and for designing experiments. For example, Fig. 5A
concisely summarizes as labeled in the figure, the pairings of initial per capita growth
rates that allow for stable “coexistence’ of mutualist pairs. As an example of ecological
inference, we note that the bifurcation diagram of Fig. 5a suggests that facultative-
obligate mutualism coexistence might be fairly abundant in nature. This conclusion is
supported by noting the fairly large part of the fourth quadrant of primary parameter
space corresponding to coexistence. On the other hand, the region of the 3™ quadrant
allowing coexistence is tiny compared to the rest of the 3" quadrant, suggesting that
obligate-obligate mutualisms might be rare in nature. Of course, Fig. 5a is for one
specific choice of auxiliary parameters, but the suggestion is still evident from the
bifurcation diagram.

As suggested in Section 4, the bifurcation perspective can be of use in designing
experiments, especially when the primary parameters can be controlled in the experiment.
Models can be validated by setting up experiments in which parameter values are
manipulated to cross over bifurcation curves in the parameter space. For example, our
model implies that successful formation of facultative-obligate or obligate-obligate pairs
requires proper parameter values for growth rates, etc. We discussed in Section 4 how
lichen symbioses could be used to parameterize the model. Comparative studies of strains
of cyanobacteria and fungi with genetically determined growth rates that lie to one side or
another of the bifurcations displayed in Fig. 5 could also be used as a test of the model.

In conclusion, the new model for 2-dimensional mutualism proposed here appears
to be a better model than either Dean’s (1983) model or the logistic model with Lotka-
Volterra interaction terms. This is evident in the ability of the model to describe a variety
of interactions which seem ecologically logical, including the possibility of thresholds
and the impossibility of unbounded growth. It is also evident in its ability to describe
both facultative and obligate mutualisms and smooth transitions between these two types
of mutualism.

6 Acknowledgements
The authors acknowledge useful conversations with H. W. Stech in the
development and analysis of the model.
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Appendix: The singularity in Dean’s model

Dean (1983) introduced the following two species eight-parameter model of
mutualism:
dx _ rx(k, —x)

dt k. (A.1)
dy _ryk,—) '
dt k,
where
B axy+C)r
kx = Kmaxx{l_ e Fmac }
ayx+Cy (AZ)

ky = Kmax);{1_67 Kmaxy }

Briefly, the problem with this model occurs when the expressions for the carrying
capacity in equation (A.2) are not positive. By inspection, k=0 when y=-Cy/a, and k,=0
when x=-C,/a,. The differential equation (A.1) is therefore singular along these lines in
the phase space. When C, or C, is negative, the respective singular line passes through
the first quadrant of phase space and is therefore significant in the ecological
interpretation of the model. Consequently, all such figures in Dean (1983) (Figs. 2b, 2c,
3c, 4a, 4b), while ecologically correct, are at odds with model (A.1). From another point
of view, all of the figures in Dean (1983) are correct if Dean’s model is replaced by ours.

In Fig. 6 we illustrate with two phase space figures from Dean (1983), one for
facultative-facultative mutualism (6A), and one for obligate-obligate mutualism (6B). In
Fig. 6C and 6D, respectively, we redraw Fig. 6A and 6B, this time with the singularities.
Since the singular lines in Fig. 6C do not enter the first quadrant, Fig. 6A is correct. The
singular lines do, however, enter the first quadrant in Fig. 6D, so the phase portrait of Fig.
6B is not correct. Corresponding flow direction arrows change direction not only when
nuliclines are crossed but also when the singular lines are crossed. Fig. 6E shows the
phase portrait with corrected flow directions for this obligate-obligate case.
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Table 1. Equilibria and associated eigenvalues for the local analysis (equivalent to the
Lotka-Volterra model for mutualism).

Equilibrium label Equilibrium Eigenvalues
0 (0,0) l10, 20
1 b

o o r1o, 220 4 ey

a 4
2 b

0,2 o, By

a, a,

3 Complicated expression.

a,hy +biry byry +airy,

1
aa, —bb, aa,-bb,

|
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Table 2. Equilibria and associated eigenvalues for the global analysis (the full model

proposed).

Equilibrium label Equilibrium Eigenvalues

0 (0,0) 0, 20

1 (H—O,OJ ~I10, ,120

a
2 EO rz_oj r10, 20
a,

3 Lower left intersection of Both real and negative
nonlinear nullclines, when | when in the first quadrant
an intersection exists. (stable coexistence!),
Location determined other stabilities in other
numerically. quadrants

4 Upper right intersection of | One positive and one

nonlinear nullclines, when
an intersection exists.
Location determined
numerically.

negative when in the first
quadrant (threshold!), other
stabilities in other quadrants
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Figure 1: Lotka-Volterra interaction space: b, vs b;. The curve for b;b, = a;a, appears in the first and
third quadrants and is calculated with a,=7 and a,=1. In the first quadrant, mutualisms with coefficient
Cartesian pairs that lie below/left of the curve give rise to weak (“stable”) mutualisms whereas
mutualisms with coefficient Cartesian pairs that lie above/right of the curve give rise to strong (unstable,
with unbounded growth) mutualisms. In the third quadrant, competitive species with coefficient

Cartesian pairs that lie above/right of the curve give rise to competition that need not exhibit competitive

exclusion whereas competitive species with coefficient Cartesian pairs that lie below/left of the curve
give rise to competition that does exhibit competitive exclusion.
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Figure 2: Weak Lotka-Volterra mutualism, (a;az > b2bs).: (A) the bifurcation diagram in r vs ;9. Key: thick
lines =**ecologically significant,” tc = transcritical; the labels of the equilibria involved in the bifurcation (see
section 3.3) precede the bifurcation abbreviation. (B) representative phase portraits for the corresponding
regions in (A). Dashed lines are nullclines; solid lines are stable or unstable manifolds of saddle equilibria.
By interchanging x and y, similar phase portraits would result for regions labeled with primed numbers.
Auxiliary parameters: a;=1,a,=1, by =1, and b, = 0.5. Primary parameters:r;=1,rp,=1fori;rn=1,r,=-
0.25forii;ri=1,r,=-0.75for iii; r; = 0.5, r,=-1 for iv; and r; = -1, rp, = -1 for v.
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Biiib

Figure 3: Strong Lotka-Volterra mutualism (a;a; < b1b,). (A) bifurcation diagram in 5 vs ;9. Thick lines are “ecologically significant.” The dashed
lines are parameter values where the eigenvalues of the co-existence equilibrium are equal. Key: tc=transcritical, *=double bifurcation curve (Hopf
and heteroclinic), dashed lines=equal eigenvalues for the corresponding equilibrium, thick line="ecologically significant,” dotted background =
region with threshold behavior. Equilibrium labels are in Section 3.3. (B) representative phase portraits for corresponding regions in (A). Auxiliary
parameters: a; = a,= 1, b; =1, and b, = 2; primary parameters: rio= 1.0, rpo= 1.0 for i; rio = 1.0, ryo=-0. 5 for ii; rio= 0.833, ryo=-1.0 for iii b; ryp =
0.583, ryp=-1.0 for iv a; rip=0.25, ryo=-1.0 for v; and rip = -1.0, ryo = -1.0 for vi.
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Figure 4: Full mutualism model, locally weak case. (A) Bifurcation diagram in: r» vs r;y. Key: thick lines = “ecologically significant,”
tc=transcritical, sn=saddle-node, sn/tc=point of tangency between saddle-node and transcritical curves. Note that the equilibrium pairings on the tc
curves change when passing through the tc/sn tangency. Equilibrium labels are in Section 3.3. (B) Representative phase portraits. Auxiliary
parameters: a;=1,a,=1, k; = 0.5, k, = 0.25 r;3 = 2, and rp; = 2; primary parameters: rio= 0.5, o= 0.5 for i; rio=1, rpp=-0.3 for ii; rip= 1, rpo=-1 for
ii; rig=0.1, rpg=-0.2 for iv; rip=-0.1, ryp = -0.1 for v; rig = 1.65, ryp = -3.56 for vi; rig= 0.5, ryo = -1 for vii; rig= -1, ryp = -1 for viii.
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Figure 5: Full mutualism model, locally strong case. (A) bifurcation diagram in: r» vs ;9. Key: thick lines = “ecologically significant,” dashed

lines = curves along which the corresponding equilibrium has equal eigenvalues, tc=transcritical, sn=saddle-node, het=heteroclinic connection,
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IX.
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Figure 5A numerically computed with TBC.
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Fig. 5A, Zoom 2.
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Fig 5A, zoom 1.
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Figure 6: Singularities in the Dean (1983) phase portraits. (A) Dean’s figure 3a, facultative-facultative case, first quadrant only; (B) Dean’s figure 3b, obligate-

obligate case, without singularities marked; (C) extension of (A) to include singularities (dashed lines) in quadrants 2, 3, and 4; (D) extension of (B) to include
singularities; (E) enlargement of the region near the origin in (D) ; arrows indicate corrected flow directions; flow directions change on either side of nuliclines AND on
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