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Abstract

Some of the dynamics of the family x → x2 + c + β
xd

is described. Different
behaviors occur as the parameters are varied. These transitions are called bifur-
cations. This singularly perturbed quadratic family is primarily treated as a real
system, but is also viewed as a complex system. The main families studied in this
paper either have d fixed at one or two, and real parameters β and c varying.
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1 Introduction

Dynamical systems is the study of how systems evolve in time. The focus of dynami-
cal systems is on long-term behavior: whether the system in question settles down to
equilibrium, keeps repeating in cycles, or does something more complicated. Differen-
tial equations are called continuous dynamical systems. Discrete dynamical systems are
studied in this paper. The system is only tracked at discrete times. The ideas of dynam-
ics have been used in various subjects, including classical mechanics, chemical kinetics,
population biology, etc. Viewed from the perspective of dynamics, these subjects can be
studied in a common framework [?]. Chaos and fractals are special parts of this grander
subject called dynamics. Chaos is one of many surprising dynamical phenomena. The
surprise is that chaos and fractals can occur in simple systems, like the families studied
here. Simple numerical experiments lead to stunning mathematical images which no one
has ever seen before. A sample of textbooks in dynamics, in increasing order of level of
difficulty, is Devaney 1992 [?], Strogatz 1994 [?], and Bonatti 2000 [?].

Discrete dynamical systems are described by recurrence relations of the form xn+1 =
f(xn). The family we study is a special family of rational maps of <:

x→ fβ,c,d(x) ≡ x2 + c+
β

xd

This paper primarily investigates the dynamics of this family, with two real parameters,
β and c, with d fixed at d = 1 or d = 2. The following questions will be considered, (1)
What are the dynamical behaviors of these families with varying parameter values? (2)
What are the similarities and differences between maps with different parameter values?
(3) What bifurcations occur in these families?

See the following references for related studies: [?, ?, ?, ?, ?, ?]
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2 Basic Dynamical Properties and Examples

2.1 Preliminary

For background, some terminology and typical behaviors of dynamical systems will be
presented. See a reference such as [?] for more details. The orbit of x0 under the map F is
the sequence (x0, x1, x2, . . .) determined by the recurrence relation xn+1 = F (xn). Denote
the nth iterate of x0 under F by F n(x0). The orbit depends on an initial condition x0,
and the the iteration function F . The goal of dynamical systems is to determine the fate
of all orbits, and their dependence on initial conditions and parameters in the iteration
function.

2.2 Linear Example: L(x) = ax+ b

Iteration means to repeat the application of the function over and over. In other words,
to iterate a function is to evaluate the function repeatedly, using the output from the
previous evaluation as the input for the following evaluation.
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Figure 1: An iteration for L(x) = x/2 starting from x = 8

Figure ?? is an example to show the graphical iteration for a linear function. For the
function L(x) = x/2, if the initial value is 8, then after one iteration the output will be
4. Then using x = 4 as the input will get the next output x = 2. Similiarly, the following
outputs will be x = 1, 1/2, etc. The behavior of the orbit of x0 = 8 is to approach 0.

8 // 4 // 2 // 1 // 1/2 // . . . // 0
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In dynamical systems, the reference line, f(x) = x, is used to help graphically track the
behavior of an orbit. During each iteration, the output at one step would be the input for
the next iteration. For example, x0 is the initial condition for the iteration function f and
after one iteration the output would be x1 = f(x0). Travelling horiontally from (x0, x1)
to the point (x1, x1) allows us to now use the “height” x1 as a horizontal distance. We can
now “plug in” x1 to obtain the point (x1, x2). And we repeat. Moreover, if this method
is applied to other initial conditions, the corresponding orbits will behave similiarly with
x0 = 8. Therefore, the behavior of the function L(x) = x/2 for all initial conditions can
be seen to approach 0.

2.3 Quadratic Example: Qc(x) = x2 + c
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Figure 2: Bounded Box for Qc(x) = x2 + (−1). Orbits starting in the interval determined
by the black “box” stay in that interval; orbits starting outside the interval escape.

For a much more interesting example, consider the quadratic family, defined by the
iteration function Qc(x) ≡ x2 + c. This function with c = −1 is illustrated in Fig. ??.
The orbit displayed approaches an orbit which alternates between x = 0 and x = 1. This
orbit is called a period-2 orbit or a 2-cycle.

Figure ?? shows there are (at least) two different behaviors for the same c parameter
value. Figure ?? shows there exists an orbit which approaches a period-2 orbit in the
system. Figure (??) shows a different initial condition whose orbit will go to infinty.
Therefore a single map could have multiple behaviors.
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(a) For x0 ≈ 1.6,the orbit will approach the
period-2 orbit {0,−1}.
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(b) For x0 = −1.85, the orbit will go to
infinty.

Figure 3: Iteration for Q(−1)(x) = x2 − 1. Different initial conditions can have different
fates.

2.4 Periodic Points & their Stability

As a starting point for dynamical analysis, orbits for a dynamical system can usually be
divided into those which stay bounded, and those which do not. Bounded orbits can be
further classified with many different types of behaviors. A periodic orbit is one of the
most important types of bounded orbit in a dynamical system. A periodic point will
satisfy the following conditions.

F n(x) = x (1)

When n=2, this is a period-2 orbit:

x0
// x1

// x0
// x1

// x0
// . . .

When n=1, this is a period-1 orbit, which is also called a fixed point. A fixed point will
never change under iteration since it satisfies

F (x) = x. (2)

Therefore, the behavior of the fixed point will be a constant sequence.

x0
// x0

// x0
// . . . // x0

The stability of a fixed point is determined by the derivative at the fixed point. A
fixed-point x0 is an attracting fixed point for F if |F ′(x0)| < 1. A fixed point x0 is a
repelling fixed point, if |F ′(x0)| > 1. If |F ′(x0)| = 1, then the fixed point x0 is (linearly)
neutral or an indifferent fixed point. If |F ′(x0)| = 0, then the fixed point x0 is a super-
attracting fixed point. More generally, a period-n point p is attracting (repelling) for F
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if |(F n)′(p)| < 1 (> 1). If x0, x1, . . . xn−1 all lie on an n-cycle for F(x), then the chain rule
[?] implies

(F n)′(x0) = (F n)′(x1) = . . . = (F n)′(xn−1)

Sometimes, a prefixed point is also important in a system. The following sequence is
a pre-2-fixed point which will go to the fixed point x2 after two iterations.

x0
// x1

// x2
// . . . // x2

2.5 Critical Points

A critical point of an iteration function F is a point where the derivative of the iteration
function F is 0. Often the behavior of a critical orbit (an orbit starting at a critical point)
has consequences for many other orbits for that map. When a critical point is a fixed
point, then this fixed point is a superattracting fixed point. Alternatively, this point is a
fixed point with slope 0.

2.6 Bifurcations in the Quadratic Family: Qc(x) = x2 + c

Bifurcations are changes in the behavior of a system as parameters in the iteration function
are varied. The following table shows four classic bifurcations in the quadratic family.

Bifurcations
Index Figure Properties Defining Equations

(1) (Figure ??) saddle-node fixed point

{
Qc(x) = x
Q′c(x) = 1

(2) (Figure ??) super-attracting fixed point

{
Qc(x) = x
Q′c(x) = 0

(3) (Figure ??) period-doubling fixed point

{
Qc(x) = x
Q′c(x) = −1

(4) (Figure ??) critical orbit is fixed after n iterates

{
Q′c(x) = 0
Qc(Q

n
c (x)) = Qn

c (x)

In this family, the most prominent occurences of case (4) are for (x, c, n) = (0, 0, 0)
(super-attracting fixed point) and (0,−2, 2) (0 7→ −2 7→ 2). Figure ?? below illustrates
graphs of the iteration function at these four key bifurcation parameter values.
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(a) Qc(x) = x2 + (1/4): saddle-node
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(b) Qc(x) = x2: super-attracting fixed
point
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(c) Qc(x) = x2 + (−3/4): period-doubling
fixed-point: the fixed point is “weakly at-
tracting” although the green orbit (incor-
rectly) looks to be period-2.
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(d) Qc(x) = x2 + (−2): pre-fixed critical
orbit

Figure 4: Graphs of Qc ≡ x2 + c at some bifurcation values of c.

2.7 Orbit Diagram

An orbit diagram is useful for analyzing fates of a dynamical system as a single parameter
is varied. It is one of the most instructive and intricate images in all of dynamical systems.
In the orbit diagram for Qc, the asymptotic orbit of the critical point x = 0 is plotted
in the (x, c) plane. For each fixed parameter value, the critical orbit is computed. The
first 150 iterations are discarded, and the next 150 are plotted, illustrating the eventual
behavior, or fate, of the critical orbit. If this critical orbit lands outside an escape radius
prior to 150 iterations, nothing is plotted for that c value in the orbit diagram.

Most of the graphs shown in this project, including oribit diagrams, are created using
Mathematica 10. We used the “ListPlot” command to create the orbit diagram in Fig. ??.
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Figure 5: An orbit diagram for Qc(x) = x2 + c. Plot of x vs c.

Some Key Bifurcations in Orbit Diagram
Figure ?? Label Properties Figure ?? Label
(A) saddle-node (Figure ??)
(B) super-attracting fixed point (Figure ??)
(C) period-doubling (Figure ??)
(D) super-attracting period-2-orbit (Figure ??)
(E) critical point is prefixed (Figure ??)

Note that the fate of the critical orbit is often shared by many other orbits. For
example, when c = −1, Q−1(x) = x2 − 1 will have a super-attracting period-2 orbit
between x = 0 and x = −1. This orbit is labelled by points D0 and D1 in Fig. ??.
Figure ?? shows that all bounded orbits except the fixed points and their preimages will
also approach this period-2 orbit.

For c = −2, the critical point (E0 in Figure ??) is a prefixed point, landing on the
fixed point E2 in two iterations: E0 → E1 → E2 → E2 → . . .. This “prefixed point”
is also called a “homoclinic point” since there is a sequence of backward images of the
critical point E0 approaching the repelling fixed point E2, as well as the second forward
iterate landing on E2. It is known that the dynamics restricted to the invariant interval
[E1, E2] is chaotic [?]. Orbits starting outside this interval all escape.
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3 Singular Perturbation with d = 1: fβ,c(x) ≡ x2 + c+ β
x

We now consider a “singular perturbation” of x2 + c by adding β/x. The graphs have
two qualitative shapes, depending on the sign of β. Note that there is a unique critical
point for each case. The critical point is given by xcrit = (β/2)1/3. For β = ±1, xcrit =
(±1/2)1/3 ≈ ±0.7937
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(a) fβ,c(x) = x2 + 0.5 + 1
x

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

3

4

(b) fβ,c(x) = x2 + 0.5 + (−1)
x

Figure 6: Examples of graphs of fβ,c(x) = x2 + c+ β
x
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3.1 Orbit diagrams

We start our investigation by illustrating two orbit diagrams in the parameter c for our
family of interest, one for β = +1, and one for β = −1. In both cases the fate of the
unique critical orbit is displayed.
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(a) An Orbit Diagram for c with β = 1; x versus c.
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(b) An Orbit Diagram for c with β = −1; x versus c.

Figure 7: The Orbit Diagrams for c with β = ±1

The primary feature in each of the two orbit diagrams in Fig. ?? appears to be a
smaller topological copy of Fig. ??, the orbit diagram illustrating the “period-doubling
route to chaos” for the standard quadratic family Qc = x2 + c, which exists for (c, x) ∈
[−2.0, 0.25]×[−2.0, 2.0]. For β = +1, the topological copy exists approximately for (c, x) ∈
[−1.55,−0.9]× [.25, 1.65], and for β = −1, the topological copy exists approximately for
(c, x) ∈ [−3.5,−2.6]× [−1.65,−0.25]. But both orbit diagrams have additional interesting
features which exist outside these primary regions. Many of these features are additional
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smaller topological copies of the period-doubling route to chaos for other periods. We do
not completely describe these additional features in this paper. (See Oman [?] for a much
more complete description of the bifurcations for the famlily: x2 + c + 0.001/x2,which is
a different one-parameter cut through our two-parameter family.)

The orbit diagrams in Fig. ?? are in the (x, c) plane. The labelled points have corre-
ponding figures that appear later in the paper. Specifically, Fig. ?? shows some bifurcation
curves in the (β, c) parameter plane, and Figs. ?? and ?? show graphical iteration pic-
tures in the (xn, xn+1) space, for fixed values of β and c. The following chart shows
correspondences between these figures.

Labels for corresponding figures.
Label for Fig-
ures ?? and
??

Figure
?? or ??

Description

(a) ?? fixed-point saddle-node
(b) ?? super-attracting fixed point
(c) ?? fixed-point period doubling
(d) ?? critical orbit is fixed after two iterations
(l) ?? fixed-point saddle-node
(m) ?? super-attracting fixed point
(n) ?? fixed-point period doubling
(o) ?? critical orbit is fixed after two iterates
Note: Figure ?? illustrates graphs at several bifurcation points for β = +1,
and Figure ?? illustrates β = −1.
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3.2 Parameter plane
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Figure 8: Some bifurcation curves in the (β, c) parameter plane for x2 + c+ β/x. Greeen:
saddle-node, Blue: period-doubling, Red: superattracting fixed point (critical point fixed),
Red dot-dashed: critical value fixed; Red dashed: critical orbit fixed after two iterates;
Magenta: critial orbit pre-pole. See also the tables in sections ?? and ??.
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In this section, we will focus on bifurcation curves for

fβ,c(x) = x2 + c+
β

x
(3)

in the (β, c) parameter plane. The defining equations for a few key bifurcations have
already been given in section ??. For example, the fixed-point saddle-node is determined
by the pair of equations: {

fβ,c(x) = x
f ′β,c(x) = 1

(4)

This pair of equations has parametric solution (for x 6= 0):{
β = −x2 + 2x3

c = 2x− 3x2 (5)

Other parametric solutions to the defining equations are similarly obtained. By graph-
ing these bifurcation curves (Fig. ??), we divide the plane into multiple regions. Param-
eter values in these regions do not necessarily have dynamically equivalent (conjugate)
systems, because we have computed only bifurcations related to fixed points. Maps cor-
responding to different regions, however, are inequivalent. Compare Fig. ?? with Figs.
??, ?? and ?? for more complete understanding.

Parametric representations of some Key Bifurcation Sets in the (β, c) plane
Properties Defining Equations Solution

super-attracting fixed point

{
fβ,c(x) = x
f ′β,c(x) = 0

{
β = 2x3

c = x− 3x2

fixed-point saddle-node

{
fβ,c(x) = x
f ′β,c(x) = 1

{
β = −x2 + 2x3

c = 2x− 3x2

fixed-point period doubling

{
fβ,c(x) = x
f ′β,c(x) = −1

{
β = 2x3

c = −3x2

critical value is 0 (pre-pole)

{
fβ,c(x) = 0
f ′β,c(x) = 0

{
β = 2x3

c = −3x2

critical orbit fixed after one iter-
ate

{
f 2
β,c(x) = fβ,c(x)
f ′β,c(x) = 0

{
β = −x2 + 2x3

c = −2x− 3x2

critical orbit fixed after two iter-
ates

{
f 2
β,c(x) = f 2

β,c(x)
f ′β,c(x) = 0

{
f 3
β,c(x) = f 2

β,c(x)
β = 2x3

explicit solution for
c too complicated to
display

12



3.3 Bifurcations for β = 1 with c varying

Figure ?? shows graphical iteration for the bifurcations points labelled in Fig. ?? along
β = 1.

Some Fixed-point Bifurcations for β = 1
Figure
??
Label

Figure
??
Label

Descriptions # of
fixed pts

??(a) ?? saddle-node 2
??(b) ?? super-attracting fixed point 3
??(c) ?? period doubling 3
??(d) ?? critical orbit is fixed after two iterations 3
??(e) ?? critical orbit lands on 0 (prepole) 3
??(f) ?? critical value is fixed 3
??(g) ?? critical orbit is fixed after two iterations 3
??(h) ?? critical orbit is fixed after two iterations 3
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(a) fβ,c(x) = x2 + (−1) + 1
x : saddle-node
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(b) fβ,c(x) = x2 + (−1.09618) + 1
x : super-

attracting fixed point
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(c) fβ,c(x) = x2 + (−1.29612) + 1
x : period-

doubling
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(d) fβ,c(x) = x2 + (−1.58) + 1
x : critical

orbit pre-fixed
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(e) fβ,c(x) = x2 + (−1.8899) + 1
x : critical

orbit pre-pole
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(f) fβ,c(x) = x2 + (−3.47728) + 1
x : critical

orbit pre-fixed
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(g) fβ,c(x) = x2+(−4.08)+ 1
x : critical orbit

pre-fixed
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(h) fβ,c(x) = x2 + (−4.67) + 1
x : critical

orbit pre-fixed

Figure 9: Cobweb graphs at bifurcation c-values for x2 + c+ 1/x14



3.4 Bifurcations for β = −1 with c varying

Figure ?? shows graphical iteration for the bifurcations points labelled in Fig. ?? along
β = −1.

Some Fixed-point Bifurcations for β = −1
Figure ??
& ?? La-
bels

Descriptions # of fixed
points

(i) the critical value is a fixed point 1
(j) the critical point prepole 1
(k) the critical orbit fixed after two iterations 1
(l) saddle-node 2
(m) super-attracting fixed-point 3
(n) period doubling 3
(o) the critical point fixed after two iterations 3
(p) the critical point fixed after two iterations 3
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(i) fβ,c(x) = x2 +(−0.30248)+ −1x : critical
orbit pre-fixed
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(j) fβ,c(x) = x2 + (−1.8899) + −1
x : critical

orbit pre-pole
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(k) fβ,c(x) = x2 + (−2.12) + −1
x : critical

orbit pre-fixed
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(l) fβ,c(x) = x2 +(−2.61071)+ −1x : saddle-
node
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(m) fβ,c(x) = x2+(−2.68358)+−1x : super-
attracting
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(n) fβ,c(x) = x2 + (−3) + −1
x : period-

doubling
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(o) fβ,c(x) = x2 + (−3.48) + −1
x : critical

orbit pre-fixed
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(p) fβ,c(x) = x2 + (−4.52) + −1x :critical or-
bit pre-fixed

Figure 10: Cobweb graphs at bifurcation c-values for x2 + c− 1/x16



3.5 Codimension-two Bifurcation Points

There are several codimension-two bifurcation points along the codimension-one bifur-
cation curves in Fig. ??. We have identified eight special points q through x in the
enlargement of Fig. ??.

q Cusp point on the saddle-node curve. Well-known saddle-node with a higher-order
degeneracy in its normal form.

r A crossing of two unrelated bifurcations: a saddle-node curve, and a curve along
which a critical value is a fixed point.

s A critical value is a saddle-node fixed point. We call this a CP2SN point. This
codimension-two point is not a well-known bifurcation, but has a simple model
which we present below.

t A crossing of a period-doubling curve with a curve along which the critical orbit is
fixed after two iterates. The respective curves generically cross the period-doubling
curve with a non-zero angle since the two bifurcations are independent.

u A crossing of a period-doubling curve with a curve along which the critical value of
the one critical point is zero (and therefore a pre-pole).

v Similar in type to point s. It has a critical value that is also a period-doubling point.
We call it a CP2PD point. See a model for this point below.

w Period-doubling at an inflection point. This does not appear to be a true codimension-
two bifurcation point, although it has an interesting interpretation for this specific
family. It seems at first to be analogous to the cusp point, a saddle-node with a
higher order degeneracy. However, the higher order degeneracy for a period-doubling
bifurcation is determined by a combination of the second and third derivatives at
the period-doubling point [?]. This combination is not zero at point w. The period-
doubling curve passes smoothly through w. The point does appear to have the
property of being a local maximum value of β along the period-doubling curve.

x This is a “degenerate period-doubling” point [?] where the combination of second
and third derivatives that defines a higher-order degeneracy:−f ′′′(p)−3/2(f ′′(p))2 =
0. Curiously, this bifurcation happens at exactly the same parameters as the critical
value landing on a period-doubling point, although the conditions for this point are
purely local at the fixed point, and the conditions for point v involve both the
period-doubling point and a critical point which is located elsewhere in the phase
space. These two points would not be coincident in a generic family. If bifurcation
curves for period-two points were added to Fig. ??, then a period-two saddle-node
curve would emanate from this point, tangent to the period-doubling curve.

Corresponding graphs are shown in Fig. ??.
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3.5.1 Model of a CP2SN point

We present a model for the codimension-two bifurcation in which a critical value is also
a saddle-node fixed point. The label ‘CP2SN’ is chosen since a critical point maps to a
saddle-node point. The model is xn+1 = fa,b(xn), where f has the local form of a saddle-
node (arbitrarily positioned at x = 0), and the local form of a critical point (arbitrarily
placed at x = −1), which maps to the saddle-node when the “unfolding parameters” (a, b)
are at (0, 0). That is, fa,b(x) = x+ x2 + a near x = 0, and (x+ 1)2 + b near x = −1. For
this model, the saddle-node curve is the b axis (a = 0), and the critical value is a fixed
point when a = −b2. These two bifurcation curves are tangent. This is consistent with
the tangency of the two curves in Fig. ?? at point s.

3.5.2 Model of a CP2PD point

We present a model for the codimension-two bifurcation in which a critical value is also
a period-doubling fixed point. The label ‘CP2PD’ is chosen since a critical point maps to
a period-doubling point. Its model has a fixed point (placed at zero) which undegoes a
period-doubling, and a critical point (arbitrarily placed at x = 1) with critical value zero.
After adding the unfolding terms, the form of the model bifurcation f(a,b) is −x±x3 + ax
near x = 0, and −(x − 1)2 + b near x = 1. The period-doubling curve is a = 0, and
the critical value is fixed if b = 0. Thus the model is topologically consistent with the
computed curves which cross at point v with a non-zero angle in Fig. ??.
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Figure 11: The (β, c) parameter plane: enlargement of Fig. ??, with eight codimension-two
points labelled. Greeen: saddle-node, Blue: period-doubling, Red: superattracting fixed
point (critical point fixed), Red dot-dashed: critical value fixed; Red dashed: critical orbit
fixed after two iterates; Magenta: critial orbit pre-pole. See text for more explanaton.

3.6 Dynamics

So far in this paper we have focussed on bifurcation curves related to fixed points in our
family, but, other than displaying some orbit diagrams, we have not directly addressed
the behavior of the critical orbit, and we have addressed even less the fates of other orbits.
In this section we will provide some observations about the dynamics of the critical orbit,
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Figure 12: Graphs at some codimension-two parameter points for x2 + c+ β/x.
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and the consequent fates for all orbits for certain groups of parameter values. These
descriptions are not fully proven, nor are they complete. They serve more as a starting
point for future investigation.

For example, consider parameter values in Fig. ?? with β > 0 and (β, c) above the
saddle-node bifurcation curve (which runs through point (a)). A representative is shown
in Fig.̃refFig.label.a0 below. By just doing graphical iteration, it is clear that the critical
orbit escapes. Further, any orbit starting at x0 with x0 > 0 will go off to infinity. Other
than the one fixed point, any orbit starting with x0 < 0 that does not land on x = 0
will eventually have some iterate xn > 0, and therefore will iterate to infinity. If we
extend the map (as is customary with rational maps) to the circle which is the one-point
compactification of the real line by adding the “point at infinity”, then 0 will map to
infinity, so that all the orbits that land on 0 will also iterate to infinity. Thus, all orbits
except the fixed point escape to infinity.
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Figure 13: Bifurcation for β > 0 and (β, c) above the saddle node curve

Similarly, consider parameter values in Fig. ?? with β < 0 and (β, c) above all the
bifurcation curves shown. That is, consider β values above the top “critical orbit pre-
fixed” bifurcation curve (which runs through point (i)), and also above the part of the
saddle-node bifurcation curve which runs through point (a) and extends just barely into
the left-half plane. For all these parameter values, the critical orbit escapes, and all orbits
other than the unique fixed point, now with a positive value, escape.

At the other extreme are “sufficiently negative” c parameter values. For c values below
the two “critical orbit prefixed bifurcation curves through the points labelled h and p in
Fig. ??, the critical orbit escapes, and it appears that all other orbits except a Cantor set
escape. Further, the dynamics on that Cantor set appears to be conjugate to a full shift
on three symbols, since the graph of the iteration function maps three times “across the
interval” determined by the rightmost fixed point, and its leftmost preimage. Compare
with Figs. ?? and ?? by decreasing c and therefore dropping the graph slightly.

For β values between these upper and lower extremes the description of the dynamics
is more complicated, especially in cases where positive values can map to negative values.
See, for example, Fig. ??, where the interval determined by the small (red) square is not
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invariant, but contains and invariant Cantor set. The interval determined by the large
(green) square is not invariant either, but contains additional points whose orbits stay
bounded. Full dynamical descriptions for all parameter values is not trivial. It will be
left for a future project.
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Figure 14: Example graph where neither the interval of the small (RED) square nor the
interval of the large (GREEN) square is invariant, but both intervals contain invariant
sets that remain inside the respective intervals.
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4 Singular perturbations with d = 2: x2 + c + β/x2

Now that we have developed many tools and scripts to study our main family, x2+c+β/x,
we use them to show analogous results for the similar family with the power of the singular
perturbation changed from d = 1 to d = 2.

4.1 Orbit diagram

Define fβ,c by

fβ,c(x) ≡ x2 + c+
β

x2

There are two critical points for this family, but they both have the same critical value,
so we can compute “the” orbit diagram by following the positive critical orbit. The result
is Fig. ??.

Figure 15: An Orbit Diagram for c with β = 1. Labels correspond to bifurcation curves
in Fig. ?? and iteration graphs in Fig. ??.

Since this family has two unimodal branches, one with x > 0 and one with x < 0, the
orbit diagram has two main “full period-doubling route to chaos” parameter intervals,
extending from a saddle-node bifurcation (labelled (a) (respectively (d)) through the left-
hand edge of each of the two primary features, determined by the critical orbit landing
on a repelling fixed point in two iterates. But there are many other smaller features as
well, many corresponding to higher periodic orbits that include both positive x values
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and negative x values. See the master’s project by Oman [?] for a detailed explanation of
a similar one-parameter cut, but with β = .001 instead of β = 1.0.

4.2 Parameter plane

Figure ?? is the beginning of a (β, c) parameter plane bifurcation diagram for fβ,c(x) =
x2 +c+ β

x2
. Only fixed-point bifurcation curves are shown, but they suggest features of the

whole two-parameter family. Primarily, the bifurcation structure in the β > 0 half-plane
is similar (but not exactly the same), to the bifurcations for d = 1, shown in Fig. ??.
Much more work would need to be done to fully understand these maps.

The β < 0 half-plane, on the other hand, has almost no bifurcation curves. The green
saddle-node curve (through point (a))barely crosses the c axis to arrive at a cusp that
has β < 0 and c > 0, and the blue period-doubling curve barely crosses into the β < 0
half-plane for c approximately in [−0.76, 0], although this is not clear from Fig.??. It is
clear in the enlargement in Fig. ??.

4.3 Bifurcations for β = 1 with c varying

Figure ?? shows a sequence of graphs illustrating the iteration function at the 13 bifur-
cation points labelled in Figs. ?? and ??.
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Figure 16: The (β, c) param-
eter plane. Greeen: saddle-
node, Blue: period-doubling,
Red: superattracting fixed point
(critical point fixed), Red dot-
dashed: critical value fixed; Red
dashed: critical orbit fixed after
two iterates; Magenta: critial
orbit pre-pole. Labelled points
are all along β = 1; correspond-
ing graphs are in Figs. ??a-m.

4.4 Codimension-two bifurcation points

As we have done for the d = 1 parameter plane, we have identified several codimension-
two bifurcation points. Four are labelled in Fig. ??. All of them have been described
above in subsection ??.

4.5 Dynamics

We provide an incomplete set of observations about the dynamics for our family.
When β < 0, the graph has two monotonic branches. As long as parameters are also

to the left of the saddle-node and period-doubling curves in Fig. ??, all orbits outside the
interval determined by the right-most fixed point and its leftmost preimage will escape.
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(a) Saddle-node; c = −0.928623.
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(b) Super-attracting fixed point; c = −1.
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(c) Period-doubling; c = −1.15447.
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(d) Critical orbit prefixed; c = −1.38197.
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(e) Critical orbit prepole; c = −2.0.
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(f) Critical orbit prefixed; c = −2.48053.
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(g) Critical orbit prefixed; c = −2.5939.

Figure 17: Graphs at some bifurcation values of c for x2 + c + β/x2 with β = 1. See
corresponding parameter values in Fig. ??. The c values are listed by each subfigure.
Green lines emphasize the location of the bifurcation feature. Red lines show the orbit of
the critical point(s).

26



-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(h) Saddle-node; c = −2.94443.
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(i) Super-attracting fixed point; c = −3.0.
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(j) Period-doubling; c = −3.23418.
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(k) Critical orbit prefixed; c = −3.61803.
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(l) Critical orbit prefixed; c = −4.08102.
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(m) Critical orbit prefixed; c = −4.69174.

Figure 17: Continued.
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It appears that the points inside that interval also escape, except for an invariant Cantor
set. The dynamics appears to be conjugate to a shift on two symbols as the maps all
appear to behave similarly to a “V-map”, whose dynamics is well-known.

When β > 0 the dynamics is roughly similar to the description for d = 1, but there are
some differences. For c above the saddle-node curve in Fig. ??, all orbits escape. Compare
with Fig. ?? by shifting the graph up slightly. For all c below the lowest dashed red line
(for critical orbits fixed after two iterates), there is no invariant interval, but the graphs
stretch four times across the interval determined by the right-most fixed point and its
leftmost preimage. Compare with Fig. ?? by shifting the graph down slightly. The top
horiontal red line in that figure is the “interval.” Therefore we expect that only a Cantor
set of points stays bounded, and the dynamics on this Cantor set is conjugate to the full
shift on four symbols. This is for certain the dynamics when c is sufficiently negative
that the parts of the graph with both domain and range in this interval have slopes with
magintude greater than one.
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5 2-D Singular Perturbation: fβ,c(z) ≡ z2 + c + β
z̄

In this section we mention the relationship of our work to a much more difficult problem
that we are also interested in understanding: determining the dynamics of fβ,c(z) ≡
z2 + c+ β

z̄
, where z is a complex dynamic variable, and β and c are complex parameters.

Our family from Sec. ?? lives on the real axis of this family whenever c and β are real
parameters. Our family also lives on the real axis of fβ,c(z) ≡ z2 + c + β

z
, which is in

the category of rational complex dynamics. See [?] for a survey of results on singular
perturbations in rational dynamics. Since our example has a z̄ in its formula, it is not a
complex analytic rational map, and therefore must be instead considered a rational map
of the real plane.

Figure ?? displays the results of an escape experiment for one such family. Black
indicates initial conditions whose orbits are bounded up through the first 100 iterations.
The picture is partially explained by looking at the real map resticted to the real axis.
The graph of this real maps is displayed in Fig. ??. It has a superattracting period-4
orbit on the real line. The two largest black blobs in Fig. ?? each have two of the points
in this period-4 orbit. The other disconected black regions appear to all be preimages of
these two largest regions. Clearly there is much more to the dynamics of even this one
map of the plane.

Figure 19: An escape picture for f(z) = z2 + β/z + c where c=-.25 and β = −.2
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Figure 20: A period-4 critical orbit for fβ,c(x) = x2 + (−0.25) + −0.2
x

6 Conclusion

This paper has been primarily a study of bifurcations in the families fβ,c(x) = x2 + c+ β
xd

for d = 1 and d = 2. We conjecture that the bifurcation behavior for any positive d
will resemble these two cases, with d odd resembling d = 1 and d even resembling d = 2
because of the similar shapes of the corresponding graphs. These families are a small
subset of the set of all rational maps of the real line, but they have the advantage that
they can be compared to the well-known family x2 + c.

Our longer term goal is to use understand the dynamics of these real rational maps as
a starting point for understanding non-analytic perturbations of the well-known complex
quadratic famlily z2 + c of the form zn + c+ β

zd
. See some work on special cases of these

families in work by former students supervised by B. Peckham: Brett Bozyk 2013 [?],
Jordan Maiers 2014 [?], Evan Oman 2015 [?], Matt Arthur 2015 [?], and Yujiong Liu
2017 [?].

Much is still waiting to be discovered.
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