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1 Introduction

I began this project by looking at a simple class of piecewise linear maps on the
unit interval, and investigating the existence and properties of invariant ergodic
measures corresponding to these dynamical systems. The class of linear maps
I looked mostly at is a family of tent maps (to be defined later, but basically
piecewise-linear unimodal maps on the unit interval). I began by numerical
simulation in which I wrote software to indicate possible forms of the densi-
ties of natural invariant measures. By using the form of the density functions
suggested by the numerical experiments, I computed some explicit formulas for
the densities for a few special cases. Next I tried to generalize the existence
of ergodic measures (to be defined later, but basically “irreducible” probability
measures) in a class of tent maps. I tried several approaches to solve this prob-
lem. The ones that worked are explained in detail in this report and some of
the more creative ideas I had that either didn’t work or turned out later to be
unnecessary are explained (and debunked in some cases) in the appendix.

In this report I will first explain the basic notions of probability that ergodic
theory is founded on, then I will give a brief description of the ergodic theory I
used and studied. Next, I will talk about the relevant dynamical systems theory
used to analyze the Tent maps. Once all the theory is explained the problem I
studied will be explained in detail and the general solution given. The general
solution covers a class of functions much larger than the Tent maps; this is due
to a 1980’s result by Michal Misiurewicz. My proof of the existence and density
of the ergodic measures for certain special cases of tent maps is the first section
of the appendix. My proof does not apply to the full generality of functions
that the Misiurewicz result does, it is rather specific to tent maps. Also in
the appendix is an example of the procedure used for solving for the density
functions of the invariant measures, as well as all my experimental results. The
process for solving for the density function of the invariant measures does not
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come from the Misiurewicz proof.

The probability that I’ve studied for this project is a generalization of the
ideas of probability as it is taught in the STAT 5571 class at the UMD. Pri-
marily in this study, I used the textbook Probability: Theory and Examples by
Richard Durrett. I studied the first two chapters on the basic theorems and
definitions of probability (including expected value, independence, the Borel-
Cantelli Lemmas, the weak LLN and the strong LLN, central limit theorems)
and the sixth chapter in full (ergodic theory), and parts and portions of other
chapters as was needed (chapter 4, which contains conditional expectation and
martingales, chapter 5 which contains Markov chains, and the appendix, which
contains a short course in the essentials of measure theory as developed using
the Caratheodory extension theorem). I also had to study dynamical systems
at a more advanced level than is offered in the MATH 5260 course, using mostly
the text Chaotic Dynamical Systems by Robert Devaney. Most notably I stud-
ied the sections on symbolic dynamics, topological conjugacy, the Schwarzian
derivative and the kneading sequence theory.

2 Notation and Theory of Probability

I will start off by listing some definitions needed for this paper; these are defini-
tions and theorems from Probability theory that are more general or extensions
of the concepts taught in introductory courses.

Definition 2.1. σ-algebra: An algebra F is a collection of subsets of the
nonempty sample space Ω that satisfy the properties,

1. if A,B ∈ F then A ∪B ∈ F and Ac ∈ F

2. An algebra is a σ-algebra if for Ai ∈ F for i ∈ Z+,
⋃∞

i=1 Ai ∈ F

Definition 2.2. A measure is a set function µ : F → [0,∞) with the following
properties:

1. µ(∅) ≤ µ(A) for all A ∈ F , where µ(∅) = 0

2. if Ai ∈ F is a countable or finite sequence of disjoint sets then µ(
⋃

i Ai) =∑
i µ(Ai).

A probability measure has µ(Ω) = 1, where Ω is usually called the sample space.

Definition 2.3. A probability space is a triple (Ω,F , µ) where Ω is the sample
space, or the set of outcomes, F is a σ-algebra of events, and µ is a probability
measure.

A special σ-algebra that will often be referenced, the Borel σ-algebra, de-
noted B is defined to be the smallest σ-algebra containing the collection of open
sets.
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Definition 2.4. A function X : Ω → R is said to be a measurable map from
(Ω,F) to (R,B) if {ω : X(ω) ∈ B} ∈ F for all B ∈ B. In the future we will say
X−1(B) ∈ F . X−1(B) is called the inverse image of B under X.

Remark 2.5. A function X is called a random variable if X is a measurable
map from (Ω,F) to (R,B).

Examples of probability measures are abundant,

Example 2.6. We can define a probability measure on [0, 1] using the density
function for the uniform random variable: f(x) = 1 by µ(A) =

∫
A

dx for any
measurable A ⊂ [0, 1].

Example 2.7. Let X : (Ω,F) → (R,B) be a random variable with density
f(x) = e−x, x > 0. We can define a probability measure by µ(A) =

∫
A

e−xdx,
for A ⊂ [0,∞). Random variables with this distribution are called exponential
random variables.

A special measure that will be used often is the Lebesgue measure. Lebesgue
measure, denoted by λ is the only measure for which λ(A) = b − a, where A
is the interval (a, b), for any a, b ∈ R such that a ≤ b. The derivation of this
measure can be found in most measure theory texts, a classical derivation can
by found in the text Lebesgue Integration on Euclidean Space by Frank Jones
[6]. A less standard derivation appears in [1] by Durrett.

2.1 Expected Value

We now define the expected value of a random variable:

Definition 2.8. The expected value of a random variable X with respect to a
probability measure P is defined to be: EX =

∫
Ω

XdP . We can also define
E(X;A) =

∫
A

XdP =
∫

X 1AdP .

In the terms of introductory probability think of the dP as being the density
function “f(x)dx” of the random variable. A formal definition of the integral
dP can be found in any standard measure theory text, again, I refer the reader
to [1] or [3].

Now we would like to define the concept of conditional expectation, that
is to say, the expected value given that we know some events have occurred
(where the information we know takes the form of a σ-algebra. We need some
preliminary definitions first,

Definition 2.9. The sigma-algebra generated by X is defined to be the smallest
σ-algebra for which X is a measurable function, denoted σ(X).
σ(X) = {{ω : X(ω) ∈ B} : B ∈ B}.
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2.2 Conditional Expectation

Now we define conditional expectation:

Definition 2.10. E(X|F) is any random variable Y that satisfies:

1. Y ∈ F , that is to say, Y is F-measurable

2.
∫

A
XdP =

∫
A

Y dP for all A ∈ F .

We say the conditional expectation of X given a random variable Y to be the
expected value of X given the σ-algebra generated by Y , E(X|Y ) = E(X|σ(Y )).

Example 2.11. Say we have probability space (Ω,F , P ) and let X be a random
variable on this space. We can define E(X|F) = X, that is to say, if we have
perfect knowledge for X, then the conditional expected value of X given all we
know is X itself. Notice X certainly satisfies the conditions 1,2 of definition
2.10.

Example 2.12. Opposite of perfect information is no information: given the
σ-algebra F = {Ω, ∅}, then E(X|F) = EX. I.e. if we know nothing, then the
best guess for the expected value of X is the expected value of X.

A classic example from undergraduate probability is the following:

Example 2.13. Let Ω = [0,∞) and F = B on R+. If X1, X2 are independent
(defined below in section 2.3) exponential random variables with mean 1, i.e.
the density f(x) = e−x, let S = X1 +X2. E(X1|S) is a random variable Y that
must satisfy (1) and (2) of definition 2.10. The joint density of (X1, S) can
be found using a transformation from the joint density of (X1, X2) to the joint
density of Y1 = X1, Y2 = X1 + X2. The Jacobian for this transformation is

J =
(

1 0
−1 1

)
so

fY1,Y2(y1, y2) = fX1,X2(y1, y2 − y1)|J| = e−y1e−(y2−y1)(1) = e−y2

where 0 < y1 < y2. The conditional density is then fY1,Y2(y1, y2)/fY2(y2).
Notice that Y2 is the sum of two independent exponential random variables and
hence has a gamma(1,2) distribution. The conditional distribution is

g(y2) =
e−y2

y2e−y2
=

1
y2

Now,

E(X1|S = y2) =
∫ y2

0

y1
1
y2

dy1 =
y2

2
where y2 > 0. So we can say that E(X1|S) = S/2. This is a very technical way
to show what should be very intuitive given the definition of conditional expecta-
tion. We note that since X1, X2 are independent exponential random variables,
E(X1;A) = E(X2;A) =

∫
A

e−xdx and it should be clear that (X1 + X2)/2 ∈
σ(X1 + X2), so (1) is satisfied and E(S/2;A) = (E(X1;A) + E(X2;A))/2 =
E(X1;A) so (2) is satisfied, hence S/2 = E(X1|S).
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2.3 Independence

In the last example I used the concept of independence, so I will here define it.

Definition 2.14. Let X, Y be random variables. If for all Borel sets A,B
P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) then X and Y are said to be
independent.

The idea of independence generalizes to σ-algebras:

Definition 2.15. F and G are said to be independent σ-algebras if for all A ∈ F
and B ∈ G, A and B are independent events, that is P (A ∩B) = P (A)P (B).

The following propositions follow directly from the definition of independence
and the definition of σ(X), σ(Y ):

Proposition 2.16. If X, Y are independent then σ(X), σ(Y ) are independent.
Furthermore, if F ,G are independent σ-algebras and if X ∈ F and Y ∈ G, then
X and Y are independent.

A simple example of independence is:

Example 2.17. Let X, Y be exponential random variables with means Θ1,Θ2

respectively. Say the joint density function for X, Y is

f(x, y) = e−( x
Θ1

+ y
Θ2

)

so we compute the probability,

P (X ∈ A, Y ∈ B) =
∫

A

∫
B

e−( x
Θ1

+ y
Θ2

) dxdy =
∫

B

e−
y

Θ2 (
∫

A

e−
x

Θ1 dx) dy = P (X ∈ A)P (Y ∈ B)

for any A ∈ σ(X) and B ∈ σ(Y ), thus X and Y are independent.

2.4 Convergence

The two types of convergence most important to this report are convergence in
probability and almost sure convergence.

Definition 2.18. A sequence of random variables {Xn}∞n=1 is said to converge
in probability to X, Xn → X in prob. if for all ε > 0, P (|Xn −X| > ε) → 0 as
n →∞.

Definition 2.19. A sequence of random variables {Xn}∞n=1 is said to converge
almost surely to X, Xn → X a.s. if for all ε > 0, P (|Xn − X| > ε i.o.) = 0
where i.o. stands for infinitely often. This is to say that Xn → X except possibly
on a set of measure (probability) 0.

The following proposition follows directly from the above definitions:

Proposition 2.20. Let {Xn}∞n=1 be a sequence of r.v.’s s.t. Xn → X a.s. as
n →∞, then Xn → X in prob. as n →∞.
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I’ll now state two theorems which deal with the convergence of sums of
random variables, the weak and the strong law of large numbers (as written in
[1] ).

Theorem 2.21. Let X1, X2, . . . be independent and identically distributed, and
let Sn = X1+. . .+Xn. In order that there exist constants µn so that Sn/n−µn →
0 in probability, it is necessary and sufficient that

xP (|X1| > x) → 0 as x →∞.

We can take µn = E(X11(|X1|≤n)).

Now a stronger version of the above,

Theorem 2.22. Strong Law of Large Numbers: Let X1, X2, . . . be i.i.d. r.v.’s
with E|Xi| < ∞. Let EXi = µ and Sn = X1 + . . . + Xn. Then Sn/n → µ a.s.
as n →∞.

3 Ergodic Theory

Now, the basic definitions being out of the way, we proceed to the ergodic
theory which has been the main focus of this project. Intuitively, ergodic theory
is concerned with taking certain (stationary) sequences and saying something
about the convergence of the average of these sequences. If you have a function
f : R → R and a (stationary) sequence {Xm}m≥0, then under what conditions
can you say

lim
n→∞

1
n

n−1∑
m=0

f(Xm)

exists? From the strong law of large numbers we know that if the sequence
is composed of independent and identically distributed (iid) random variables
with E|X1| < ∞, then

lim
n→∞

1
n

n−1∑
m=0

Xm = µ = EXi a.s.

The ergodic theorem is a sort of generalization of the SLLN. It states that if
we impose some additional structure on {Xm}m≥0, namely that the sequence is
stationary and E|f(X0)| < ∞ then

lim
n→∞

1
n

n−1∑
m=0

f(Xm) exists a.s.

If the sequence has the additional property of being ergodic, then

lim
n→∞

1
n

n−1∑
m=0

f(Xm) = Ef(X0) a.s.

Now formal definitions for the terms above.
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Definition 3.1. Stationary sequence: A sequence {Xm}m≥0 is said to be sta-
tionary if P ((X0, X1, . . . , Xm) ∈ A) = P ((Xk, Xk+1, . . . , Xk+m) ∈ A) for all
m, k ≥ 0 and A ∈ Bm+1. We can say the distribution of Xn is the same as the
shifted distribution for any shift value of k.

I have looked largely at maps that have the property that they are measure
preserving.

Definition 3.2. A map φ : (Ω,F) → (Ω,F) is said to be measure preserving
with respect to a probability measure P if P (φ−1A) = P (A) for all A ∈ F . That
is the measure of the inverse image of a set is the same as the measure of the
set.

Now I state a theorem (proof due to Durrett [1]):

Theorem 3.3. If X ∈ F and φ is measure preserving, then Xn(ω) = X(φn(ω))
defines a stationary sequence.

Proof. To see why this theorem is true, let B ∈ Bn+1 and define A = {ω :
(X0(ω), X1(ω), . . . , Xn(ω)) ∈ B}, then

P [(Xk(ω), Xk+1(ω), . . . , Xk+n(ω)) ∈ B]

= P [(X(φkω), X(φk+1ω), . . . , X(φk+nω)) ∈ B]

= P (φkω ∈ A) = P (ω ∈ A) = P (X0, X1, . . . , Xn) ∈ B

where the second to last equality is due to φ being measure preserving.

Hence Xn(ω) is stationary.

Another important concept in probability is the idea of invariance.

Definition 3.4. A set A is invariant if φ−1A = A, where equality is defined
if the symmetric difference has measure 0: µ[(φ−1A−A) ∪ (A− φ−1A)] = 0.

We can define the σ-algebra generated by the class of invariant events.

Proposition 3.5. The class of invariant events is a σ-algebra, denoted I.

Proof. If A,B ∈ I, consider A ∪B:

φ−1(A ∪B) = {ω : φ(ω) ∈ A ∪B}
= {ω : φ(ω) ∈ A} ∪ {ω : φ(ω) ∈ B}

= φ−1(A) ∪ φ−1(B) = A ∪B

Now we look at complements,

φ−1Ac = {ω : φ(ω) ∈ Ac}
= {ω : φ(ω) ∈ A}c

= Ac as above.

Similar for countable unions.
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A σ-algebra connected to the class of invariant events is the tail σ-field:

Definition 3.6. Consider a sequence of random variables X1, X2, . . ., a tail
event is an event whose occurrence or failure is determined by the sequence but
is independent from any finite subsequence of these random variables. Formally,
let Fn = σ(Xn, Xn+1, . . .) then the tail σ-field is T =

⋂
n Fn.

Connected with T is the following useful result:

Theorem 3.7. Kolmogorov’s 0-1 Law: If X1, X2, . . . are independent, then for
any A ∈ T , P (A) = 0 or 1.

We now have everything necessary to define what it means for a transfor-
mation or a stationary sequence to be ergodic.

Definition 3.8. A measure preserving transformation φ is said to be ergodic if
I is trivial, that is if for any A ∈ I, then P (A) = 0 or 1.

An ergodic transformation is one where the only invariant events are almost
all the points, or almost none of the points. For a stationary sequence to be
ergodic, the transformation associated with it must be ergodic.

Remark 3.9. Recall
Xn(ω) = X(φn(ω)) (1)

defines a stationary sequence, so if φ is ergodic, then {Xm}m≥0 is ergodic.

Remark 3.10. We consider only stationary sequences induced by a measure
preserving map φ as in (??).

Proposition 3.11. All stationary sequences are formed as above.

Proof. Let Y0, Y1, . . . be a stationary sequence taking values in a nice space
(S,L). We use the Kolmogorov extension theorem to construct a probability
measure P on the sequence space (S{0,1,...},L{0,1,...}) so that Xn(ω) = ωn has
the same distribution as Yn. Take φ to be the shift operator, φ(ω0, ω1, . . .) =
φ(ω1, ω2, . . .) and say X(ω) = ω0, then φ is measure preserving and Xn(ω) =
X(φnω).

We draw attention to an important observation:

Remark 3.12. Let Ω = R{0,1,...} and φ be the shift operator. Let X be a
random variable in (Ω,B{0,1,...}, P ), recall the stationary sequence X1, X2, . . .
where Xn(ω) = X(φnω). Note that an invariant set under the shift operator by
definition has A = {ω : ω ∈ A} = {ω : φω ∈ A}. Hence A ∈ σ(X1, X2, . . .).
We observe now that {ω : φω ∈ A} = {ω : φ2ω ∈ A} from which we deduce
that A ∈ σ(X1, X2, . . .) ∩ σ(X2, X3, . . .). Iteration allows us to conclude that
A ∈

⋂
n σ(Xn, Xn+1, . . .) which is exactly T . This gives us the useful result that

for any A ∈ I, that A ∈ T as well, hence I ⊂ T .

Now we get to the main result about ergodic sequences.
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Theorem 3.13. Birkhoff Ergodic Theorem: If φ is a measure preserving trans-
formation on the probability space (Ω,F , P ), then for any X ∈ L1(Ω),

1
n

n−1∑
m=0

X(φmω) → E(X|I) a.s. and in L1.

Remark 3.14. If the transformation φ is ergodic, then the average will converge
to EX since I is trivial when φ is ergodic.

We can recover the SLLN from the ergodic theorem. Let X1, X2, . . . be
an i.i.d. sequence of random variables. Kolmogorov’s 0-1 law implies that T
is trivial, and since I ⊂ T then I is trivial. Hence {Xi}i is ergodic and the
ergodic theorem gives:

1
n

n−1∑
m=0

Xm(ω) → E(X0) a.s. and in L1.

So, as claimed earlier, the ergodic theorem can be thought of as a generaliza-
tion of the SLLN. Along with these tools, we need some theorems and definitions
from Dynamical Systems theory.

4 Dynamical Systems Theory

The application I studied in this project was a very simple dynamical system
which exhibits very interesting long-term behavior, particularly, chaotic behav-
ior. To explain the problem coherently, we will need some new terminology.

Definition 4.1. Absolutely Continuous Measure: A measure ν is absolutely
continuous with respect to measure µ, written ν << µ, if µ(A) = 0 ⇒ ν(A) = 0.

All measures should from this point forward be considered absolutely con-
tinuous with respect to Lebesgue measure unless otherwise stated.

Definition 4.2. Critical Point: a critical point of a map φ : Ω → R is any
x ∈ Ω s.t. φ′(x) = 0 or does not exist.

Definition 4.3. Orbit: the orbit of a point a under the map φ is the sequence
{φ(a), φ2(a), . . .}

Definition 4.4. Fixed Point: a fixed point of a map φ is any point that satisfies
φ(a) = a.
A Periodic point of period n is any point that satisfies φn(a) = a.

Definition 4.5. Attracting Fixed/Period point: if for a map φ and a fixed point
a, |φ′(a)| < 1, then a is called an attracting fixed point. Similarly, for a periodic
point a of period n, if |(φn)′(a)| < 1, then the cycle (a, φ(a), φ2(a), . . . , φn−1(a))
is called a stable or attracting cycle of period n.
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Remark 4.6. The orbit of a critical point is important and is usually called the
kneading sequence.

We will later state and prove theorems concerning these ideas, but for now,
we state the application studied during this project.

5 An Application of Ergodic theory to a Dy-
namical System

The problem that was considered in this project concerns a family of maps on
the unit interval called tent maps. These maps are defined as:

φα,h(x) =
{

h
αx if 0 ≤ x < α

h
1−α (1− x) if α ≤ x < 1 (2)

α, h : h/α > 1, h/(1 − α) > 1 where α, h are parameters that represent the
position of the critical point and the height of the map.

The focus in the analysis to follow is to determine for which values of h and
α the tent map associated with those parameters is ergodic (with respect to
some invariant measure that is absolutely continuous with respect to Lebesgue
measure). The ergodicity of these maps indicate a property of the long-term
behavior of these maps under iteration. The determination of the long-term
behavior of this map is of general interest. My other interest is in finding the
invariant ergodic measures.
A special case of this map is when α = 1/2 and h = 1. This gives what can be
called “the full height” symmetric tent map. The value of 1 for h represents a
division in the dynamic behavior of these maps. When h > 1, the iteration of
the map no longer is contained in the interval [0, 1]; the map must be extended
to the entire real line in this case. All points except for an invariant Cantor
set will escape to infinity in this case. When h < 1, there will be an invariant
interval contained in [0, 1]. In the so-called “full height” case h = 1, the entire
unit interval is invariant and the map φα,1 will preserve Lebesgue measure.
Figure 1 shows an example of a tent map, this tent map has a finite critical
orbit (φ2(φ(1/2)) is a fixed point) and is symmetric.

Proposition 5.1. The full height tent map, φα,1 preserves λ on [0,1].

Proof. It suffices to prove the result for intervals (a, b) ⊂ [0, 1]. Let 0 ≤ a < b <
1 be given. Notice the pre-image of (a, b) under φα,1 consists of two intervals:
(aα, bα)∪(1−b(1−α), 1−a(1−α)). Now we take the measure of the pre-image:

λ[(φ−1
α,1(a, b)]

= λ[(aα, bα)] + λ[(1− b(1− α), 1− a(1− α))]
= α(b− a) + (1− α)(b− a) = b− a

The case b = 1 is the same really, the pre-image can be thought of as 2 intervals
sharing the common endpoint α. The result is the same. Hence, Lebesgue
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Figure 1: φ1/2,1/
√

2(x)

measure is preserved for all open intervals contained in [0, 1] and hence for all
Borel sets B ∈ B ∩ [0, 1].

We restrict attention to the specific case α = 1/2. This case is the full height
symmetric tent map on [0, 1].

Now we need to show that I is trivial.

Proposition 5.2. The σ-algebra of invariant events is trivial for φ 1
2 ,1.

Proof. We use Fourier analysis for this result. We know that if f is measurable
on [0,1] and f is square-integrable (

∫
[0,1]

|f(x)|2 dx < ∞) or f ∈ L2([0, 1]),
then f has a unique Fourier expansion: f(x) =

∑
k cke2πikx where equality is

convergence of the partial sums

K∑
k=−K

cke2πikx → f(x) in L2[0, 1]

The coefficients ck =
∫ 1

0
f(x)e−2πikx dx are unique.

Now, take f to be the indicator function on some invariant set A ∈ I, f(x) =
1A(x). Assume λ(A) > 0. Notice that for x ∈ A, f(x) = f(T (x)) a.e. Since 1A

is measurable and square-integrable, we have a Fourier expansion for 1A, say

1A(x) =
∞∑

k=−∞

cke2πikx.
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Now, suppose x ∈ A ∩ [0, 1
2 ), then

1A(x) = 1A(2x) =
∑

k

cke2πik2x =
∑

k

cke2πikxe2πikx

⇒ ck = cke2πikx for all x ∈ A ∩ [0, 1/2)

⇒ ck = 0 for all k 6= 0

and if x ∈ A ∩ [1/2, 1] then

1A(x) = 1A(2(1− x)) =
∑

k

cke2πik(2(1−x)) =
∑

k

cke−6πikxe2πikx

⇒ ck = cke−6πikx for all x ∈ A ∩ [1/2, 1] and k 6= 0

⇒ ck = 0 for all k 6= 0

Hence, ck = 0 for k 6= 0, which means that f(x) = 1A(x) is constant on [0, 1].
This shows that either 1A(x) = 0 for all x ∈ [0, 1] which implies A = ∅ a.e. or
1A(x) = 1 on [0, 1] which implies A = [0, 1] a.e. due to our assumption that
λ(A) > 0. Since A ∈ I is arbitrary, this shows that I is trivial.

This proves directly that the full height tent map on [0, 1] is ergodic with
respect to Lebesgue measure. This direct approach works only for the full height
symmetric tent map. We will now demonstrate that for a family of tent maps
including the full height map, that the tent map is equivalent to the shift and
flip operator on the sequence space {0, 1}{0,1,...}. This conjugacy will allow us
to conclude that I is trivial.

Proposition 5.3. φ1/2,1(x) = T (x) is equivalent to the shift and flip operator
τ on the sequence space above, denoted Σ. Equivalent is in the sense that there
is a homeomorphism h : [0, 1] → Σ such that h ◦ T = τ ◦ h. We define τ as,

τ(ω0, ω1, . . .) =
{

(ω1, ω2, . . .) if ω0 = 0
(1− ω1, 1− ω2, . . .) if ω0 = 1

Proof. We use the binary representation of x ∈ (0, 1). The homeomorphism, h,
between [0, 1] and Σ is provided by the binary representation h(x) for x ∈ [0, 1].
Let x ∈ [0, 1] have to following binary expansion x =

∑∞
m=0 am/2n+1 where

am = 0 or 1. Then h(x) = (a0, a1, a2, . . .).
As a map this is not well defined for all x since for any dyadic number, h(x) is
not unique. For example, 1/2 can be represented as either .01111... or .100000...
depending on which of the two intervals 1/2 is thought to lie in. To deal with
this discrepancy, let I0 = [0, 1/2) and I1 = [1/2, 1]. We show that the action of
T on [0,1] is the same then as τ on Σ: let h(x) = (a0, a1, . . .) with ai ∈ {0, 1}.
If a0 = 0 then

h ◦ T (x) = h(2x) = h

(
2

∞∑
m=0

am

2m+1

)
= h

(
a0 +

∞∑
m=0

am+1

2m+1

)
= (a1, a2, . . .) = τ(h(x))

12



If a0 = 1 then

h ◦ T (x) = h(2(1−x)) = h

(
2

[
1− a0 +

∞∑
m=1

1− am

2m+1

])
= h

( ∞∑
m=0

1− am+1

2m+1

)

= (1− a1, 1− a2, . . .) = τ(h(x))

We see that T is equivalent to the shift and flip map on the sequence space.

This conjugacy is the key step to proving the ergodicity of T. To complete the
proof, we would need to show that τ is ergodic, and that topological conjugacies
preserve ergodicity. We do not show here that τ is ergodic, but we do show
at (??) that topological conjugacy preserves ergodicity.

The full height symmetric tent map is very nice in that we have this very
clean proof for it’s ergodicity. We have taken advantage of expressing the trans-
formation in terms of binary coefficients (that we know exist) for every number
in [0,1]. For this case alone we have the equality h

α = h
1−α as well. I was unsuc-

cessful in generalizing this technique to the case when the map is not symmetric
or not full height. Once either symmetry or full height is lost, the binary rep-
resentation of x and the tent map as an operator on the symbol space is lost.
However, there does exist a general theory developed by Dr. Misiurewicz that
established the ergodicity of many tent maps (and applies to a wider range of
functions).

6 Solution for a more General Class

We now turn our attention back to the general family of tent maps defined in
equation (??) of section 5.

Theorem 6.1. If the kneading sequence of the map is finite then the class of
tent maps as defined in (??) is ergodic.

This limits our attention to the parameters choices of h and α for which the
critical orbit is finite (that is to say it lands on a repelling fixed or periodic point
after a finite amount of iterations).
To prove this theorem we refer to a theory developed by Michal Misiurewicz
([2]). This theory deals with a broad class of maps on the interval and shows
ergodic properties of these maps. We will state first which maps this theory
applies to, then show that tent maps satisfy the conditions (or rather restrict
our attention on tent maps which satisfy the conditions), then state the theorem
which gives existence of invariant ergodic measures on an invariant interval. We
next show the construction for the density of the ergodic measures and provide
an example of the process.
We need more definitions from dynamical systems theory to begin with,

Definition 6.2. Schwarzian Derivative: Sf(x) = f ′′′(x)
f ′(x) − 3

2

(
f ′′(x)
f ′(x)

)2

. The
Schwarzian derivative contains important properties of the dynamics of a map.

13



The sign of the Schwarzian derivative is an indication to the existence of at-
tracting periodic points and in some cases, how many attracting periodic points
there can be in a map.

This theory applies to maps on a closed interval I with the following proper-
ties: let A be a finite subset A ⊂ I containing its endpoints. We consider maps
f : I \A → I that are continuous and strictly monotone on components of I \A.
Furthermore, we require that f satisfy the following:

1. f is of the class C1 and Lipshitz

2. f ′ 6= 0

3. Sf ≤ 0

4. If fp(x) = x, then (fp)′(x) > 1

5. There exists a neighborhood U of A such that for every a ∈ A and n ≥ 0,
fn(a) ∈ A ∪ (I \ U)

6. For every a ∈ A there exists constants δ, α, ω > 0 and u ≥ 0 such that:
α|x− a|u ≤ |f ′(x)| ≤ ω|x− a|u for every x ∈ (a− δ, a + δ).

We now show that our tent maps lie in this class of functions. The closed
interval we consider is [0,1], or closed intervals contained in [0,1]. I will be the
invariant interval for the map φα,h. The endpoints for the invariant interval
are determined by the kneading sequence for the map. The right endpoint is
φα,h(α) and the left is φ2

α,h(α) where α is the critical point. Since we want
an invariant interval we look only at maps with parameters 0 < α < 1, and
0 < h < 1, the extremal cases being less interesting. Our finite subset A ⊂ I

consists of the endpoints of I and the critical point, A = {h(1−h)
1−α , h, α}.

1. All tent maps are C1 on the components of I \A, they are C∞ actually.

2. φ′α,h(x) 6= 0 for all x ∈ I \A.

3. The Schwarzian derivative is zero everywhere on I \A.

4. In order for condition (4) to be satisfied, we require that h > α so the
magnitude of the derivative of φα,h is greater than 1.

5. Condition (5) requires that iterates of the critical point and iterates of
the endpoints either land on a point in A or stay away from points in A.
This condition is satisfied if we look only at cases where the orbit of the
critical point is fixed after a finite number of iterations. The orbits of the
endpoints follow the orbit of the critical point (follows from our definition
of the endpoints).

14



6. Condition (6) is trivially satisfied by φα,h since |φ′α,h| ≤ max{ h
α , h

1−α} for
all x ∈ I \A.

All tent maps will satisfy conditions (1), (2), (3), (6), and whenever h > α
condition (4). The only condition not satisfied a priori by all tent maps
with non-trivial dynamics and non-zero measure invariant sets is condi-
tion (5). It is for this reason only that attention has been restricted to
maps with a finite kneading sequence. Experiments indicate that if the
kneading sequence does not contain a finite number of points, then the
natural measure associated with the mapping is not absolutely continuous
with respect to Lebesgue measure (more on this later).

Example 6.3. An example of a tent map which has a finite kneading
sequence can be easily constructed. Take the map

φ 1√
2
, 1
2
(x) =

{ √
2x 0 ≤ x < 1

2√
2(1− x) 1

2 ≤ x ≤ 1

This tent map has the special property that the critical orbit is fixed after
2 iterations: φ( 1

2 ) =
√

2
2 , φ2( 1

2 ) =
√

2(1−
√

2
2 ) =

√
2−1, φ3( 1

2 =
√

2(
√

2−
1) = 2−

√
2 =

√
2√

2+1
. One can easily calculate that the fixed point is

√
2√

2+1
.

The invariant interval is I = [
√

2 − 1, 1√
2
]. A precise graph of this map

illustrating the finite kneading sequence is displayed in figure 1.

6.1 Existence of Ergodic Measures

The main theorem for the existence of ergodic measures absolutely con-
tinuous with respect to Lebesgue measure is,

Theorem 6.4. Let f satisfy (1) - (6), then there exist probability f-
invariant measures µ1, µ2, . . . , µs absolutely continuous with respect to
Lebesgue measure and a positive integer k such that:

(a) supp µi =
⋃

i Gi for certain equivalence classes Gi of the relation ≈
for i = 1, 2, . . . , s

(b) supp µi∩ supp µj is a finite set if i 6= j

(c) 1 ≤ s ≤ Card A− 2

(d) µi is ergodic for i = 1, 2, . . . , s

(e) dµi

dλ ∈ D0 for i = 1, 2, . . . , s

(f) infV {dµi

dλ } > 0 for i = 1, 2, . . . , s where V = supp µi \B

(g) if ρ ∈ L1(λ) then limn→∞
∑k

j=1 fn+j(ρ) =
∑s

i=1 αi
dµi

dλ in L1(λ)
where αi =

∫
D

ρ dλ where D =
⋃∞

n=0 f−n(supp µi). If ρ is continu-
ous then the convergence is also in the topology of uniform conver-
gence on compact sets.
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(h) for every finite Borel measure ν that is absolutely continuous with
respect to λ and f-invariant, one has ν =

∑s
i=1 αiµi, where αi =

ν(
⋃∞

n=0 f−n(supp µi)).

For unimodal maps (such as tent maps), Card A − 2 = 1, since A has two
endpoints and one critical point. Hence for each tent map satisfying (1) - (6)
there is a unique φα,h-invariant measure absolutely continuous with respect to
Lebesgue measure.
In part (e) the space D0 was referred to but not explained, we now elaborate
on this result.

Definition 6.5. For the open subset U ⊂ I consisting of a finite number of
intervals such that the endpoints of I belong to U , denote by B a subset of I \U
such that f(B) ⊂ B. Denote by D0(J) the set of all C0 positive functions τ on
J such that 1√

τ
is concave.

So, D0 is the set of all functions τ on B such that τ |J ∈ D0(J) for all
components J of B. D0 is called the topology of uniform convergence on compact
sets.
The notation dµi

dλ is a Radon-Nikodym derivative. To explain its meaning we
state a theorem:

Theorem 6.6. (Radon-Nikodym) If µ, ν are σ-finite measures and ν << µ then
there is a g ≥ 0 such that ν(E) =

∫
E

g dµ. If h is another such function, then
g = h µ almost surely.

The function g is called the Radon-Nikodym derivative and is denoted g =
dν
dµ . Then (e) can be interpreted that the Radon-Nikodym derivative of µ, our
unique measure (that has µ << λ) with respect to λ is in D0, which means that
the density function of µ is continuous and positive on components of B, where
in our case B is I \ U with U being an open set consisting in neighborhoods of
the points in A.
This theorem then shows us existence and uniqueness of φα,h invariant measures
for parameters (α, h) chosen so that the sequence {φα,h(α), φ2

α,h(α), φ3
α,h(α), . . .}

consists of a finite number of distinct points.
While this theorem provides us with existence and uniqueness of these measures,
neither the theorem nor its proof gives us a way of constructing these measures.
One can construct them however; this will be the topic of the next section.

6.2 Construction of Density Functions for Invariant Mea-
sures

Recall the family of tent maps with parameters α, h,

φα,h(x) =
{

h
αx if 0 ≤ x < α

h
1−α (1− x) if α ≤ x < 1
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Assume α, h are chosen so that the critical point is fixed after a finite number
of iterations. If the critical point, (α, h) is fixed at n + 1 iterations, then denote
A0, . . . , An−1 the intervals that I, the invariant interval is divided into by the
orbit of the critical point. Explicitly, I = [h(1−h)

1−α , h]. The orbit of the critical
point is then {φ(α), φ2(α), . . . , φn+1(α)}. Order this set of points, call the or-
dered set {φ0(α), φ1(α), . . . , φn(α)}. Notice that φ0(α) = h(1−h)

1−α and φn(α) = h.
Then

A0 = [φ0(α), φ1(α)), A1 = [φ1(α), φ2(α)), . . . , An−1 = [φn−1(α), φn(α)].

We compute the inverse images of these intervals. From the construction of the
intervals, it is not difficult to see that for all i, λ(φ−1(Ai)∩Ai) = 0. Now, based
on our numerical experiments (see figures (??), (??)) our φ-invariant measure
is assumed to have the form:

µ(A) = β0 λ(A0 ∩A) + β1 λ(A1 ∩A) + . . . + βn−1 λ(An−1 ∩A). (3)

We set up the following system of equations, let
⋃

i 6=0 Bi = φ−1(A0) where
we will have Bi ⊂ Ai for i 6= 0. We will need to calculate λ(Bi) for each i
then µ(φ−1A0) =

∑
i 6=0 βi λ(Bi). From above we know µ(A0) = β0λ(A0). Set

µ(A0) = µ(φ−1A0) and continue this procedure until the n − 1 equations are
obtained;

µ(A0) = µ(φ−1A0), µ(A1) = µ(φ−1A1), . . . , µ(An−1) = µ(φ−1An−1)

These equations coupled with µ(I) = 1 give us a system of n equations with n
unknowns, we can solve for each βi uniquely. The βi’s are heights of the steps
in the step-function density. We demonstrate this process with a non-trivial
example.

6.3 Construction Example, (α = 1/2, h = 1/
√

2)

Example 6.7. Consider the tent map

φ 1
2 , 1√

2
(x) =

{ √
2x if 0 ≤ x < 1/2√

2(1− x) if 1/2 ≤ x ≤ 1

This is a symmetric tent map with critical value φ( 1
2 ) = 1√

2
fixed after 2 it-

erations. Our invariant interval is I = [
√

2 − 1, 1√
2
] and the critical orbit is

{ 1√
2
,
√

2 − 1,
√

2√
2+1

} and the ordered sequence is {
√

2 − 1,
√

2√
2+1

, 1√
2
}. We have

intervals A0, A1 with values,

A0 =

[
√

2− 1,

√
2√

2 + 1

)
, A1 =

[ √
2√

2 + 1
,

1√
2

]
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Notice that φ−1A0 = A1 and φ−1A1 = A0. The system of equations for β0, β1

is:

β0

( √
2√

2 + 1
−
√

2 + 1

)
= β1

(
1√
2
−

√
2√

2 + 1

)

β0

( √
2√

2 + 1
−
√

2 + 1

)
+ β1

(
1√
2
−

√
2√

2 + 1

)
= 1

The solution to these equations is

(β0, β1) = (
3
2

+
√

2, 2 +
3√
2
). (4)

Experimental results agree with this solution. See section 7.4 and figure 2.

7 Appendix

These remainder of this report will consist of other work done regarding this
project. This includes work I did that is unfinished or work that was unsuccessful
in proving existence/uniqueness. The most significant section is section 7.1
which outlines a proof I created to show existence of ergodic measures for a class
of tent maps. The first step in the proof is to define the itinerary map and show
that it is a homeomorphism from the invariant interval to the sequence space.
We then show that the tent maps on the invariant interval are mathematically
the same as (conjugate to) the shift operator on the sequence space. We show
that ergodicity is preserved in the conjugacy between the shift operator and the
tent map. To show ergodicity of the shift operator, we develop a Markov chain
argument and show that there is a natural Markov chain associated with the
shift operator on the sequence space and that it is ergodic. This shows that our
tent maps on the invariant interval (with finite critical orbits) are ergodic and
finishes the proof. As a disclaimer to the reader it should be noted that the
completeness and accuracy of this proof has yet to be examined thoroughly.
Out of this proof however came another procedure for solving for the density
functions of the invariant ergodic measures, when they exist, that is based off
of ideas that come from Markov chains. Various other ideas included as well.

7.1 Another Existence Uniqueness Proof

This section gives another proof for the existence and uniqueness of certain
ergodic measures developed by myself under the guidance of Dr. Peckham and
Dr. James. The validity of this proof as a whole is still under question, so this
should be considered an unfinished work.
Consider a tent map φα,h (we’ll call it φ for notational brevity) where the
critical point is fixed after a fixed number of iterates, say, l iterates, the orbit
of the critical point is then {φ(α), φ2(α), . . . , φl(α)}. Add the critical point
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to this set and re-label and order the set {φ0(α), φ1(α), . . . , φl(α)}. Let I be
the invariant interval for this map. Partition I into the following subintervals:
Ik = [φk(α), φk+1(α)] for k = 0, 1, . . . , l − 1. We have I =

⋃l−1
k=0 Ik. This is

called the Markov partition. The reason that these partitions are interesting to
this project is that they provide an association of ω ∈ I with elements of Σn,
the restricted sequence space on the symbols {0, 1, . . . , n − 1}. The sequence
space is restricted because not all configurations are possible or admissible. The
following transformation from the invariant interval to the restricted sequence
space, Σn is called the itinerary map,

Definition 7.1. The itinerary map, S : I → Σn is defined by the following
procedure: for all ω ∈ I take the sequence {φn(ω)}∞n=0. For each n, φnω ∈ Ikn

for some kn ∈ {0, 1, . . . , l − 1}. Set S(ω) = (k0, k1, . . .).

Remark 7.2. In words, if the nth iterate of ω under φ is in Ik then the nth

element of the symbol sequence for the point ω ∈ I is k. S is actually a homeo-
morphism that determines a conjugacy between φ on I and the shift map σ on
Σn.

Definition 7.3. Let φ : Ω → Ω and τ : Λ → Λ be two functions. φ and τ
are said to be conjugate if there is a homeomorphism h : Ω → Λ such that
h ◦ φ = τ ◦ h.

We will show that S is a homeomorphism and that the action of the tent
maps on I is conjugate to the shift operator on Σn under this homeomorphism.
This allows the analysis of the tent maps to be reduced to the analysis of the
shift operator on the sequence space.

To show S is a homeomorphism, it must be established that S is 1-1 and
onto, and S and S−1 are both continuous.

Claim 7.4. S is 1-1.

Proof. Suppose x, y ∈ I with x 6= y. Assume that S(x) = S(y), this implies
that φn(x) and φn(y) both lie in the same interval I0, I1, . . . , Il−1. On each of
these intervals, φ is one-to-one and |φ′| = h

α or h
1−α > µ > 1 in either case for

some µ > 1. So, consider the interval [x, y], for each n, φn takes this interval
in a 1-1 fashion onto [φn(x), φn(y)]. The Mean Value Theorem implies that
λ([φn(x), φn(y)]) > µnλ([x, y]). Since µn → ∞, there is a contradiction unless
x = y.

Remark 7.5. This result is true only for most points in I. There are a count-
able collection of points for which this transformation is not well defined. Just
as in binary expansions of numbers on the real line, certain points have mul-
tiple representations. One solution to this dilemma is to make the intervals
I0, I1, . . . , Il−1 half open intervals, for example to take I0 = [φ0(α), φ1(α)), . . .
This solution gives problems in proving that S is onto. The solution I will
adopt is to throw out the set of all points with multiple representations. So,
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when I refer to I from here on in, I will really be referring to I \ B where
B = {α, φ−1(α), . . .}∪{β1, φ

−1(β1), . . .}∪. . .∪{βl, φ
−1βl, . . .}, here β1, β2, . . . , βl

are the endpoints of the partition intervals. This will be a set of measure zero
in the φ-invariant measure µ being constructed due to the fact that µ << λ.

Before S is shown to be onto, I will define admissible sequences in the re-
stricted sequence space. Only certain sequences in the space will have represen-
tations in I through S. In the simplest cases with a sequence on more than 3
symbols, a 0 must be followed by a 1 and a 1 must be followed by a 2 and so on.
For example, a sequence containing the pattern 102 would not be admissible.
The admissible patterns must be taken from the Markov partition.

Claim 7.6. S is onto.

Proof. Let s = s0s1 . . . be an admissible sequence. An x ∈ I must be found so
that S(x) = s. Let I =

⋃l
m=0 Im with l < n. Also, let Im be closed intervals

for each m. Define

Is0s1...sn
= {x ∈ I : x ∈ Is0 , φ(x) ∈ Is1 , . . . , φ

n(x) ∈ Isn
}

= Is0 ∩ φ−1(Is1) ∩ . . . ∩ φ−n(Isn
).

We want to show that Is0s1···sn
form a nested sequence of non-empty closed

intervals as n → ∞. First note that Is0s1···sn
= Is0 ∩ φ−1(Is1s2···sn

). It is clear
that for any given s0, Is0 is closed. Assume that Is1s2···sn is closed for induction.
We want to know what the inverse image of Is1s2···sn is under the tent map.
Depending where exactly s0 is in {0, 1, · · · , l − 1}, i.e. if s0 ∈ {0, 1, · · · , l − 5},
we can deduce that s1 = s0+1, s2 = s1+1, · · · . Also, we are looking at behavior
as n →∞ so we can reasonably assume that n > l. This gives us that s1s2 · · · sn

will contain sl−1, so φ−1(Is1s2···sn
) ⊃ Is0 and hence Is0 ∩ φ−1(Is1s2···sn

) will be
closed. The other two cases are quite similar, as n gets large, n > l so the
argument pushes through in the same way. Now induction will give us that
Is0s1···sn

is a closed interval. These intervals are nested because

Is1s2···sn = Is1s2···sn−1 ∩ φ−n(Isn) ⊂ Is1s2···sn−1 .

Therefore, by the Nested Intervals theroem,
⋂

n≥0 Is1s2···sn
is non-empty and

consists of a single point. This is our S(x) = s, so S is onto. Notice that S is
onto in the RESTRICTED sequence space only.

It still requires to be shown that S and S−1 are continuous.

Claim 7.7. S is continuous on Σk under the metric on Σk defined by:

Definition 7.8. Let x, y ∈ I, call s = S(x) = s0s1 · · · and t = S(y) = t0t1 · · · .
Define

d(s, t) =
∞∑

n=0

|sn − tn|
3n
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For a proof that d is a metric, we refer to [5] or [6], the verification is straight
forward.

Proof. Again, we are restricting attention only to the restricted sequence space.
Take, x ∈ I, say x ∈ Isksk+1··· recall that we have thrown out the endpoints of
all the intervals Isksk+1··· in order for S to be well defined for all points in I (all
points less the measure 0 kneading sequence). Hence, x is not an endpoint of
Isksk+1··· and thus, if x ∈ Isksk+1···sn for finite n > k, then we can find a δ > 0
we can form a ball of radius δ around x wholly contained in Isksk+1···sn

. This
means that S(x) and S(y) for any y ∈ B(x, δ) agree up to the nth term in their
expansion. When we look at d(S(x), S(y)), we see

d(S(x), S(y)) =
∞∑

m=0

|sm − tm|
3m

=
∞∑

m=n+1

|sm − tm|
3m

≤
∞∑

m=n+1

l

3m
=

l

2 · 3n

Now we see if we choose any ε > 0 there is an n such that l
2·3n < ε and for any

n we can choose a δ so that for all y ∈ B(x, δ) agree up to the nth term for any
x ∈ I. Hence for any ε > 0 ∃δ s.t.

|x− y| < δ ⇒ d(S(x), S(y)) < ε.

So, S is continuous.

Claim 7.9. S−1 is continuous.

Proof. To show continuity of S−1 we use the same metric d defined above on
Σk. From the above proof it is clear that for any δ we can pick s0s1 · · · and
t0t1 · · · such that

d(S(x), S(y)) =
∞∑

m=0

|sm − tm|
3m

<
l

2 · 3n
< δ.

We just pick s, t so that the first n + 1 terms agree. We also know that given
these picked s, t there are x, y ∈ I with S(x) = s and S(y) = t, furthermore, if
S(x) = s0s1 · · · and S(y) = t0t1 · · · then if x ∈ Isksk+1···sn then y ∈ Isksk+1···sn .
We also know that neither x nor y can be an endpoint of Isksk+1,···sn . So, we
set γ = length(Isksk+1,··· ,sn

) and if we fix x then for any ε > 0, there exists an
γ < ε such that if we choose δ < l

2·3n then d(S(x), S(y)) < δ ⇒ |x− y| < ε.

This shows that S is a homeomorphism.

Remark 7.10. It is automatic that since S is a homeomorphism between I
and the restricted sequence space that φ on I is conjugate to σ on the restricted
sequence space Σn via this homeomorphism S.

The point and purpose of showing that S is a homeomorphism is that conju-
gacies preserve ergodicity. At times, it is easier to work with transformations on
the sequence space rather than the interval. This conjugacy has been developed
to work with the shift operator on the restricted sequence space.
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Claim 7.11. Conjugacies preserve ergodicity. If φ is an ergodic transformation,
and φ is conjugate to τ , then τ is ergodic with respect to an induced measure.

Proof. To show ergodicity it must be shown that

1. τ is measure preserving: Let φ be an ergodic transformation acting on
the probability space (Ω,F , µ) and τ a transform acting on (Σ,L, ν). Let
h : (Ω,F) → (Σ,L) be a homeomorphism with the property that h ◦ φ =
τ ◦ h, also, say h has inverse function g, then φ−1 ◦ g = g ◦ τ−1.
Since φ is ergodic then µ(φ−1A) = µ(A), if A = g(B) then µ(φ−1◦g(B)) =
µ(g(B)) where A ∈ F and B ∈ L. From the conjugacy relationship
µ(g(B)) = µ(g ◦ τ−1B). We can then write,

(µ ◦ g)(B) = (µ ◦ g)(τ−1B)

so it is clear that τ preserves µ ◦ g and µ ◦ g is a probability measure on
(Σ,L) (this is the afore-mentioned induced measure).

2. the σ-algebra of invariant events for τ is trivial: Let I be the σ-algebra
generated by the invariant events for φ. If A ∈ I then φ−1A = A so,
φ−1(g(B)) = g(B) for g,B as in the proof of (1). Invoking the conjugacy
identity we see g(B) = g◦τ−1(B). This implies that if A is invariant for φ,
then B = h(A) is invariant for τ . It is easy to see that this relationship will
be preserved in reverse as well. This gives us a complete characterization
for the σ-algebra of invariant events for τ , denoted J . What remains to
be shown is that ν ≡ µ ◦ g << µ.
Assume that A ∈ F with µ(A) = 0. Since g is a homeomorphism, there is
a B ⊂ Σ with h(A) = B. Notice that µ(A) = µ(g◦(h(A)) = (µ◦g)(B) = 0.
So if A has measure zero, then its image under g in the sequence space
has measure 0 in the induced measure ν. Hence ν << µ and τ is ergodic.

7.1.1 Proof that σ is ergodic on Σn

We now state a few definitions and theorems that will be useful in the coming
proofs,

Definition 7.12. We define the probability measure Pπ on the sequence space
using Kolmogorov’s theorem. Let pn be a sequence of transition probabilities
and µ an initial distribution on (S,L), we can define a consistent set of finite-
dimensional distributions by

P (Xj ∈ Bj , 0 ≤ j ≤ n) =
∫

B0

µ(dx0)
∫

B1

p1(x0, dx1) · · ·
∫

Bn

pn(xn−1, dxn)

Then Kolmogorov’s theorem allows us to construct a probability measure Pµ on
the sequence space (S{0,1,··· },L{0,1,··· }) so that coordinate maps Xn(ω) = ωn

have the desired distributions. See [1] p. 239 for a full discussion.
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Theorem 7.13. (Lévy’s 0-1 Law) If A ∈ σ(Fn, n ≥ 1) ⊃ T , then E(1A|Fn) →
1A a.s.

Theorem 7.14. (Markov Property) Suppose that Xn are the coordinate maps
on the sequence space, Fn = σ(X0, X1, ·, Xn) and for each initial distribution we
a measure Pµ defined in (??) that makes Xn a Markov chain. Ω0 is the sequence
space on the symbols {0, 1, · · · }. Let Y : Ω0 → R be bounded and measurable.
Eµ(Y ◦ σn|Fn) = EX(n)Y where the subscript µ indicates that the conditional
expectation is taken with respect to Pµ. X(n) is a function X(n) = x.

Remark 7.15. It should be noted that the proof of theorem (??) applies only
to certain cases of maps with a finite critical orbit, not all.

That being established, we turn back to our Markov partitions. A few prop-
erties of this partition must now be proved,

1. There is a natural Markov chain on the symbols 0, 1, · · ·n − 1 associated
with this partition.

Proof. Take the function X : Σn → {0, 1, 2, · · ·n− 1} given by,

Definition 7.16. for s ∈ Σn, say s = s0s1 · · · then X(s) = s0. If σ is the
shift operator then the mentioned Markov chain is {X(s), X(σs), X(σ2s), · · · }.
For notational convenience we say Xn(s) = X(σn(s)).

In order to show this is a Markov chain, it must be shown that

P (Xn(s) = kn|Xn−1(s) = kn−1, · · · , X0(k0)) = P (Xn(s) = kn|Xn−1(s) = kn−1)

for any n and any k. Assume the critical point is fixed after l iterations,
let I =

⋃l−1
k=0 Ik be the Markov partition. Notice first that for all ω ∈ I0

that φ(ω) ∈ I1 and also, for ω ∈ Ik, φ(ω) ∈ Ik+1 for all k = 0, 1, · · · l−5. If
ω ∈ Il−4 then φ(ω) ∈ Il−3 or Il−2 with probabilities p, q respectively. For
ω ∈ Il−3 and ω ∈ Il−2 then φ(ω) ∈ Il−1. For all ω ∈ Il−1, φ(ω) ∈ Ik for
k = 0, 1, · · · , l − 2 with probabilities p0, p1, · · · , pl−2 respectively. We will
have Σl−2

k=0pk = 1. We can represent this relationship with the following
flow map:

I0
prob.1→ I1

prob.1→ · · · → Il−4

p→ Il−3
q→ Il−2

prob.1→ Il−1

p0→ I0
p1→ I1

...
pl−2→ Il−2

This means that if X0(s) = 0 then X1(s) = 1 and if Xi(s) = k, then
Xi+1(s) = k + 1 for any i ∈ {0, 1, · · · , l − 5}. Intuitively this is a Markov
chain because the images of each Ij under φ are

⋃
k∈N Ik for some finite

index set N not containing j. The images of Ij under φ are being dis-
tributed uniformly because φ is a linear function. There will also be only
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one pre-image for any given itinerary. This is due to the nature of the
Markov partition which makes the map 1-1 on each partition. The transi-
tion probabilities are proportional to the lengths (the Lebesgue measure)
of the images of Ij . Now we calculate the probabilities in the above flow
chart.

p =
λ(Il−3)

λ(Il−3 ∪ Il−2)
and q =

λ(Il−2)
λ(Il−3 ∪ Il−2)

and

pi =
λ(Ii)

λ(
⋃l−2

n=0 In)
for i = 0, 1, · · · l − 2.

These probabilities will be the same no matter what the itinerary of the
sequence, since the images will always be uniformly distributed, and hence
the transition probabilities will be proportional to the lengths of the im-
ages of the present interval.

Also, this Markov chain is nice because most of these probabilities are
certain, many transitions occur with probability 1. For example, let
knkn−1 · · · k0 be an admissible sequence, if ki ∈ {0, 1, · · · , l − 5} then
it is followed by ki + 1 with probability 1. If ki = l− 1 then it is followed
by {0, 1, · · · l − 2} with the above stated probability.
The Markov chain has the following properties,

(a) It is irreducible. This should be clear from the above diagram, the
diagram has the intervals in the Markov partition, the intervals cor-
respond directly to the transitions between states. Each state being
positive recurrent follows because we have a finite state Markov chain
with one communicating class.

(b) The chain is aperiodic: l − 1 → l − 2 → l − 1 and l − 1 → l − 4 →
l−2 → l−1, so gcd{2, 3} = 1 ⇒ dl−1 = 1 and 1 communicating class
implies the period of the chain is 1 for any l > 3. In the case where
l = 3 the chain has period 2 (shown in a later section by example)
and the cases l = 2 and l = 1 are not interesting.

2. The Markov chain is ergodic. From above, it should be clear that a sta-
tionary distribution π for Xn exists and π(x) > 0, for x ∈ {0, 1, · · · , l−1}.
We want to show that the σ-algebra generated by the class of invariant
events J is trivial.
Let σn be the n-shift operator, if A ∈ J then 1A ◦ σn = 1A. This is easy
to see; let X be a J -measurable function, then {ω : X(ω) ∈ B} ∈ J for
any Borel set B. This means that for Borel set B, X−1(B) is invariant,
so φ−1(X−1B) = X−1B. This can be restated as {ω : (X ◦ φ)(ω) ∈ B} =
{ω : X(ω) ∈ B}. Now pick the very particular Borel set B = {x}. We get
{ω : (X ◦ φ)(ω) = x} = {ω : X(ω) = x}, the result follows.
Let Fn = σ(X0, X1, · · · , Xn), the shift-invariance of 1A and (??) imply
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Eπ(1A|Fn) = Eπ(1A ◦ σn|Fn) = h(Xn) where h(x) = Ex1A. Here, Eπ

is the expectation with respect to the probability measure Pπ defined by
(??) with µ = π. Ex1A represents taking the expected value of 1A with
respect to the random variable Xn = x. (??) implies Eπ(1A|Fn) → 1A

a.s. and since Xn is irreducible and positive recurrent, then for any
y ∈ {0, 1, · · · , l − 1}, EXn1A = Ey1A i.o., so either h(y) = 0 or 1 which
implies Pπ(A) ∈ {0, 1}. Hence the Markov chain {Xn}∞n=0 is ergodic. So,
{Xn}∞n=0 = {X(σns)}∞n=0 is ergodic.

Corollary 7.17. φ is ergodic on I.

Proof. It was established in (??) that the shift map σ on Σn is conjugate to
φ on I and conjugacy preserves ergodicity. Hence the ergodicity of σ on Σn

implies the ergodicity of φ on I provided that the orbit of the critical value is
finite.

This not only concludes the second proof of this fact, but it is more general;
it holds not only for the full height symmetric map, but any map with a finite
critical orbit. The proof is given more for landing on a repelling fixed point, but
it appears to generalize easily to the repelling periodic point case.

7.2 An Example of Solving for the Invariant Densities us-
ing Markov Chains

The Markov chain proof of ergodicity provides a constructive method for solving
for the densities of the invariant measure. For this example we take our tent
function to be the same as in the previous constructive example, let φ be defined
as in (??). First, we need to know the transition probabilities. The Markov
partition consists of 3 intervals:

I0 =
[√

2− 1,
1
2

]
, I1 =

[
1
2
,

√
2√

2 + 1

]
, I2 =

[ √
2√

2 + 1
,

1√
2

]
We have the flow map

I0
prob.1→

I1
prob.1→

I2

p→ I0
q→ I1

where

p =
λ(I0)

λ(I0) + λ(I1)
=

3
2 −

√
2

3− 2
√

2
=

1
2

= q

Then we have for the transition probability matrix: 0 0 1
0 0 1

1/2 1/2 0


We solve πP = π where π = (π0 π1 π2) gives π0 = π1 = 1/4 and π2 = 1/2.
To find the heights of the step functions in the distribution for the invariant
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measure, normalize these probabilities with the length of their corresponding
the intervals:

β0 =
π0

λ(I0)
, β1 =

π1

λ(I1)
, β2 =

π2

λ(I2)
.

Computing the values gives:

β0 = β1 =
1/4

3/2−
√

2
=

3
2

+
√

2 , β2 =
1/2
√

2−1
2+
√

2

= 2 +
3
2

√
2

This agrees with the results of the first example, (??).

7.3 Experimental Results

My initial stages in this project consisted of numerical simulation and exper-
imentation. To gain insight into the form of the invariant measures for finite
critical orbit cases I tried iteration of random (or special) points in the invariant
interval and observing the behavior under iteration. From these experiments it
was conjectured that the form of the invariant measures were step functions.
A word on the experimental results:
The first simulations were run by iterating random points in a map where the
critical point was fixed after 2 iterations. The result of this can be seen in fig-
ure (??), suggesting a probability density which is constant on 2 subintervals.
Another example was a map with the critical orbit fixed at 3 iterations, this
result can be seen in figure (??).

Experimentation was also done under the assumption that smooth (C1) func-
tions were needed to apply the Misiurewicz result. Since the tent maps are not
C1-smooth, a smooth approximation was created. This assumption is actually
not needed since the Misiurewicz result applies directly to the tent maps. The
smoothed tent maps are formed as follows:

φα,h,ε(x) =


h
αx 0 ≤ x < α− ε

a + bx + cx2 + dx3 + ex4 + kx5 α− ε ≤ x ≤ α + ε
h

1−α (1− x) α + ε < x ≤ 1

The coefficients a, b, c, d, e, k can be uniquely solved for in terms of α, ε (I solved
for them using Mathematica). It can be shown that these approximations satisfy
all conditions of the Misiurewicz theorem, the only condition that is non-trivial
is condition 3, that the Schwarzian derivative for the smoothed functions be
non-positive. This can be shown by direct computation once the coefficients are
computed.
For visualization I created several histograms corresponding to special cases of
tent maps where the critical point 1/2 is fixed after 2 iterations in the first
set, and 3 iterations in the second set. Each set has 4 figures. The first is the
density for the tent map with the above parameter values, the next 3 figures
are a progression of histograms for the smoothing functions associated with the
particular tent map with epsilon = .1, .01 and .001. These show the convergence
of the smoothing functions’ density to the step function of the tent map.
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Figure 2: Critical orbit fixed after 2 iterations

Figure 3: Critical orbit fixed after 3 iterations
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A word on the titles for the graphs: most are labeled by the number of step
functions in the density. 70,000 or 70k represents the number of iterations of the
random point, 100 or 1k represents the number of subintervals the unit interval
was divided into for the histogram.

Figure 4: critical orbit fixed after 2 iterations
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Figure 5: critical orbit fixed after 2 iterations
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Figure 6: critical orbit fixed after 2 iterations

Figure 7: critical orbit fixed after 3 iterations
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Figure 8: critical orbit fixed after 3 iterations

Figure 9: critical orbit fixed after 3 iterations
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