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Abstract: 
Solving an equation of the form'/(z) = 0 to fmd the complex roots of the function f is a 

· common problem in applied mathematics. A common iterative numerical method for 
fmding roots is Newton's Method. Newton's method is commonly known to fail to 
converge to a root if the "starting po inf' is close to equidistant from a pair of roots of the 
function. This reportipaper is an extension of a paper titled ''Newton's Versus Halley's 
Method: An Approach Via Complex Dynamics" by Roberts and Horgan-
Kobelski[2004 ]. Using a reduction of parameters and analytic techniques, the authors 
proved the existence of superattracting period-n orbits for all n under Newton's Method. 
Their proof involved looking at a single real parameter family of real rational maps which 
had implications for the full complex Newton's Method, especially 'the complex cubic 
polynomials where the roots form an isosceles triangle. This paper extends their results 

· by analyzing more completely the real rational family. Besides the superattracting 
period-n orbits found by the authors, numerical evidence shows that many other 
superattracting periodic orbits are born as the parameter is varied. Classifying these other 
superattracting periodic orbits by rotation numbers is done by using a conjugate circle 
map. 
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1. Introduction: Solving an equation of the form/(z) = 0 to find the complex roots 

of the function f is a common problem in applied mathematics. A common iterative 

numerical method for finding roots is Newton's Method, discovered by Sir Isaac Newton, 

and published in The Method o/Fluxions in 1736. Although Newton's method has been 

used to find roots of functions for many years, it is commonly known to fail to converge 

to a root if the "starting point", "initial condition", or "seed" is close to equidistant from a 

pair of roots of the function. This report/paper is an extension of a paper titled 

''Newton's Versus Halley's Method: An Approach Via Complex Dynamics" by Dr. 

Gareth E Roberts and Jeremy Horgan-Kobelski[2004]. Their paper compared and 

contrasted the numerical root finding differences between Newton's and Halley's Method 

for complex cubic polynomials. Using a reduction of parameters and analytic techniques, 

Roberts and Horgan-Kobelski proved the existence of superattracting period-n orbits for 

all n under Newton's Method and Halley's Method. This research paper deals only with 

Newton's Method for cubics and extends the Roberts and Horgan-Kobelski results. More 

specifically, we examine complex cubic polynomials where the roots form an isosceles 

triangle. Besides the superattracting period-n orbits found by Roberts and Horgan

Kobels~, numerical evidence shows that many other superattracting periodic orbits exist 

just on the perpendicular bisector of two roots for varying values of the parameter. 

Classifying these other superattracting periodic orbits by rotation numbers is done by 

using a conjugate circle map. 

Chapter 2 presents some basic preliminary detail for Newton's method along with 

some basic definitions for analyzing the dynamics of Newton's Method. Chapter 3 
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presents some of the previous results from the Roberts and Horgan-Kobelski paper along 

with some basic motivation for the topic of this paper. Chapter 4 introduces numerical 

evidence and graphical evidence of periodic orbits. Chapter 4 also looks at the basin of 

attraction for the fixed point and periodic orbit both for a specific parameter value along 

with a general phase space. Chapter 5 introduces circle maps as a tool to classify the 

periodic orbits found in chapter 4. Chapter 6 provides some conjectures based on 

graphical evidence from the circle maps. Chapter 7 contains the code and tables used or 

developed in this project. 

2. Preliminaries: 

Newton's Method for fmding roots of a complex polynomial pis iterating the 

rational map: 

N (z)=z- p(z) 
P p'(z) 

Newton's Method has been studied for many years and much is known for linear, 

quadratic, and cubic functions. Cubic functions, although studied, still have a lot to be 

discovered. 

It is kn~wn that if p is degree d and has distinct roots (complex or real), then NP is a 

rational map of degreed. It is clear that the simple roots an of p(z) are the fixed points 

of NP as shown by a simple computation: 
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Again, a short computation shows that the roots ofp are superattracting (the derivative on 

Nat the fixed point js zero): 

N' (z)--P_(z_)P_'_'(z_) 
P - [p'(z)]2 

It is also important to note that any inflection points, r1, of p are also critical 

points of NP ; they are called.free critical points. The term.free critical point comes from 

the fact that the fate of a free critical point is not always known, whereas the roots of p 

are always the fixed points of NP . 

Critical points are heavily studied in complex dynamics because it is known that 

if there exists a superattracting periodic orbit, a critical point must be on the orbit. This 

comes from the idea that a superattracting periodic orbit has an iterate that lands on a 

point where the derivative is zero. Since the critical points are the only points that have 

the derivative being zero, at least one critical point must lie on the periodic orbit. 

Moreover, critical point orbits are studied because not only do they find all 

superattracting period-n orbits, but they find all attracting period-n orbits. A big theorem 

using the Schwarzian Derivative states that if there exists an attracting period-n orbit for a 

fixed parameter value, then the orbit of some critical point will be attracted to that period-

n orbit. 

Attracting periodic orbits are essentially "bad" for Newton's method because they 

. imply that there exist whole regions of initial starting points for which Newton's Method 
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fails. While this is bad for Newton and his algorithm, it provides us with some very 

interesting dynamics. 

Finding the roots of a linear function with Newton's Method is trivial, as long as 

the linear function is not constant. Newton's Method converges to the unique root after 

one iteration. 

Newton's Method for quadratic functions is much more complicated. A quadratic 

function has two roots x± . There exists a perpendicular bisector between x± that divides 

where orbits will converge. Any orbit with initial seed closer to the root x_ will 

necessarily converge to x_, and similarly any orbit initial seed closer to the root x+ will 

necessarily converge to x+. On the perpendicular bisector however, Newton's Method 

fails to locate a root of the quadratic function. The bisector is invariant and is known to 

exhibit chaotic behavior. 

Newton's Method for complex cubic functions, although heavily studied, is very 

complicated and still has many unsolved areas[J.H Curry, L. Garnett and D. 

Sullivan,1983]. One of the reasons for the difficulty of the cubic family is that it has four 

complex parameters. Newton's Method for complex cubic polynomials has 4 critical 

points, as can be seen by the numerator of N'P (z) on page 6. Three critical points are 

classi~ed as just critical points and are the roots of the polynomial (fixed points of NP), 

while the fourth critical point is called a ''free" critical point and is found by finding the 

inflection point of the cubic polynomial. 

8 



·; 2.1. Basic Definitions 

The following definitions are taken from Devaney[1992]. 

Orbit: Given an z0 , we define the orbit of z0 under a function F to be the 

sequence of points z0 ,z1 = F(z0 ),z2 = F 2 (z0 ), ••• ,zn = Fn(z0 ). Aperiodic orbit is 

a sequence of points which eventually repeats itself. 

Fixed Point: A fixed point is a point z0 that satisfies F(z0 ) = z0 • The orbit of 

the fixed point is constant: z0 , z0 , z 0 , z 0 ••• 

Periodic Point: A periodic point is a point which lies on a periodic orbit. 

Attracting Point: A point z0 is attracting if I F'(z0 ) I< 1 

Superattracting Point: A point z0 is superattracting if I F'(z0 ) I= 0 

Repelling Point: A point z0 is repelling if I F'(z0 ) I> 1 

Attracting Periodic Orbit: Given an orbit : 

z0 ,z1 =F(z0 ),z2 =F2 (z0 ), ••• ,zn =Fn(z0 ), the orbit is.attracting if 

Superattr~cting Periodic Orbit: Given an orbit : 

z 0 , z1 = F(z0 ),z2 = F 2 (z0 ), ••• ,zn = Fn (z0 ), the orbit is superattracting if 

Repelling Periodic Orbit: Given an orbit : 

z 0 , z1 = F(z0 ), z2 = F 2 (z 0 ), ••• , zn = Fn (z 0 ), the orbit is attracting if 
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. ~ 3. Background 

3.1. Reduction from a 4 parameter family to a 1 parameter family: 

Because of the difficulty of the complex cubic family under Newton's Method a 

reduction from a four parameter family to a one parameter family is constructed as 

follows[Blanchard, 1991, Roberts and Horgan-Kobelski,2004]: 

Given any triangle formed by the three distinct roots a1,a2 ,a3 in the complex 

plane there is a similarity transformation that takes the longest side of the triangle to the 

real interval· [-1, 1] and the remaining vertex to a point in the upper half plane above the 

segment of the real axis [-1,1]. A similarity transformation is a map T: 9tk ~ 9tk that is 

th~ composition rotations, flips, and translations. By making use of a similarity 

transformation, we can restrict the study of almost all cubic polynomials to the one 

parameterfamilypA.(z)=(z-l)(z+l)(z-A.), A.e O!:and zeO!:. The parameter space is 

depicted by the following diagram. The parameter space is geometrically constructed by 

drawing 2 circles with radius 2 around the points 1, and -1. The intersection of these 

circles in the upper half plane is on the perpendicular bisector of the line between -1 and 

1. Usually the parameter value A. is chosen anywhere on the right arc of the "triangle" or 

in the interior (gray area) of the triangle. If a parameter value A. is chosen outside of this 

region, another similarity transformation would bring the parameter value into the 

triangular region. The vertical line passing through the triangle is referred to as the spine 

and is the imaginary axis in the complex plane. Parameter values on the right (or left) arc 

correspond to isosceles triangles. Any parameter value A. chosen on the left arc is 

equivalent to choosing a value on the right arc, hence the dotted line. The parameter 

· values chosen on the left and right arcs are also equivalent to choosing a parameter value 
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on the solid part of the spine. This can be visualized by starting with the upper vertex of 

the isosceles triangle and rotating the triangle so the vertex in on the imaginary axis. 

Then take the base of the isosceles triangle formed by the roots and scale the triangle so 

that the base of the triangle fits to the region [-1, 1 ], again using a similarity map. The 

only cubic polynomial that cannot make use of this similarity conjugacy is the cubic 

polynomial z 1--7 z 3 (1 root with multiplicity 3). The family is chosen for the symmetry 

that it possesses about the imaginary axis, both in the parameter plane and in the dynamic 

plane. 

1 

_,, Parameter Space for Complex Cubic Polynomials 

Note: Roberts and Horgan-Kobelski's parameter space triangle was shaded in 

completely because they used an affine transformation. However, using a similarity 

transformation which is 1: 1 for parameter values in the right half of the triangle to the 

equivalent classes of complex cubics, we can reduce the parameter space to include only 

the right side of parameter space triangle and the "dotted" spine in the interior of the 

triangle. 
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3.2. Critical Point Behavior 

In our case we only have 4 critical points: 3 fixed and 1 free critical point. Since 

the fate of 3 of the critical points (the roots of the cubic polynomial) is known, all 

attracting periodic oribts can be found by iterating the free critical point. The free critical 

point r = ).,/ 3 is verified by the following short computation: 

p;, (z) = (z -l)(z + l)(z -A) 

P;. "(z) = 4z + 2(z-A) 

p'(z)=O~z=)., 
3 

Mandelbort-like Picture on the Parameter Space 

The Mandelbrot-like picture made by Roberts and Horgan-Kobelski is generated by a 

computer algorithm that iterates the free critical point using Newton's Method on the 
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cubic polynomial for A.e [-2,2]x[0,3.5]i. This picture is shown in the parameter space, 

in which the algorithm takes the parameter value and computes the corresponding free 

critical point and iterates it for a certain user defined amount of iterations. The 

Mandelbrot-like picture is made of 4 colors; 1 unique color for each root (green for the 

· root at -1 and red for the root at 1), blue for the fixed point (the other root), and black 

(which is difficult to see in the diagram). If the orbit of the critical point reaches within a 

certain distance of a certain root it is colored the corresponding color of that root, either 

green if the orbit is close to -1 or red if the orbit is close to 1. If the orbit of the critical 

point converges to the fixed point A., then it is colored blue, the corresponding color of 

the fixed point. If the orbit does not converge to a root after a given amount, q, of 

iterations then it is colored black. 

It is important to note that when a parameter value is taken from the center or 

middle area of the triangle-like region, the critical orbit starting with A. will converge to 
3 

the nearest root A., as depicted by the blue area. As the parameter value moves closer to 

either the boundary arc or the spine the critical point is now equidistant from more than 

one root and will be close to forming an isosceles triangle and will have trouble 

converging. This "trouble" is shown by the beetle-~ike decorations in the previous figure 

given by Roberts and Horgan-Kobelski. At the base of each of these "beetles" is a small 

Mandelbrot set. These Mandelbrot sets are partially the motivation for this paper. 

13 



Monochrome Mandelbrot-like picture in the parameter space 

The above "zoomed in" pictures of the spine in the parameter space show 

evidence of baby Mandelbrots Sets. 
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The coloring in these diagrams is similar to that of the parameter space on page 

12. In this case, however, convergence to a specific root is ignored. The parameter value 

is colored red if the orbit of the critical point converges to a root, yellow if it takes many 

iterations to converge to a root, or black if the orbit of the critical point does not converge 

to a root. The shading in the diagram corresponds to the rate of convergence to a root. 

These diagrams were originally computed by Curry, Garnett, and Sullivan[1983], and 

Blanchard[1991], but referenced in Roberts and Horgan-Kobelski's[2004] paper. 

3.3. Restricting A-values to the imaginary axis: 

Most of the results in this paper come from restricting the A-values to the case 

when A = /Ji, fl e 9l . It is because of the similarity conjugacy that the dynamics along 

each triangular arc are equivalent. Because the solid spine and each arc are equivalent, it 

is easiest to study the isosceles case by restricting our studies to the imaginary axis or 

vertical spine in the parameter space. 

With A= /Ji we have p A. (z) = (z 2 -l)(z - /Ji) and p'A. (z) = 3z2 -1-2/Jizwith 

z = x + yi. It follows that p A. (yi) is pure imaginary by the following short computation: 

p A. (yi) = ((yi) 2 - l)(yi - /Ji)= (-y -l)(yi - /Ji) 

This computation shows a real number multiplied by an imaginary number and therefore 

yielding a strictly imaginary number. Therefore the imaginary axis in the dynamic space 

is invariant under Newton's Method where A= /Ji. In other words, every iteration of a 

pure imaginary number yields pure imaginary output whenever the parameter A is strictly 

imaginary. Moreover, since the free critical point r =A I 3 =/Ji I 3 is also pure imaginary, 
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we can restrict our study to a rational map of one variable. This map is determined by 

computing the imaginary part of Rp(Y) = Im(N p;(yi)) and is given by: 

2y3 - f3y2 + /3 
Rp(y)= 3y2 -2/Jy+l (1) 

where f3 is our new real valued parameter and y is a real number corresponding to the 

imaginary part of the original number z . The free critical point is now r = f3 I 3 and we 

are interested in the orbit of all initial seeds, including the critical point, under Rp for 

varying values of f3. 

Notice that R (/3) = 2(/3)3 
- /3(/3) 2 + /3 = 2/33 

- /33 + /3 = /33 + /3 = /3 = f3 
p 3(/3)2 -2/3(/3) + 1 3/32 -2/32 + 1 /3 2 + 1 1 

Therefore f3 is a fixed point of Rp(Y). This was expected since /3i is fixed under the 

original Newton's Method as one of the roots. 

Similarly to N'P (z) in section 2, we 

have R' (y) = 2(Y - /3)(3 Y - /3)(y 2 + 1) ::::::> R' (/3) = 0 R' (/3 I 3 = 0) This confirms that 
p (3y 2 -2/3y+l)2 p ' p 

y = f3 is a super attracting fixed point and r = f3 I 3 is the free critical point. Finally 

solving Rp (y) = y for the fixed points of R p , we obtain the cubic 

equation y 3 - f3y 2 + y - f3 = (y - /3)(y 2 + 1) = 0, confirming that y = f3 is the only fixed 

point. 

It is important to note that along each of the arcs and solid spine only 2 colors will be 

present. On the right arc the colors will be "green" and black; green corresponding to the 

orbits converging to the root at -1 and black corresponding to the orbits not converging to 

the root. On the left arc the colors will be "red" and black; red corresponding to the 
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orbits converging to the root at 1 and black corresponding to the orbits not converging to 

the root. On the solid spine or imaginary axis the colors will be "blue" and black; blue 

corresponding to the orbits converging to the fixed point P and black corresponding to 

the orbits not converging to the fixed point. Given a parameter value Ai on the solid 

spine with map N Pi.., then there exists a parameter value Ai with conjugate map N PAi on 

the left arc and then there exists a parameter value ~with conjugate map NPllJ on the 

right arc. Examining the dynamics of the critical point Ai /3 under its map NPi... is 

equivalent to examining the dynamics of the critical point Ai I 3 under the conjugate map 

NPNJ. or examining the dynamics of the critical point ~ /3 under the conjugate map 

NPAJ From this we can say that ifthe orbitAi /3 ~Ai, then the orbit of Ai 13~1 for Ai 

on the left arc, or ~ I 3 ~ -1 for ~ on the right arc. And similarly, if Ai was colored 

black, so would Ai and ~ . So, if there was a different color other than the black and the 

corresponding color of the vertex opposite of the base of the isosceles triangle made by 

the roots, then there must exist a flaw in the algorithm for drawing the picture. 

4. The Dynamics of Rp 

4.1 Known Dynamics 

The dynamics of all initial y values can explained forO < P < .J3 . However, first 

P = 1 is chosen to illustrate the dynamics of this interval of p. 

Graphical iteration is a useful way to visualize the behavior of initial seeds. It is 

- easiest to think of graphical iteration as starting on the reference line y n = y n+l' (y = x) . 
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The starting points on the reference line represent the initial seeds. Each iterate is 

equivalent to going from the reference line to the graph of Rp and then back to the 

reference line as depicted by the red "cobweb" designs in the following figures. This 

graphical "cobweb" technique is widely used in examining dynamics and will be used in 

l 
l 

l 
' 

this paper to show specific dynamics for different f3 values. 

Any orbit with initial x value starting to the right of y = /3=1, will necessarily 

converge monotonically to the fixed point at y = 1. Similarly, any orbit with initial x 

value starting to the left of the fixed point will increase in value until the iterates pass the 

value y = 1, which in tum will then decrease monotonically and converge to the fixed 

point. The only exception is points that are the pre-images of the fixed point at /3 = 1 . 

These pre-image points will monotonically converge and land exactly on the fixed point 
> 
~ 

i after a finite number of iterations. 
' \ 
' 1 

-t 

-z 

Here are two plots with f3 = 1 , showing 2 different orbits that get attracted to the fixed 

point. However, these are not orbits of the critical point. 

18 



Claim: Similarly, forO < P < J3 ,we can extend the previous example to show that all 

orbits converge to the fixed point P , including the free critical point. The point y = P is 

thus a globally attracting fixed point. 

Explanation: First notice that the poles (asymptotes) of Rp,Y± = (P±~P2 -3)/3 are 

real only if P ~ J3. At P = J3 there is a single pole at the free critical point r = J3 I 3 . 

Thus, the denominator of Rp is strictly positive in the regime of 0 < P < J3 . From this 

it is straight'-forward to compute thatRp(Y) > y when y < P ,and Rp(Y) < y when 

y > p. Similar to the P = 1 case, we know that any point to the right of the fixed point 

I l will monotonically converge to the fixed point at p. We also know that all points to the 

left of the fixed point P (with the exception of the pre-images of the fixed point) will also 

converge to the fixed point at P by first increasing until the orbit passes the critical point 

and then monotonically decreasing to the fixed point. The pre-images of the fixed point 

will converge monotonically to the fixed point as in the specific case for P = 1. 

j 

I Visually, these maps for 0 < p < J3 correspond to parameter values in the 1 
I middle area of the triangle in the parameter space on page 9. Note that the whole 

triangular area is one color in the parameter space; the color of the fixed point A. . 
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4.2 The Interesting Dynamics Begin 

Plot of Rp with f3 = J3 

At /3 = J3 a double root develops in the denominator in the graph of Rp in equation (1). 

This causes the free critical value to be undefined, so therefore Newton's Method cannot 

· iterate because of an undefined portion of the formula. However, using graphical 
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iteration it is still obvious that other initial seeds, besides the free critical point, will 

necessarily converge to the fixed point. All points that are pre-images of the critical point 

will also be undefined after some finite number of iterations and therefore undefined for 

Newton's Method. 

For the parameter f3 > .f3 is where the interesting dynamics occur. A change in 

dynamics causes the overall question "What happens to all values of y for all /3" to 

become a more difficult question. This change in dynamics occurs when asymptotes 

develop in the graph of Rp in equation (1). The asymptotes correspond to the 

denomiri.ator of Rp being able to be factored into two real roots, whereas 

with 0 < f3 < .f3, the denominator has no real roots. These asymptotes allow orbits to 

have different fates other than only strictly going to the fixed point f3. Roberts .and 

Horgan-Kobelski[2004] showed that many parameter values exist for corresponding 

maps which have superattracting periodic orbits. 

4.2.1 A Specific Example 
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For example, this figure shows the graph of Rp for f3 = 2.3963854 along with a 

superattracting period 4 orbit of the critical point. This parameter value is chosen to 

correspond within numerical accuracy to a map in which a superattracing period 4 orbit 

exists. This particular orbit is also referred to as a superattracting period 4 orbit with 

rotation number Y4. A rotation number for a periodic orbit is a rational number p where 
q 

q is the primary period of the cycle and p is the number of points on the orbit that land 

between the asymptotes of Rp ,y±. So, for example, the previous diagram of Rp with 

f3 =2.39638545, is a super attracting period 4 cycle with rotation number_!_ because the 
4 . 

orbit lands exactly on the critical point after 4 iterates and only one point on the orbit lies 

in the middle interval between the asymptotes. 

4.2~1.a. Basin of Attraction for the Fixed Point for f3 = 2.39638545 

For f3 > J3, Rp has two unique asymptotes y _ and y +,where y _ is the left 

asymptote and y + is the right asymptote. The free critical point r = f3 I 3 is always 

between the two asymptotes. It is important to note that, for any f3 > .fi, anytime an 

orbit lands to the right of the right vertical asymptote y + , the orbit will necessarily 

converge to the fixed point at f3. The interval (y +, oo) is called the "immediate basin of 

attraction" for the fixed point at f3 . The "immediate basin of attraction for the fixed 

point" means that every point in this interval will have an orbit that necessarily converges 

to the fixed point. Further classification of ''basin of attraction for the fixed point" refers 
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to the immediate basin of attraction and pre-images of the immediate basin ofattraction 

for the fixed point. 

Basically, there are three different types of orbits; orbits that start in or eventually 

land in the immediate basin of attraction for the fixed point, orbits that land in the basin 

of attraction for periodic orbits and pre-periodic orbits, and orbits that are neither and that 

most likely land on the dividing poitits between the previous two basins of attraction. 

Graphically, the immediate basin of attraction for the fixed point is depicted as the gray 

shaded region in the following diagram. 

figA figB 

Figure A shows the iµunediate basin of attraction and the existence of a periodic orbit 

that doesn't converge to the fixed point. 

Figure B shows an orbit that lands in the immediate basin of attraction and therefore 

necessarily converges to the fixed point. 
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By taking successive pre-images of the interval (y+,oo) ,or equivalently, of the left and 

right asymptotes, one can find some initial seeds or even regions that will neces-sarily 

converge to the fixed point. 

-s 

Pre-images of the basin of attraction 'for the fixed point with /3 = 2.39638545 

In the previous figure a few pre-images of the basin of attraction are displayed on the 

graph of Rp. The blue line represents pre-image points of the fixed point. The green and 

red lines represent the pre-image interval for the basin of attraction where the red is the 

right endpoint of the pre-image interval, and green is the left endpoint. The blue line lies 

in the interior of this interval. Successive pre-images past the few shown in the diagram 

I 
i 
I 

become more difficult to compute. Multiple pre-image intervals now appear as pre-

imagesat each step. For example pre-images can exist in the middle interval (y _, y +)and 

I 
i 

I 24 

! 



therefore successive pre-images after this middle interval will land near the earlier pre-

images. This phenomenon will be seen in the following pre-image analyzer plots. 

4.2.2 General Case for Varying /3 Values: 

4.2.2.a. Basin of Attraction of the Fixed Point for Varying f3 Values: 

Computing the pre-images of the basin of attraction for one value of f3 is not too 

difficult, but to know what happens to all y's and all f3 values is a much more difficult 

question to answer. One way to look at many values of f3 and y at the same time is the 

following figure C. Figure C was constructed using a simple computer program called 

Pre-Image Analyzer. Using this program, the user defmes the increment for they and f3 

values (both use the same increment), the interval of y and f3, and number of total 

iterations of x. The figure was constructed by iterating many y values for many different 

/3 values. 

Pre-Image Analyzer 

Enter starting b value :=1. 732051 
Enter ending b value :=5 
Enter starting y value :=-10 
Enter increment ofy value:=.0001 
Enter number of iterations for each y:==l 2 

Figure 1. User Interface for Pre-Image Analzer 

Figure C shows the Pre-Image Analyzer depicting some (/J, y) points that converge to the 

fixed point. The Pre-Image Analyzer takes the initial seeds (y values) and iterates them 
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using the Rp function. The points are then colored by the'number of iterations it took the 

orbit of each seed to enter the immediate basin of attraction for the fixed point (y +, oo) . 

Each color corresponds to a given amount of iterations, as given by the following table: 

Iterates Color 
0 Black 
1 Yellow 
2 Green 

Light 
3 Blue 

Dark 
4 Blue 
5 Purple 
6 Pink 

' 
Each successive color is a pre-image of the previous color and can be best visualized by 

the colored near-horizontal bands. The large black area at the top of the figur~ C 

corresponds to points that started in the immediate basin of attraction for the fixed point. 

I 
I 

fl 
2.5 3 3.5 4 4.5 

Figure C shows pre-images of the basin of attraction 
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While this figure shows information for orbits of different y values that land in the 

immediate basin of attraction after 6 iterates, it doesn't reveal any information for the y 

values that are not colored. Such points could be attracted to a periodic orbit, could be 

points with iterates that do not enter any basin of attraction, or the points could be in the 

basin of attraction for the fixed point after more iterations (because 6 iterations is not 

very many iterations). The parabola-like features in figure C come from1the pre-image 

intervals landing in the middle interval (y _, y +) , as mentioned in the previous section. 

Note the purple parabola originates around the parameter value f3 = 2.2 . This 

phenomenon corresponds to the 5th pre-image interval going through the middle 

interval (y _, y +) . More pre-images of the immediate basin of attraction would be nicer. 

However, it would be very difficult to differentiate the different bands with just a limited 

amount of colors. 

By increasing the number of iterates it takes to get to the interval (y +, oo) , 

neglecting the colors, and just testing whether or not the initial seed eventually entered 

the interval (y +, oo) , the following figure D shows a similar, yet different result. , 
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Figure D shows all y values that entered the basin of attraction after 50 iterates or earlier. 

Figure D suggests further iterations leave behind white ''untouched" areas, or areas of y 

values did not converge to the fixed point. This picture suggests that most initial seeds 

converge to the fixed point, but the white areas imply that this is not the only case and 

that other dynamics occur. 

4.2.2.b. Periodic Orbits of Rp 

It turns out that much of the white in figure D is explained by the existence of 

attracting periodic orbits. As proved by Roberts and Horgan-Kobelski[2004], there exists 

a parameter value for which the corresponding map has superattracting periodic cycles of 

period n for all n greater than 2. They stated that there exists a decreasing sequence, qn, 

toward J3 , of parameter values that correspond to period-n superattracting orbits. The 

following is some of their proof included here for completeness. 
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!!_(R (fl/3)) = (fl2 +9)2 > 0. 
dfl p 9(fl2 -3)2 

Taken with that fact that the lim . r.+ R p (fl I 3) = -oo , it follows that the image of the 
. P~3 

critical point r is decreasing towards - oo as fl decreases towards Ji This is the key 

fact behind the proposition. 

Let n be some period with n ~ 2. Consider g n (fl) = R'ft (fl I 3) - fl I 3 as a function 

of the parameter fl. A root of g n (fl) gives a period n cycle for Rp and this cycle is 

superattracting because it contains the critical point r in its orbit. We can claim without 

explanation that there exists a value q n with .J3 < q n < 3./3 such that g n (fl) is a 

continuous function in fl on the open interval (./3,3./3) and that 

The intermediate value theorem then gives the existence of a root for g n (fl) in the 

4.2.2.c. Finding Superattracting Periodic Orbits 

Finding periodic orbits is equivalent to solving g n (fl) =Rn p (fl I 3) - fl I 3 = 0, 

for fl. That is, given a specific n, find out for which fl values does the nth iterate of the 

critical point fl I 3 co.me back to itself. Because of the complexity of the Rp function, 

this is most easily done using graphical techniques. For example, looking for period 4 

orbits would be equivalent to solvingg4 (/3) = R4 p(fl I 3)-fl I 3 = 0, or 

Rp(Rp(Rp(Rp(fl/3))))- fl 13 = 0. Obviously the composition is very complicated. 
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Looking at the graph of g 4 (/J), we can see where it crosses the axis. These crossings are 

where the superattracting periodic orbits lie. Note there exists a 5th root at 

f3 = 24.5 which is not displayed in the following graph. 

,6 

20 

The /3 values for these periodic orbits are as follows. 

/3 2.39638545 4.5001626 4.58784584 7.737193049 

These /3 values were found using the FindRoot command in Mathematica, which 

ironically, uses Newton's method to find the root. Using the FindRoot command requires 

a very accurate initial guess of the root in this application. One should also note that 

/3=4.5001626 is a duplicate from the period 2 cycle. In fact, every superattracting orbit 

with composite period will have a superattracting orbit for any parameter value where its 

factors have a supetattracting periodic orbit. Another example would be that there could 

be a superattacting period 6 orbit at any f3 value for which there exists a superattracting 

period 2 or a superattracting period 3. 
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4.2.2.d. Orbit Diagram 
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The fate of the critical orbit is most easily shown using an orbit diagram. 

This orbit diagram was computed by iterating Rp (/3 I 3), the orbit of the free critical point 

under Rp. Rp was.iterated 1500 times from fJ I 3 but only the last 50 points were 

recorded therefore removing most transient points. The points in the diagram are fates of 

orbits that have been attracted to periodic cycles, fixed points, or it could be an orbit that 

never converges to either phenomena. These phenomen~ also agree with those of the 

pre-image analyzer previously shown. One major feature in the orbit diagram is the 

"line" with gaps in it. (A) The solid portions of the line suggest that, after many 

iterations, the orbit of the critical point fJ I 3 converged to the fixed point. For the interval 

0 < fJ ~ .J3, the only feature is a solid line on the orbit diagram. This was expected 

because we know the fate of all the orbits in this region is convergence to the fixed point. 

(B) Gaps in the line can be referred to as periodic windows or areas that the orbit of the 

critical point did not go to the fixed point after n=1500 iterations. (C) The bifurcation 

sequence of period doublings in the periodic windows are very similar to the well known 

bifurcations for the complex quadratic family qc (x) = x 2 + c. One difference is that the 

window "opens and closes" with different behavior. For example, the following period 2 

window opens and closes on intervals of orbits ~oing to the fixed point( depicted as a 

white area). The period 3 window in the qc(x) = x 2 +c case "opens and closes" on 

chaotic behavior (depicted as a blackened out area). Many of these characteristic features 

can be seen in the following diagram of period 2 window. 
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Puio4 2 WiMow 

• 
4.1 4.U ·4.1 4.H 

A few parameter values 11.n = Pni which correspond to super attracting periodic 

orbits are labeled in the lower region of the orbit diagram are given by Roberts and 

Horgan-Kobelski in the following table: 

n· Pn n Pn n Pn 
2 4.50016263 6 1.98209864 10 1. 777.22708 
3 2.93806919 7 1.892459429 20 1.73281876 
4 2.39638545 8 1.83640072 25 1.732151907 
5 2.13108922 9 1.80052219 50 1.732050812 

It is easy to see in the orbit diagram that many other interesting orbits exist in just the 

small interval for {3,./3 < /3 < 5. For example, there also exists a superattracting period 4 

orbit at /3 = 4.58784584 (which can be seen in the period 2 window) and a 

superattracting period 5 orbit at /3 = 3.88913990787 and a superattracting period 6 orbit 
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atP = 3.667823184. (see the following figure) The superattracting period 5 and 6 

parameter values correspond to places where the orbit of the free critical point lands 

between the poles y ± at least once before returning to the critical point to complete the 

cycle. In other words, these superattracting periodic orbits have different rotation 

numbers than the listed superattracting orbits in Roberts and Horgan-Kobelski table 

(which are all "1/n" superattracting period n orbits). Further classification of 

superattracting periodic orbits and their corresponding rotation numbers will be examined 

later in the paper. 

0.8 

0.6 

0.4 

0.2 

0.2 0.4 0.6 0.8 1 

Orbit of ft/3 with P = 3.667823184, rotation number 2 
6 
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· 4.2.2.e Superimposed Orbit Diagram and Pre-Image Diagram 

3 4 s 

4.2.2.e Superimposed Orbit Diagram and Pre-Image of the Fixed Point Diagram 

Superimposing the orbit diagram and the pre-image of the fixed point diagram it is 

apparent that small white areas exist around the orbit diagram. Every y value in the small 

white areas will be attracted to the black points lying in the interior of the particular white 

area in that window. This phenomenon is most easily visualized by a point starting at a 

low white area in the period 2 window. Successive iterates of this point would eventually 

bring it into the top two white areas in the window. 
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5. Circle Maps: 

Circle maps are a widely used to tool for analyzing functions for many reasons. We 

chose to use a circle map in this research paper was for the following reasons: 

First, by using a circle map all y values in (-oo, oo) can be examined by compactifying the 

set to a more useable interval, in our case [O, 1 ). This is especially helpful graphically. 

Secondly, we can now examine the point at infinity, { oo }. Using the circle map 

graphically we can see that the slope through the point at infinity is greater than 1 (lies 

above the reference line y=x) and therefore it is a repelling fixed point (see figure on page 

38) .. This is consistent with known results about Newton's Method "at infinity". 
·,,i...+Y ~rs.. 

Thirdly, the circle map is a continuous function because infinity is mapped-{9 zero. 

Fourth, by using a lift of the circle map we can construct a continuous function which 

allows us to examine rotation numbers of the superattracting periodic orbits. 

5.1. Defining a Conjugate Map: 

f·!-ii'"°'.•""":7'·::. ...... ~"-:· 
I' 
f 
j 

l .I 

r 
I 
t 
t..::::;;.•. 

0 

By taking any point on the real number line, one can compute the angle 0 from the circle 

in the above diagram and therefore find the corresponding fraction of the way around the 
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circle by dividing the angle 0 by 27t. It is from this transformation where the name circle 

map originates. By using this transformation we can examine just the interval 

[0,1) instead of (-::co, co) by using a homeomorphism The function for the transformation 

and its inverse are as follows: 

tan-1(_[) 

8 = h(y) = K + .5 
K 

y = h-1(8) = Ktan(K(B-.5) 

After the transformation we have the following: 

h: (-::co, co) ~ (0,1). Then we extend this to {co} u (-::co, co) by defining the image of the 

'point at inifinity {co} r7 {O} = 1. 

Finally, we have h: (-::co, co) u {co} ~ S 1 • 

By having a one-to-one, onto, and continuous function with a continuous inverse we can 

claim that examining oribts in [O,l)e S1 is identical to examining numbers or orbits in the 

interval {co} u (-::co, co) = 9t . These two sets are homeomorphic because of the continuous 

and invertible function h joining the two sets. The homeomorphism h allows us to defme 

a circle map r P that is conjugate to R p . 
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--'----~-~··•·-'l·.. s· 

Diagram showing conjugate sets Rand st 

The function rp can be defined by going ''up, over and down" in the previous diagram. 

Analytically this is rp = h(Rp(h-t(B))). rp is now defined as rp: st ~st. Since rp is 

conjugate to Rp we can examine the dynamics of rp instead of Rp. This is especially 

helpful because rp is now a continuous function on a compact space. 

By using this conjugacy we can now look at the same Rp over ally values. 

0.2 0.4 0.6 O.B 

rp versus the Rp function for p = 2.39638545 
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5.2. Rotation Numbers 

A standard tool for defming rotation numbers on any circle map is its lift. By taking the 

circle map rp we can create a continuous function for ii e 9t1 using a "lift" of our circle 

map. Let the "lift" rp of rp be defmed as follows: 

rp(ii) +floor( ii) floor(ii) <ii~ h(y_) 

rp (ii) = rp (ii)+ floor( ii)+ 1, h(y _)+floor( ii) <ii < h(y +)+floor( ii) 

rp (ii)+ floor( ii) h(y +)+floor( ii) ~ ii < 1 +floor( ii) 

Where h(y_)and h(y+) (y±)aretheasymptotesofthefunction rp and the floor(ii) 

function truncates any non-integer part of ii. The new variable ii is defined for all real 

numbers and this allows us to plot the function outside of the interval [0,1). The 

following functions were plotted using Mathematica. 
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A lift is constructed by taking the original circle map on [0,1) fig(A) and pushing the 

middle up (fig B) and then make copies of it and shift it up and over, preserving the 

continuity of the graph and function (fig C)(on the interval [0,2]) .This shifting is 

represented in the function as the Floor[ jj] part of Fp (ii) The floor function takes the 

point where the orbit landed and adds to it the corresponding vertical shift. The integers 

(corresponding to y = oo) are also a fixed points, which can be seen by the graph (fig. C) 

where the graph crosses the line y =x.. These fixed points at infinityjs"'are repelling 

because the slope of the line at that point is greater than 1 , causing all iterates to repel 

away from the point. Iterates that leave the interval [0,1) (or the dotted box.es) are outside 
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of the interval [0,1) = 81 and are considered to be going around the circle more than once. 

Periodic orbits that go around the circle more than once before returning to the initial 

point have rotation numbers m where m > 1 is the number of times the orbit has gone 
n 

"around" and n , the period, is the number of iterates before returning to the initial point. 

Formally, Rotation numbers are defined as the following: 

rn(e)-8 
p(O,/J) = lim---/J __ 

n-too n 

In words, this is the average number of times around the circle each iterate travels. 

Note that jj ''=" Oe [0,1], but r;(B) can be greater than 1. This can be seen in figure C. 

5.3. Revisiting Superattracting Periodic Orbits 

An alternate approach to finding the superattracting periodic orbits is to use the 

lift of the circle map instead of g n (/3) = R'ft (/3 I 3) - fJ I 3. Using a similar technique used 

on gn(/3), we graph cn(/3) = Rp(h(/313))-h(/3 /3) and look for the roots of the 

equation. However, in this case we do not look for intersections along the x-axis but 

along the lines y=l,y=2, y=3, ... , y=n-1. These lines correspond to the number of 

rotations around the circle it takes for the orbit to return to the critical point. This graph 

allows 1Js to not only locate super attracting periodic orbits like in the previous graph, but 

also provides info~tion about the number of rotations the orbit takes to complete the 

cycle. 
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C2(e) 
2 

1.75 

1.5 

1.25 

0. 

0.25 

rotation number 1/2 
count 1 

Period 2, c2 (/3), 1 crossing. 
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2 

1.5 

1 

0.5 
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rotation number 
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1/3 
1 

213 
1 

Period 3, c3 (/3), 2 crossings 
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~<e> 
4 

3.5 

2.5 

1.5 

0.5 

5 10 15 :.I) 25 30 35 
{3 

rotation number 1/4 214 3/4 
count 1 3 1 

Period 4, c4 (p), 5 crossings 

From just the period 2, period 3, and period 4 graphs of cn(p) it is obvious that other 

~uperattracting orbits exists other than just the ..!.. orbits (which are the first orbits on the 
n 

left side of the graph). For example, we can see that for period 4 orbits there eXistJ 

superattracting orbits with rotation numbers_!_ ~ at P = 2.39638545,p = 24.5 J 
4'4 

respectively. However, according to the graph of c4 (p), there are 3 superattracting 

periodic orbits with rotation number 2 at 
4 

P = 4.50016263, 4.58784584, and 7.737193049. 

Note the two crossings where the graph appears to be tangent to the line y=2. Repeating 

this procedure for other periods, one can count the number of crossings and the P value 

for each crossing. See the table in the appendix for p values corresponding 

superattracting orbits and their rotation numbers up to period 7. 
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6. Conjectures from graphical evidence: 

Graphical evidence provides some insight into the rotation numbers of periodic orbits. 

The following 5 conjectures follow from this evidence: 

Conjecture 1: The .!. orbits are unique. 
n 

This is shown as only 1 crossing of the graph of en (/3) over the line y=l for each fixed n. 

It should be noted that the existence of these .!. orbits has been proven by Roberts and 
n 

Horgan-Kobelski. 

C ' 2 Th n - l b. . d . ODJecture : e -- or its exist an are umque. 
n 

It is also apparent that the graph of cn(/3) always crosses the line n-1 for each fixed n. 

This is shown in the previous graphs for n=2,3,4. If a large enough f3 value is chosen, 

then the graph of cn(/3) appears to cross the line y=n-1. 

Conjecture 3: The n-l superattracting period-n orbit_ exists in 
n 

/3 E [4'.50016263 · 2n-Z ,4.50016263 · 2n-l]. 

An estimated interva~ for the crossing of cn(/3) and the line y = n-1 is 

[ 4.50016263· 2n-z ,4.50016263· 2n-1], with n being the desired period. 

The following figures support this conjecture. 
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c2 (p)and c4 (P) plotted on the interval [ 4.50016263 · 2n-2 ,4.50016263· 2n-t] 
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c45 (P) plotted on the interval [4.50016263· 2n-2 ,4.50016263· 2n-t] 

The interval [4.50016263 · 2n-2 ,4.50016263 · 2n-t] was estimated from the distance from 

the originalperiod 2 orbit atP = 4.50016263 and the first few n-l superattracting 
n 

orbits. 
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Conjecture 4: 

Given any rotation number m , there exists a parameter value f3, for which there exists a 
n 

. b m rotation num er - , n > m . 
n 

This conjecture follows from the existence of the _!_ orbits and the conjectured existence 
n 

of the n - l orbits. It would then follow from the Intermediate Value Theorem that the 
n 

graph of cn(/3) must cross every line between y=l and y=n-1 because the function is 

continuous. Therefore, since the graph of cn(/3) crossed all lines from 1 to n-1 for all n, 

' 
we have all rotation numbers in (0, 1 ). 

Conjecture 5: Superattracting Period-n Orbits Triangle 

This conjecture is the strongest conjecture and is based from conjectures 1 and 2. 

Conjecture 5 is similar to conjecture 4 but is much stronger. Conjecture 5 hints at the 

existence of all rotation numbers along with symmetry of periodic orbits and their 

rotation numbers. 

The following diagram is based on a counting of e~ch of the observed super attracting 

period-n orbits. The left-most number on the triangle is the number of orbits with 

rotation number _!_, and the right-most number is the number of orbits with rotation 
n 

b n - l Th l · b h 2 3 n- 2 · b b' num er e va ues m etween are t e -,-,. . .,--rotation num er or its. 
n n n n 
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R8nod n 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Superattracting 

1 
1 1 

1 3 1 
1 3 3 1 

1 5 7 5 1 
1 5 11 11 5 1 

1 7 17 23 17 7 1 
1 7 23 39 39 23 7 1 

1 9 31 63 79 63 31 9 1 

The values in the triangle can be computed using the following recursive formula: 

a(k,n) = a(k-1,n-l)+a(k,n-1) +(-1)" 

where 

aGn -1, n) = 1, (conjecture - 2) 

a(l,n) = l,(conjecture-1) 

n = 1,2,3 .. . 

k = 2,3, ... ,n-2 

Here n is the period (row), k is the number of rotations (column) in the triangle. 

Orbits 

The values and rotation numbers have been counted and verified up to period 9. The 

numbers for the perio~ 10 row are conjectured values using the above formula. 

7. Future Studies 

A few areas for future studies: 

1. Programming: 

• Design a program the shows pre-images iterates of the basin of the 

attraction for the fixed point for a specific b value. Incorporate a slider for 

the b values to visualize the dynamics. 
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• Rewrite the orbit diagram program so that any function can be input by the 

user using a graphical user interface. Design the program so that the user 

ha~ "instant" graphics along with zooming features 

• Write a program that automates the counting of the roots using the circle 

map and specific rotation numbers. 

2. Mathematics: 

• Prove that 1 /n and n-1 /n superattracting periodic orbits are unique. 

• Prove that all rotation numbers in the interval [0,1) exist using a 

circle map 

• Use the Farey Fraction argument and symbolic coding for proving 

all rotation numbers up to Yi. Then extend to [0,1). 

• Describe mathematically the dynamics between the pre-image 

colored bands in the pre-image analyzer diagram and the 

superattracting periodic bands. 
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Orbit Diagram Program written in C. 

#include <stdio.h> 
#include <math.h> 

//#define Func(y) (2*y*y*y-b*y*y+b )/(3*y*y-2*b*y+1) 

float y,xl ,b 1,b2,cp,step; 
int points, eventual; 
voidmainO 
{ 
Fil..E *fpTemps; 

fpTemps=fopen("morepoints.txt",''w");//open file to write points in to be later read by mathematica 

printf{"Orbit Analyzer\n\n"); 
printfl:"Enter starting b value :=''); 
scanfl:''%f',&b 1 ); 
printfl:''Enter finishing b value :="); 
scanfl:''%f',&b2); 
printfl:''Enter increment ofb value:=''); 
scanfl:"%t"',&step ); 
printfl:"Enter number total #points:="); 
scanfl:"o/od" ,&points); 
printfl:"Enter number of eventual points:="); 
scanfl:"o/od" ,&eventual); 

fprintfl:fpTemps, "{ {o/of,o/ot} ",bl,bl); //starts file in correct format w/ critical pt 

while(bl<b2) 
{ 

//printf{"the free critical value is:=o/of\n" ,b/3); 

cp:=bl/3; //initiali7.es critical point to b/3 

//writes the b val II 
II 

y=cp; 
fprintf{fpTemps,''%f,",b); 
fprintf{fpTemps, "%f,",cp); //writes the critical point into file 

for(int i=O;i<points;i++) 
{ 

x 1 =(2*y*y*y-b I *y*y+b I )/(3*y*y-2*b1*y+1 ); 

ifl:i>(points-eventual)){ 
print the eventual behavior 

//printf{"the o/od iteration is value is:=o/ot\n" ,i,xl); //screen output 
fprintfl:fpTemps, •, {o/of,o/of} ",bl,xl); 
} 
y=xl; 

} 
II fprintfl:fpTemps,"\n"); 

bl=bt+step; 
} 

fprintf{fpTemps, "} "); 
fclose(fpTemps);//Close file 
} 
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. Pre-Image Analyzer program written in C, BLACKOUT VERSION 

#include <stdio.h> 
#include <math.h> 

//#define Func(y) (2 *y*y*y-b*y*y+b )/(3*y*y-2*b*y+1) 

double y,xl,x2,x,bl,b2,cp,step; 
double b,a,c,xin; 
int i,points, eventual,go,tlag; 
voidmainO 
{ 
FILE *fpTemps; 
FILE *fpTempsl; 
Fll.E *fpTemps2; 
FILE *fpTemps3; 
FILE *fpTemps4; 
FILE *fpTemps5; 
FILE *fpTemps6; 
FILE *fpTemps7; 
FILE *fpTemps8; 
FILE *fpTemps9; 

fpTemps=fopen("symbolics.txt","w"); 
fpTemps 1 =fopen("a.txt", "w''); //open file to write points in to be later read by mathematica 
fpTemps2=fopen("b.txt", "w"); //open file to write points in to be later read bymathematica 
fpTemps3=fopen("c.txt", "w"); //open file to write points in to be later read bymathematica 
fpTemps4=fopen("d.txt","w"); //open file to write points in to be later read bymathematica 
fpTempsS=fopen("e.txt", "w"); //open file to write points in to be later read by mathematica 
fpTemps6=fopen("f.txt",''w"); //open file to write points in to be later read by mathematica 
fpTemps7=fopen("g.txt", "w"); //open file to write points in to be later read bymathematica 
fpTemps8=fopen("h.txt", "w"); //open file to write points in to be later read by mathematica 
fpTemps9=fopen("i.txt","w"); //open file to write points in to be later read bymathematica 

fprintf(fpTempsl,'' {"); 
fprintf(fpTemps2," {''); 
fprintf(fpTemps3, "{"); 
fprintf(fpTemps4," {''); 
fprintf(fpTemps5," {"); 
fprintf(fpTemps6,"{"); 
fprintf( fpTemps7," { "); 
fprintf(fpTemps8," {''); 
fprintf(fpTemps9, "{"); 

printf("Pre-Jmage Analyzer\n\n"); 
printf("Enter starting b value :-''); 
scanf("%lf" ,&b ); 
printf("Enter ending b value :=''); 
scanf(''%lf",&b2); 
printf("Enter starting x value :="); 
scanf(''%lf',&xin); 
//printf(''Enter finishing x value :=''); 
//scanf(''%lf",&x2); 
printf("Enter increment ofx value:="); 
scanf(''%lf',&step ); 

I/Starts the file in the correct format for mathmatica to read in a list plot 
I/Starts the file in the correct format for mathmatica to read in a list plot 
I/Starts the file in the correct format for mathmatica to read in a list plot 
//Starts the file in the correct format for mathmatica to read in a list plot 
//Starts the file in the correct format for mathmatica to read in a list plot 
//Starts the file in the correct format for mathmatica to read in a list plot 
//Starts the file in the correct format for mathmatica to read in a list plot 
//Starts the file in the correct format for mathmatica to read in a list plot 
//Starts the file in the correct format for mathmatica to read in a list plot 

printf("Enter nuinber of iterations for each x:="); 
scanf("o/od",&go); 

while(b<b2) 
, { 
xl=xin; 
a=(2*b-sqrt( 4*b*b-12))/6; 
c=(2*b+sqrt( 4 *b*b-12) )16; 
cp=b/3; 
y=cp; 

//left asymptote 
//ri'l):J.t asymptote 

//initializes critical point to b/3 

/IS fprintf(fpTemps,"beta value b:= o/olf\nleft asymptote x:= o/olf\ncritical point x:= o/olf\nri'l):J.t asymptote x:= %1£\n",b,a,cp,c); 
x2=b2; //know what happens to all orbits to the ri'l):J.t of the right asymptote 

Ci they go to the f.p. 
flag=O; 

while(xl<x2) 
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l 

x=xl; 

for(i=O;i<go;i ++) 
{ 
y=x; 
if\x<=a){ //Start Symbolic Section not used in this paper. 

//counter-counter+ 1; 
/IS fprintf\fpTemps, "0"); 

/IS 

/IS 

/IS 

/IS 

} 
if\(x>a)&&(x<cp )){ 

if\x=cp){ 

//counter=counter+ 1; 
fprintf\fpTemps, "I.."); 

//counter=counter+ 1; 
fprintf\fpTemps,"C"); 

if\(x>cp)&&(x<=c)){ 
//counter=counter+ 1; 
fprintf\fpTemps, ''R"); 

if\x>c){ 
fprintf\fpTemps, "*''); 

if\i 51){ 
fprintf\fpTempsl, "{% lf,% lf}, ",b,xl ); 
flag=l; 
} 

II End Symbolic Section 

//write point if in interval after iteration i= 1 

if\(i==52)&&(flag!=l)){ //write point if in interval after iteration i= 2 
fprintf\fpTemps2," {%1 f,%lf}, ",b,xl ); 
flag=l; 
} 

if\(i=S3)&&(flag!=l)){ //write point if in interval after iteration i= 3 
fprintf\ fpTemps3," {% 1 f,% lf}, ",b,x 1 ); 
flag=l; 
} 

if((i=S4)&&(flag!=l)){ //write point if in interval after iteration i= 4 
fprintf\fpTemps4,"{%lf,%1f},",b,xl); 
flag=l; 
} 

if\(i==SS)&&(flag!=l)){ //write point if in interval after iteration i= S 
fprintf\fpTempsS,"{%lf,%1f},",b,xl); 
flag=l; 
} 

if\(i==56)&&(flag!=l)){ //write point if in interval after iteration i= 6 
fprintf\fpTemps6," {%1 f,%1f}, ",b,xl ); 
flag=l; 
} 

if\(i 57)&&(flag!=l)){ //write point if in interval after iteration i= 7 
fprintf\fpTemps7," {%1 f,%1f}, ",b,xl ); 
flag=!; 
} 

it\(i-58)&&(flag!=l)){ //write point if in interval after iteration i= 8 
fprintf\fpTemps8," {%lf,%1f}, ",b,xl); 
flag=l; 
} 

if\(i=S9)&&(flag!=l)){ //write point if in interval after iteration i= 9 
fprintf\fpTemps9," {%1f,%1f}, ",b,xl ); 
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flag=l; 
} 

!las soon as the function iterates to the right of the right asymptote, yt, it goes to the FP 

x=(2*y*y*y-b*y*ytb )/(3*y*y-2*b*yt1 ); 
//rot=( double )counter/( double )go; //Symbolic part not used in color diagram. 

}//end of for-loop 
flag=O; 

/IS fprintf(fpTemps, "\n",b); 

xl=xl+step; 

}//end of while loop 
b=b+step; 
}//end ofb loop 

//fprintf(fpTemps, "} "); 
fclosC(fpTemps);//Close file 
fclose(fpTempsl);//Close file 
fclose(fpTemps2);//Close file 
fclose(fpTemps3);//Close file 
fclose(fpTemps4);//Close file 
fclose(fpTempsS);//Close file 
fclose(fpTemps6);//Close file 
fclose(fpTemps7);//Close file 
fclose(fpTemps8);//Close file 
fclose(fpTemps9);//Close file 
} 

fprintf(fpTempsl, "{%1f,%lf}} 11,b,xl);//More formatting for mathematica listplot. 
fprintf(fpTemps2, 11{%lf,%lf} }",b,xl);//More formatting formathematica listplot. 
fprintf(fpTemps3, "{%1f,%lf} }",b,xl);//More formatting for mathematica listplot. 
fprintf(fpTemps4, 11{%lf,%lf} }",b,xl);//More formatting for mathematica listplot. 
fprintf(fpTempsS, 11 {%1f,%1f}}",b,x1 );//More formatting for mathematica listplot. 
fprintf(fpTemps6, "{%lf,%lf} }",b,xl);//More formatting for mathematica listplot. 
fprintf(fpTemps7,"{%lf,%lf}} ",b,xl);//More formatting for mathematica listplot. 
fprintf(fpTemps8, "{%lf,%lf} }",b,xl);//More formatting for mathematica listplot. 
fprintf(fpTemps9, 11 {%lf,%1 f}} ",b,xl);//More formatting for mathematica listplot. 
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Pre-Image Analyzer Program written in C COLOR VERSION 

#include <stdio.h> 
#include <math.h> 

//#define Func(y) (2 *y*y*y-b*y*ytb )/(3*y*y-2 *b*yt l) 

double y,xl,x2,x,bl,b2,cp,step; 
double b,a,c,xin; 
int ~points, eventua~go,tlag; 
voidmainO 
{ 
FILE *fpTemps; 
FILE *fpTempsl; 
FILE *fpTemps2; 
FILE *fpTemps3; 
FILE *fpTemps4; 
FILE *fpTemps5; 
FILE *fpTemps6; 
FILE *fpTemps7; 
FILE *fpTemps8; 
FILE *fpTemps9; 

fpTemps=fopen("symbolics.txt", "w"); 
fpTemps 1 =fopen("a.txt", "w"); //open file to write points in to be later read by mathematica 
fpTemps2=fopen("b.txt", "w"); //open file to write points in to be later read by mathematica 
fpTemps3=fopen("c.txt","w"); //open file to write points in to be later read bymathematica 
fpTemps4=fopen("d.txt", "w"); //open file to write points in to be later read by mathematica 
fpTempsS=fopen("e.txt", "w'~; //open file to write points in to be later read by mathematica 
fpTemps6=fopen("f.txt", "w"); //open file to write points in to be later read by mathematica 
fpTemps7=fopen("g.txt", "w"); //open file to write points in to be later read by mathematica 
fpTemps8=fopen("h.txt", "w'~; //open file to write points in to be later read by mathematica 
fpTemps9=fopen("Ltxt","w"); //open file to write points in to be later read by mathematica 

fprintf{fpTempsl,"{"); 
fprintf{fpTemps2, "{'~; 
fprintf(fpTemps3," {"); 
fprintf{fpTemps4,"{"); 
fprintfl:fpTempsS," {"); 
fprintf{fpTemps6, "{"); 
fprintf(fpTemps7,"{"); 
fprintf(fpTempsS, "{"); 
fprintfl: fpTemps9," { "); 

printf("Pre-Image Analyzer\n\n "); 
printf("Enter starting b value :="); 
scanf1:''%lr' ,&b ); 
printf("Enter ending b value :="); 
scanf1:"%lr',&b2); 
printfl:"Enter starting x value :="); 
scanf1:"%lt" ,&xin); 
//printf("Enter finishing x value :="); 
//scanf1:''%lt" ,&x2 ); 
piintf("Enter increment of x value:="); 
scanf1:''%lt" ,&step); 

//Starts the file in the correct format for mathmatica to read in a list plot 
//Starts the file in the correct format for mathmatica to read in a list plot 
//Starts the file in the correct format for mathmatica to read in a list plot 
//Starts the file in the correct format for mathmatica to read in a list plot 
//Starts the file in the correct format for mathmatica to read in a list plot 
//Starts the file in the correct format for mathmatica to read in a list plot 
//Starts the file in the correct format for mathmatica to read in a list plot 
//Starts the file in the correct format for mathmatica to read in a list plot 
//Starts the file in the correct format for mathmatica to read in a list plot 

printfl:''Enter number of iterations for each x:='~; 
scanf1:"%d" ,&go); 

while(b<b2) 
{ 
xl=xin; 
a=(2*b-sqrt( 4*b*b-l 2))/6; 
c=(2*b+sqrt(4*b*b-12))/6; 
cp=b/3; 
y=cp; 

//left asymptote 
I lriy):tt asymptote 

//initializes critical point to b/3 

/IS fprintfl:fpTemps, "beta value b:= %1 f\nleft asymptote x:= o/olt\ncritical point x:= o/olf \nriy)J.t asymptote x:= o/olt\n ",b,a,cp,c ); 
x2=b2; I !know what happens to ai1 orbits to the riy)J.t of the riy)J.t asymptote 

c; they go to the f.p. 
flag=(); 

while(xl <x2) 
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x=xl; 

for(i=O;i<go;i++) 
{ 
y=x; 
if(x<=a){ //Start Symbolic Section not used in this paper. 

·//counter-counter+ 1; 
/IS fprintf(fpTemps,"0"); 

/IS 

/IS 

/IS 

/IS 

} 
if((x>a)&&(x<cp)){ 

if(x=cp){ 

//counter=counter+ 1; 
fprintf(fpTemps, ''L "); 

//counter-counter+ 1; 
fprintf(fpTemps, "C"); 

if((x>cp)&&(x<=c)){ 
//counter=counter+ 1; 
fprintf(fpTemps, "R "); 

if(x>c){ 
fprintf(fpTemps, "* "); 

if(i==O){ 
fprintf(fpTempsl," {% lf,%1f} ,",b,xl); 
flag=l; 
} 

II End Symbolic Section 

//write point if in interval after iteration i= 1 

if((i=l)&&(flag!=l)){ //write point if in interval after iteration i= 2 
fprintf(fpTemps2, "{%lf,%lf}, ",b,xl); 
flag=l; 
} 

if((i=2)&&(flag!=l)){ //write point ifin interval after iteration i= 3 
fprintf(fpTemps3," {%1f,%1f} ,",b,xl ); 
flag=l; 
} 

if((i 3)&&(flag!=l)){ //write point ifin interval after iteration i= 4 
fprintf(fpTemps4," {% 1 f, % lf}, ",b,xl ); 
flag=l; 
} 

if((i=4)&&(flag!=!)){ //write point if in interval after iteration i= 5 
fprintf( fpTemps5," {% 1f,%1f},",b,x1 ); 
flag=l; . 
} 

if((i-5)&&(flag!=l)){ //write point if in interval after iteration i= 6 
fprintf(fpTemps6," {%lf,%lf} ,",b,xl); 
flag=l; 
} 

if((i=6)&&(flag!=l)){ //write point ifin interval after iteration i= 7 
fpiintf(fpTemps7,"{%lf,%lf},",b,xl); 
flag=l; 
} 

if((i=7)&&(flag!=l)){ //write point ifin interval after iteration i= 8 
fprintf(fpTemps8," {% 1 f, % If}, ",b,xl ); 
flag=l; 
} 

if((i=8)&&(flag!=l)){ //write point ifin interval after iteration i= 9 
fprintf(fpTemps9,"{%lf,%lf},",b,xl); 
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flag= I; 
} 

//as soon as the function iterates to the right of the right asymptote, yt, it goes to the FP 

x=(2*y*y*y-b*y*ytb )/(3*y*y-2*b*yt 1 ); 
//rot=(double)counter/(double)go; //Symbolic part not used in color diagram. 

/IS 

}//end of for-loop 
flag=O; 
fprintf(fpTemps, "\n",b ); 

xl=xl+step; 

}//end of while loop 
b=b+step; 
}//end ofb loop 

//fprjntf(fpTemps,"} "); 
fdose(fpTemps);//Close file 
fclose(fpTempsl);//Close file 
fclose(fpTemps2);//Close file 
fclose(fpTemps3);//Close file 
fclose(fpTemps4);//Close file 
fclose(fpTempsS);//Close file 
fclose(fpTemps6);//Close file 
fclose(fpTemps7);//Close file 
fclose(fpTemps8);//Close file 
fclose(fpTemps9);//Close file 
} 

fprintf(fpTemps l," {% 1f,%1f}}",b,x1 );//More formatting for mathematica listplot. 
fprintf( fpTemps2," {% 1f,%1f}}",b,x1 );//More formatting for mathematica listplot. 
fprintf(fpTemps3, "{%lf,%lf}} ",b,xl);//More formatting for mathematica listplot. 
fprintf(fpTemps4," {% 1f,%1f}}",b,x1 );//More formatting for mathematica listplot. 
fprintf(fpTempsS," {% 1f,%1f}}",b,x1 );//More formatting for mathematica listplot. 
fprintf(fpTemps6, "{%1f,%1f}} ",b,xl);//More formatting for mathematica Iistplot. 
fprintf( fpTemps7," {% 1f,%1f}}",b,x1 );//More formatting for mathematica listplot. 
fprintf(fpTemps8, "{%lf,%1f}} ",b,xl);//More formatting for mathematica listplot. 
fprintf(fpTemps9," {% 1f,%1f}}",b,x1 );//More formatting for mathematica Iistplot. 
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