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Abstract

A stoichiometric population model of two producers and one consumer is a generalization
of the Rosenzweig and MacArthur population growth model, which is a single-producer-
single-consumer population model without stoichiometry. The generalization involves two
steps: 1) add a second producer which competes with the first, and 2) introduce stoichiom-
etry into the system. Both generalizations introduce additional equilibria and bifurcations
to the single-producer-single-consumer model without stoichiometry.

The primary focus of this paper is to study the equilibria and bifurcations of the two-
producer-one-consumer model with stoichiometry. The nutrient cycle in this model is
closed. The primary parameters are the growth rates of both producers, and the secondary
parameter is the total nutrient in the system. Depending on the parameters, the possible
equilibria are: no-life, one-producer, coexistence with both producers, the consumer coex-
isting with either producer, and the consumer coexisting with both producers. Limit cycles
exist in the latter three coexistence combinations. Additionally, variations on producer and
competitions between the two producers are considered in this model. Bifurcation diagrams
along with corresponding phase portraits summarize the results presented in this paper.
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1 Introduction

A stoichiometric population model of two producers and one consumer is developed and
studied by equilibrium and bifurcation analysis in this paper. Consumers and producers
are often referred as predators and prey. This model is a generalization of the Rosenzweig
and MacArthur population growth model, which is a single-producer-single-consumer pop-
ulation model. The generalization involves two steps: 1) add a second producer which
competes with the first, and 2) introduce stoichiometry into the system. The orders of
generalization should not change the final result.

We first introduce a stoichiometric mechanism into the Rosenzweig and MacArthur model;
thus, leading to the study of a one-producer-one-consumer model with stoichiometry. The
stoichiometry in the one-producer model provides additional bifurcations (including a sad-
dle node, which destroys a limit cycle) and “low nutrient” equilibrium solutions.

Starting from Rosenzweig and MacArthur model again without stoichiometry, we add the
second producer, which competes with each the first. The producers are distinguished by
their growth rates. Adding a second producer also leads to additional bifurcations (includ-
ing a transcritical bifurcation of periodic orbits). Due to the additional bifurcation of the
periodic orbits, the geometry of the limit cycles becomes an interesting feature.

Finally, we apply both generalizations together. The two-producer-single-consumer model
with stoichiometry has all the features above. Additionally, the transitions from one pro-
ducer to two producers, and the bifurcations occurring between different “side planes” and
the interior of the positive quadrant are studied. Bifurcation diagrams along with the cor-
responding phase portraits summarize the results.

To simplify the system for equilibrium analysis, we divide the models into two cases. If
the food source has a high nutrient value to the consumer, we call that to be case H.
Otherwise, we have case L if the food source has a low nutrient value to the consumer.
We found all equilibrium solutions in both cases and numerically generated curves in the
primary parameter plane corresponding to changes in eigenvalues of the equilibria. By
running simulations, we obtain phase portraits corresponding to different regions of the
parameter plane and identify bifurcations induced as we change the producer growth rates.

A brief review of relevant population models is in the background review section. The
relevant population models are Lotka-Voltera model, Rosenzweig and MacArthur model,
and the LKE model (Loladze, Kuang, and Elser). The term “stoichiometry” means the
ratio of two or more nutrients in an organism. We restrict our attention to carbon and
one other nutrient. To construct our model, both carbon flows and nutrient cycles are
considered. There are five differential equations and two primary parameters investigated
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in the bifurcations. The two primary parameters are the growth rates of the producers.
A secondary parameter investigated in the bifurcations is the total nutrient in the system,
NT . All other parameters remain fixed in this study.

The organization of this paper is the following: Section 1 is the introduction; Section 2
is the background review to the Lotka-Voltera model, the Rosenzweig MacArthur model,
and the LKE (Loladze, Kuang, Esler) model; Section 3 contains the model construction.
The assumptions and compartment diagrams are stated and shown in this section. Section
4 describes the one-producer-one-consumer model. A stoichiometric mechanism is intro-
duced into Rosenzweig and MacArthur model. The equilibrium solutions and bifurcation
diagrams of this one-producer model are presented in this section. Section 5 describes the
two-producer-one-consumer model. A second producer is first added to the Rosenzweig and
MacArthur model without stoichiometry. Then a stoichiometric mechanism is introduced
into this two-producer model. The corresponding equilibrium solutions and bifurcation
diagrams are presented in this section. Section 6 describes the conclusions of this study.
Section 7 is an appendix.
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2 Background Review

Many Producer-Consumer models have been developed and studied, usually with a single
population of producers assumed in the models. The Lotka-Voltera model was proposed
independently in 1925 by the American biophysicist Alfred Lotka and the Italian mathe-
matician Vito Volterra [1]. It was one of the first models to incorporate interactions between
producers (prey) and consumers (predators). In the Lotka-Voltera model, the population
densities of producers and consumers are thought as the functions against time, with pop-
ulation growth, mortality, and predation including fluxes (interactions) between producers
and consumers. To describe the changes of the two population densities, two ordinary
differential equations are used, one for producers and another for consumers. Formulas
(2.0.1) are differential equations for the Lotka-Voltera model, where P and C represent the
population densities of producers and consumers, respectively.


dP
dt = αP − βPC

dC
dt = eβPC − dC

(2.0.1)

α is the natural growth rate of producers in the absence of predation.
β is the death rate per encounter of producer due to predation.
d is the natural death rate of consumers.
e is the efficiency of turning predated food into consumer biomass.

This model describes the interactions between producers and consumers in a simple fash-
ion, in which (i) the population growth of the consumers depends on the population of the
producers. If there is a large population of producers available for consumers as food, the
population of consumers will increase in size. (ii) The population of producers gets low
when the population of consumers is too high. As a result, the number of consumers drops
and the producer population increases again.

However, there are two significant problems with the model. (i) If the population of con-
sumers is removed from the system (C = 0), the population of producers will grow infinitely
without any upper bounds over time according to the formula (1). Obviously, this is not
correct because of the limited living resources in the environment. (ii) If the number of
producers is doubled, then the growth of consumer will be twice as fast according to the
formula (2.0.1). This is the result of ignoring the fact that consumers have saturation on
food. Consumers cannot eat twice as much food even if the amount of food is doubled.
In other words, the amount of food available and the amount of food consumed are not
linearly related.
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To improve the Lotka-Voltera model, Rosenzweig and MacArthur [2] suggested introducing
the logistic growth function and the food saturation into the model in 1963. Formulas (2)
are the equations for a version of the Rosenzweig-MacArthur model.



dP
dt = αP (1− P

K )− f(P )C

dC
dt = ef(P )C − dC

f(P ) = βP
χ+P

(2.0.2)

α is the natural growth rate of producers in the absence of predation.
d is the natural death rate of consumers.
e is the efficiency of turning predated food into consumers’ own biomass.
K is the carrying capacity of producers.
f(P ) is a Holling Type II or Michaelis-Menten function that describes consumers satura-
tion on food.
β is the maximal death rate per encounter of producer due to predation.
χ is the half-saturation of predation.

Solutions to system (2.0.2) are more realistic than the solutions to (2.0.1). If the growth
rate α of producers is too low, the ecosystem becomes a monoculture system. This is be-
cause there is not enough food to maintain the consumers. When the growth rate α is high
enough passing a transcritical value, both producers and consumers will be able to coexist
together and approach some constant values. As the producer’s growth rate α increases
further, population solutions approach a limit cycle, and the amptitude of the cycle grows
with increasing growth rate α.

Around 2000, a new model was constructed based on the Rosenzweig-MacArthur model to
explain the “paradox of enrichment” [3]. Loladze, Kuang and Elser (LKE) [4] introduced
the idea of nutrient cycling into the ecology models. Every organism has its own ratio
of nutrient to carbon in its body, and that ratio is called the “stoichiometric ratio”. The
stoichiometric ratio is very specific for most animals, but plants can have a wide range of
values over time. Food that has a very low stoichiometric ratio to the consumer’s ratio is
not as much benefit to the consumer. The result model is described in equations (2.0.3).

The paradox of enrichment is a phenomenon in which the population of consumer declines
when the population of producers increases. This observed result is in contrast to the
prediction from the Rosenzweig-MacArthur model. Although the number of producers in-
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creases, the stoichiometric ratio of producers drops below what the consumer needs. As a
result, the consumer can not get enough nutrients from the food (producers), causing the
consumer’s population to decline.


dP
dt = αP (1− P

min(K, (NT−θC)/q))− f(P )C

dC
dt = ê min(1, (NT−θC)/P

θ )f(P )C − dC
(2.0.3)

α is the natural growth rate of producers in the absence of predation.
K is the carrying capacity of producers.
f(P ) is a Holling Type II function to describe consumers’ saturation on food.
d is the natural death rate of consumers.
ê is the maximal production efficiency.
θ is a fixed stoichiometric ratio of consumers.
q is the minimum stoichiometric ratio of producers.
NT is total amount of nutrient in the model.

From the Lotka-Voltera model to the LKE stoichiometric model, the parameters of the
population carrying capacity, the saturation on food, and the nutrient cycling are intro-
duced into the models. Naturally, another concern may be the number of different types of
producers and consumers. For example, a variety of grazing species in a corn field would
require a model of one producer and multiple consumers. Yet an ecosystem of a garden
of various flowers might be a model of multiple producers (flowers and green plants) and
one consumer (a certain type of insect). In the paper “Herbivores, the Functional Diver-
sity of Plants, and Cycling of Nutrients in Ecosystems” by Pastor and Cohen [5], a model
of one consumer, two producers, and a single nutrient was addressed. The focus of the
model was to determine the criteria of coexistence in terms of plants’ growth rates in open
and closed environments. An open environment means there are nutrient inputs from and
exports to the surrounding environments for some components, and a closed environment
corresponds to those being a fixed total amount of nutrient cycling through the compo-
nents in the model. There are still many interesting questions associated with a model of
two producers. (i) Are there any coexistence limit cycles? (ii) How does the consumer’s
food preference affect the populations of both producers? (ii) Are the resource competi-
tions and the variations among the producers related to criteria of coexistence? (iv) What
are the transitions when a system moves from one producer to two producers? This pa-
per includes a further study of the model of two producers, focusing on the questions above.
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3 Model Construction

This model contains two populations of producers and a single population of consumers.
We assume that the consumers will feed on both producers and convert them into its
biomass. Since this is a stoichiometric model, both quality and quantity of producers and
consumers are measured. A common way to monitor a population density is to measure the
total biomass of that population. Approximately 50% of the dry mass is carbon. There-
fore, we can measure the flows of carbon to determine the biomass transfers among the
populations. The word “flow” is used because carbon does not stay in the system forever.
In fact, carbon comes into the model through photosynthesis and leaves when living beings
die and decompose.

The quality of a food to the consumer is a relative term. We think of it as the ratio of
the amount of nutrient to the amount of carbon. Modelers have traditionally used carbon
in the system as a measurement of population densities. So now we need to keep track of
the amount of nutrient, such as nitrogen, in each population in the model. Unlike carbon
which flows through the model, nutrients cycle within the model. Initially, there is a certain
amount of nutrient in the soil. Plants take up the nutrient from soil and grow. Consumers
gain nutrients by feeding on plants. When plants and consumers die, their bodies will be
decomposed and the nutrient contained in the bodies will return to the soil. Therefore,
there is a component of mineralized nutrients in the nutrient cycle to represent the amount
of nutrient in the soil. The graph (3.0.1) shows the flows of two elements in the model.
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(a) Flow of Carbon

(b) Cycle of Nutrient

Figure 3.0.1: Graphs of Carbon and Nutrient
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Regarding the flow of carbon, P1, P2 and C are the amounts of carbon in the populations
of producer one, producer two, and consumer. For the cycle of nutrient, N1, N2 and Nc are
the amounts of nutrient in the populations of producer one, producer two, and consumer.
M is the amount of mineralized nutrient.

3.1 General assumptions

There is no carbon sediment class in the model. We assume that the rates of litter decom-
position and nutrient mineralization are independent of sediment nutrient concentration.
Thus, mortality is considered as an exit of carbon flow in the system. (See 3.0.1(a))

This is a closed nutrient model. The amount of nutrient in the system is fixed. There are
no external nutrient input and output in any components. In other words, all nutrients
are cycling within the model. Let NT be the total sum of all nutrient in system. Then, by
this assumption, the amount of mineralized nutrient, M = NT −Nc −N1 −N2.

3.2 Assumptions on Producers

The two producers are assumed to be competing with each other. Like the other models,
the parameter that we are going to change for the producers is the growth rate. We assume
that two producers are very similar, but differ by their growth rates, respectively b1 and
b2. By making this assumption, we can see how sensitive the system and the long-term
solutions are to small variations in growth rates of the two producers. Note that the two
producers are not identical even if their growth rates are the same (b1 = b2). This is
because the interference coefficients λ12 and λ21 differ from the self-limitation coefficients
λ11 and λ22.

The equations and the equilibrium solutions in this paper are for the general parameter
settings. In the future, one could study the bifurcations of the same system by varying
some sets of parameters other than the growth rates, such as transpiration rates and in-
terference coefficients.

Regarding the flow of carbon, both producers absorb carbon dioxide from the air and gen-
erate carbohydrates through photosynthesis. We assume that the biomass (carbon) growth
for each producer alone is logistic in form: b1/λ11 and b2/λ22 are the carrying capacities
for producer P1 and P2 without the competitions. The interference terms λ12P2 and λ21P1

represent the competitions between the two producers in P1 growth rate and P2 growth
rate, respectively. The growth terms in dP1

dt and dP2
dt are P1g1(P1, P2) and P2g2(P1, P2),

where g1(P1, P2) = (b1 − λ11P1 − λ12P2)+ and g2(P1, P2) = (b2 − λ21P1 − λ22P2)+. The
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(x)+ function is defined as max(0, x) to prevent the growth terms from being negative.
Carbon leaves the system when producers die. Let dP1 and dP2 be the death rates of
producer one and producer two. The amounts of carbon loss are PidPi , i = 1, 2. When
producers are consumed by consumers, the producer biomasses decrease. Since the con-
sumption rate by consumers depends on the total amount of food available, we calculate
the total amount of food, which is the total sum of producers, P1 + P2 as the consuming
function input P . Let f(P ) = αP

h+P be the Rosenzweig - MacArthur’s rate of producers
being consumed by consumers (Holling Type II). The total amount of consumed biomass
is f(P1 + P2)C = α(P1+P2)C

h+P1+P2
.

Regarding the nutrient cycle, we assume that the producer absorbs the mineralized nutri-
ents from the soil via transpiration. The nutrient uptake of producers is assumed to be
proportional to the mineralized nutrient M and the growth Pigi(P1, P2) of the producer.
Denoting the transpiration efficiency by T (Pi). we model the amount of nutrient absorbed
by one producer as MT (Pi). The total amount of nutrient absorbed by a population of
producers is MT (Pi)Pigi(P1, P2). To simplify the calculation, we let T (Pi) be some con-
stant βi. Once a producer dies, its body will decompose and its nutrients will return to
the nutrient pool underground. Thus, the amounts of producer-held nutrient loss due to
mortality are dPiNi, i = 1, 2. A major assumption we will make is that the first two phases
of decomposition, leaching and immobilization, take no time. In reality, immobilization is
not a simple process that can be done in a short period of time. However, to keep this
model simple enough to analyze, we make this assumption. When producers are consumed,
a certain amount of nutrient is transferred from producers to consumers. The amounts of
producer-bound nutrient loss due to the predation are f(P1 + P2)CNi

Pi
, i = 1, 2.

3.3 Assumptions on Consumer

Animals typical have a small deviation of their stoichiometric ratio, while plants can tol-
erate a very large range of stoichiometric ratios. Therefore, the stoichiometric ratio of
consumers is assumed to be a constant. Let q be the consumer stoichiometric ratio. Then
the amount of nutrient in consumers Nc can be rewritten as Cq, where C is the amount
of carbon in consumers. Furthermore, the change of consumer nutrient over time is the
change of consumer carbon times the stoichiometric ratio. That is, dNc

dt = dC
dt q. With

this relationship, we can solve for C from the system of equations first and then calculate
Nc = Cq.

A consumer can convert only a portion of carbon from the food they eat. Assume that
the portion of converted carbon is proportional to the total amount of carbon contained in
food. Let γ be the optimal biomass conversion efficiency. Then the maximum amount of
carbon consumers gain from food is γf(P1 +P2)C. The actual amount of absorbed carbon
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is based on the quality of food. A high quality food means the stoichiometric ratio of the
food is “close” to the stoichiometric ratio of the consumer’s body. With high quality food,
consumers can convert food into carbon at the most efficient rate. Therefore, the amount
of gained carbon is γf(P1 + P2)C. However, a consumer cannot maintain the carbon con-
version process at the most efficient rate when the food quality is poor. Consequently, the
consumer will convert less carbon from the low nutrient food. We approximate that lower
rate by Q/q, where Q is the stoichiometric ratio of the food source. Since we have two food
sources, Q is P1Q1+P2Q2

P1+P2
and the biomass conversion rate is min(γ, 1

q
Q1P1+Q2P2

P1+P2
)f(P1+P2)C,

where Q1 and Q2 are the stoichiometric ratios of producer P1 and P2. (See Appendix I)

In the nutrient cycle, a consumer can absorb nutrients only from the producers. Once the
consumer dies, its nutrient content will be returned to the nutrient pool M .

We assume that the food preference of consumers is based the amount that is available.
In other words, a consumer will prefer the producer that can be found easily, meaning
the producer that has higher population density. Let a = P1

P1+P2
be the probability of

consumers feeding on producer P1. Then the probability of consumers feeding on producer
P2 is (1− a) since there are only two producers in the model.

3.4 The mathematical equations for this model

dP1
dt = g1(P1, P2)P1 − dp1P1 − af(P1 + P2)C

dP2
dt = g2(P1, P2)P2 − dp2P2 − (1− a)f(P1 + P2)C

dC
dt = min(γ, 1

q
Q1P1+Q2P2

P1+P2
)f(P1 + P2)C − dcC

dN1
dt = MT (P1)g1(P1, P2)P1 − af(P1 + P2)CN1

P1
− dp1N1

dN2
dt = MT (P2)g2(P1, P2)P2 − (1− a)f(P1 + P2)CN2

P2
− dp2N2

(3.4.1)
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where



a = P1
P1+P2

g1(P1, P2) = (b1 − λ11P1 − λ12P2)+

g2(P1, P2) = (b2 − λ21P1 − λ22P2)+

f(P1 + P2) = α(P1+P2)
h+(P1+P2)

T (Pi) = βi, i = 1, 2

M = NT −Nc −N1 −N2

g1(P1, P2) and g2(P1, P2) are the logistic growth functions with interference terms.
T (Pi) are the transpiration coefficients.
Function f is the amount of consumed producer by a single consumer.
a is the probability that producer P1 is consumed.

To reduce the complexity of formulas (3.4.1), we use Qi = Ni
Pi
, i = 1, 2 to replace N1 and

N2. Qi is the stoichiometric ratio for producer Pi, where Pi > 0.

dQi
dt

=
dNi

dt

1
Pi
− Ni

P 2
i

dPi
dt

(3.4.2)

Substituting dNi
dt and dPi

dt into (3.4.2), we get the differential equations for dQ1

dt and dQ2

dt .
Now the system equations are shown in (3.4.3).



dP1
dt = ((b1 − λ11P1 − λ22P2)+ − dp1 − αC

h+(P1+P2))P1

dP2
dt = ((b2 − λ21P1 − λ22P2)+ − dp2 − αC

h+(P1+P2))P2

dC
dt = (min(γ, 1

q
P1Q1+P2Q2

P1+P2
) α(P1+P2)
h+(P1+P2) − dc)C

dQ1

dt = ((NT − qC −Q1P1 −Q2P2)β1 −Q1)(b1 − λ11P1 − λ22P2)+

dQ2

dt = ((NT − qC −Q1P1 −Q2P2)β2 −Q2)(b2 − λ21P1 − λ22P2)+

(3.4.3)
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4 One-Producer-One-Consumer Model

In order to understand the model (3.4.3), we first consider the special case where there is
a single producer in the system. We set P2 = 0 and reduce the model into a one-producer-
one-consumer model (see equations 4.0.1). As we shall see, it is sufficient to drop the
reference to the positive part function. The single-producer-single-consumer system now
leads equations (4.0.1).



dP1
dt = (b1 − λ11P1 − dP1 − αC

h+P1
)P1

dC
dt = (min(γ, Q1

q ) αP1
h+P1

− dc)C

dQ1

dt = ((NT − qC −Q1P1)β1 −Q1)(b1 − λ11P1)

(4.0.1)

For the purpose of numerical simulation and stability analysis, the parameter values for
the model are listed below.
Logistic equation constant λ11 = 0.5,
Producer death rates dP1 = dP2 = 0.05,
Consumer death rate dc = 0.17,
Consumer Stoichiometric ratio q = 0.05,
The efficient conversation rate γ = 0.1,
The maximal and half-saturation efficients in the predation function are α = 2.75 and
h = 0.75,
Transpiration constant β1 = 0.3 (even if P1 = 0).

4.1 Invariant Regions

Based on the model’s biological origins, we hold some basic expectations about the vari-
ables and equations.

1) P1, C, and Q1 should be non-negative at any time t.

2) The growth function (b1 − λ11P1) and the amount of mineralized nutrient
(NT − qC −Q1P1) cannot be negative.

Proposition 4.1.1. Assume λ11 , dP1, dc, q, γ, α, h, and β1 are > 0. If (b1 − λ11P1)
and (N − qC −Q1P1) are initially non-negative, then (b1 − λ11P1) and (NT − qC −Q1P1)

13



should be always non-negative at any time t along the solution, assuming P1, C, and Q1

are positive.

Proof. Assume that the growth function is equal to zero at some time t′. P1
′ = P1(t′),

C ′ = C(t′), and Q1
′ = Q1(t′).

Consider the derivative of the growth function (b1 − λ11P1) = 0 at t = t′

d
dt(b1 − λ11P1)|t=t′ = −λ11

dP1
dt |t=t′ = −λ11(b1 − λ11P1

′ − dP1 − αC′

h+P1
′ )P1

′

= −λ11(−dP1 − αC′

h+P1
′ )P1

′

= λ11P1
′(dP1 + αC′

h+P1
′ ) ≥ 0

This means the growth function cannot become negative if a solution starts with a non-
negative growth rate.

Assume that (NT − qC −Q1P1) is equal to zero at some time t′.

Consider the derivative of (NT − qC −Q1P1) at t = t′

d
dt(NT − qC −Q1P1)|t=t′ = −q dCdt |t=t′ −Q1

dP1
dt |t=t′ − P1

dQ1

dt |t=t′

= −q(min(γ, Q1
′

q ) αP1
′

h+(P1
′)
− dc)C ′

−Q1
′(b1 − λ11P1

′ − dP1 − αC′

h+P1
′ )P1

′

−P1
′((NT − qC ′ −Q1

′P1
′)β1 −Q1

′)(b1 − λ11P1
′)

= −qmin(γ, Q1
′

q )αP1
′C′

h+P1
′ + qC ′dc

−Q1
′P1
′(b1 − λ11P1

′ − dP1 − αC′

h+P1
′ )

+Q1
′P1
′(b1 − λ11P1

′)

= qC ′dc +Q1
′P1
′dP1 + qαP1

′C′

h+P1
′ (Q1

′

q −min(γ, Q1
′

q ))

If γ ≤ Q1
′

q , then qC ′dc +Q1
′P1
′dP1 + qαP1

′C′

h+P1
′ (Q1

′

q − γ) ≥ 0.
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If γ > Q1
′

q , then qC ′dc +Q1
′P1
′dP1 + qαP1

′C′

h+P1
′ (Q1

′

q −
Q1
′

q ) ≥ 0.

This implies that that (NT − qC −Q1P1) cannot become negative if a solution starts with
a non-negative value of (NT − qC −Q1P1).

Proposition 4.1.2. An invariant region of model (4.0.1) is 0 ≤ P1 ≤ b1
λ11

, 0 ≤ C ≤ N
q ,

0 ≤ Q1 ≤ NTβ, and (NT − qC − Q1P1) ≥ 0. If a solution initially starts in the interior
of the invariant region or on the boundary of the invariant region, the solution will stay in
this region.

Proof. If the solution initially starts on the boundary but does not cross the boundary,
then all solutions start initially in this invariant region should stay in this region at any
future time t. There are seven “sides” to the region boundary.

a) and b) For solutions on the side planes P1 = 0 or C = 0, the solutions cannot cross the
side planes since dP1

dt = 0 and dC
dt = 0, respectively.

c) For solutions on the side plane Q1 = 0,

dQ1

dt
= (NT − qC)β1(b1 − λ11P1) ≥ 0

Let dQ1

dt ≥ 0 since C ≤ NT
q and P1 ≤

b1−dP1
λ11

. This implies that solutions cannot exit the
invariant region through Q1 = 0.

d) For solutions on the side plane P1 = b1
λ11

,

dP1

dt
= (0− dP1 −

αC

h+ b1
λ11

)
b1
λ11

< 0

That implies solutions cannot exit the invariant region through P1 = b1
λ11

.

e) For solutions on the surface of (NT − qC − Q1P1) = 0, by Proposition (4.0.1), it has
been shown that (NT − qC −Q1P1) increases. Thus, the solution cannot exit the invariant
region through the surface.
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f) For solutions on the boundary C = NT
q , either Q1 = 0 or P1 = 0 (since (NT −qC−Q1P1)

is equal to zero).

If P1 = 0, dC
dt = (0− dc)NTq . C is decreasing since dC

dt < 0.

If Q1 = 0, dC
dt = (−dc)NTq . C is decreasing since dC

dt < 0.

g) For solutions on the boundary Q1 = NTβ and P1 ≤ b1
λ11

,

dQ1

dt
= ((NT − qC −Q1P1)β1 −NTβ)(b1 − λ11P1) ≤ 0

Solutions cannot exit the invariant region through the plane Q1 = NTβ.

The highlighted region in the graph (4.1.1) illustrates the invariant region in space P1CQ1.

16



P1

Q1

C

Figure 4.1.1: An Invariant Region for Model (4.0.1)
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4.2 Equilibria In One-Producer-One-Consumer Model

Assume that the amount of nutrient is abundant in the system. Consumer then converts
food into biomass at the optimal rate γ. Under this assumption, γ will always satisfy the
biomass converison efficiency min function on the right hand side of dC

dt . We call this case
H. On the other hand, consumer converts food into biomass at the lower rate Q1

q < γ
depending on the stoichiometric ratio of producers. We call this system case L.

Equilibria In Case H

The producer’s stoichiometric ratio does not affect the growth of consumer or producer.
This is similar to the Rosenzweig - MacArthur model, in which stoichiometry is not present.
The primary parameter is the growth rate of producer b1. As the growth rate b1 increases,
the solution of (P1, C) changes from approaching an equilibrium point to approaching a
limit cycle. The equations for case H are the following.



dP1
dt = (b1 − λ11P1 − dp1 − αC

h+(P1))P1

dC
dt = (γ αP1

h+P1
− dc)C

dQ1

dt = ((NT − qC −Q1P1)β1 −Q1)(b1 − λ11P1)

(4.2.2)

The equilibrium solutions are the following (in terms of (P1, C,Q1)):
The origin (O)H : (0, 0, NTβ1), where producer and consumer do not exist, but the pro-
ducer stoichiometric ratio is not necessary to be zero.

The monoculture equilibrium (P1)H : ( b1−dp1λ11
, 0, NTλ11β1

λ11+(b1−dp1 )β1
). In the absence of con-

sumers, the population of producers follows the logistic growth and reaches its carrying
capacity b1−dp1

λ11
over time.

The coexistence equilibrium (P1C)H : ( dch
αγ−dc ,

hγ(b1−dp1 )
αγ−dc −

γdcλ11h2

(αγ−dc)2 ,
β(NT (αγ−dc)−hqγ(b1−dp1 )+ kγqdch

2

αγ−dc
)

αγ−dc(hβ1−1) ).
Note that, due to the consumption by consumers, the population of producers remains con-
stant over time, regardless to the growth rate b1.

The eigenvalue diagrams for the equilibria in case H and associated phase portraits are
given in Appendix II. A bifurcation diagram for case H is shown in figure (4.2.2).
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Figure 4.2.2: A Bifurcation Diagram for Model (4.2.2) In Case H
On the left boundary of region A, there is a transcritical bifurcation separating the region
of “no life” (not labelled) from the region of producer monoculture (A). From region A to
B, there is a second transcritical bifurcation. Region B, the consumer enters the system.
From region B to C, there is Hopf bifurcation and populations of producer and consumer
begin to have regular oscillations. On the lower right corner of the graph, (P1C)H does
not satisfy the biomass conversion efficiency condition. Thus, it is not relevant to the
bifurcation diagram in case H.
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Equilibria In Case L

Here we assume that the system is nutrient poor, so Q1

q satisfies the biomass conversion
efficiency min function in dC

dt . The equilibrium solutions (O)L and (P1)L are the same as
the ones in case H. The solution (P1C)L, however, is different. Since the stoichiometry of
producers is no longer independent of the populations of consumers and producers, both
b1 and NT are taken as the primary parameters for this model.



dP1
dt = (b1 − λ11P1 − dp1 − αC

h+(P1))P1

dC
dt = (Q1

q
αP1
h+P1

− dc)C

dQ1

dt = ((NT − qC −Q1P1)β1 −Q1)(b1 − λ11P1)

(4.2.3)

The origin (O)L is at (0, 0, NTβ1) and the monoculture equilibrium (P1)L is at

( b1−dp1λ11
, 0, NTλ11β1

λ11+(b1−dp1 )β1
). The coexistence equilibrium (P1C) are the roots of a cubic

equation (4.2.4). (See Appendix III)

F (P1) = (P1)3c3 + (P1)2c2 + (P1)c1 + c0 = 0, (4.2.4)

where
c3 = −λ11

c2 = b1 − dp1 + dc − hλ11

c1 = (b1 − dp1 + dc)h− NTα
q + dc

β1

c0 = hdc
β1

The y-intercept of F is hdc
β > 0 and the slope at that intercept is c1. The two local extremes

P+ and P− are at P1 = c2
3λ11

+
√

( c2
3λ11

)2 + c1
3λ11

and P1 = c2
3λ11
−

√
( c2
3λ11

)2 + c1
3λ11

. Generally
speaking, as b1 increases, the solution values of P1 also increases. When F (P+) = 0, F
begins to have three real solutions. However, two of the real root solutions collapse and
vanish when F (P−) = 0. The number of solutions indicates that the coexistence equilib-
rium (P1C) has saddle node bifurcations at F (P+) = 0 and F (P−) = 0. One creates two
additional (P1C)Ls, born at F (P+) = 0, and the other one causes two to disappear at
F (P−) = 0. This can be illustrated by the graph (4.2.3).
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Figure 4.2.3: Solutions of P1 For The Coexistence Equilibrium In Case L
Fixing NT = 0.1, the red curve represents the solutions of P1 from the cubic equation
(4.2.4) as b1 increase from 0 to 4.
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NT

b1

(a) Zoom Out

NT

b1

(b) Zoom In

Figure 4.2.4: Number of Real Roots of Equation (4.2.4) in the parameter space
b1 : [0, 20]×NT : [0, 2] (The color scheme is described in table (4.2.1). )

When the slope of the graph of F at the y-intercept is negative, and F (P+) < 0 and
F (P−) < 0, there is only one root. When F (P+) > 0 and F (P−) < 0, there are three roots.
As b1 increases, F (P−) passes zero and cubic equation starts to have one root again. When
b1 is large enough (b1 > NTα

qh −
dc
β1h

+dP1 −dc), the slope becomes positive but P− becomes
less than zero. Thus, there is only one positive root for equation (4.2.4). Note that the real
roots of the cubic equation F are the solution of P1 at the coexistence equilibrium. When
root solution P1 is positive, the corresponding C solution is not necessary to be positive.
With the parameter settings in equations (4.0.1), the positive coexistence equilibrium does
not exist in the brown region in figure (4.2.4).

The graph (4.2.4) shows the number of real roots in the parameter space b1 : [0, 20]×NT :
[0, 2].
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Color Slope at the y-intersection Number of real roots Note
Yellow (-) 1 P+ and P− are complex
Green (-) 1 f(P+) < 0 and f(P−) < 0
Red (-) 3 f(P+) > 0 and f(P−) < 0
Blue (-) 1 f(P+) > 0 and f(P−) > 0
Gray (+) 1 f(P+) > 0 and P− < 0

Brown (+) 3 one positive root
and 2 negative roots

Table 4.2.1: A Table Of Color Scheme For Figure (4.2.4)
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Figure 4.2.5: A Bifurcation Diagram of Model (4.2.3)
In case L region D is a saddle and a node region. There are two (P1C)L solutions. One is a
node and other one is a saddle. In region E, the saddle branch of (P1C)L does not satisfy
the condition Q1

q . Thus, there is only one (P1C)L (a node) left. In region F, the consumer
dies out due to the low food quality. Comparing to the bifurcation diagram in case H, the
transcritical bifurcation of (P1)L and (P1C)L now depends on both b1 and NT .

The border line between the green and the red is the location where a saddle node bifur-
cation occurs. It creates two (P1C)L equilibria. On the border line between the red and
the blue, however, another saddle node bifurcation occurs and changes the system to have
one (P1C)L solution again. Although there are possibly three equilibrium solution (P1C)L
in case L, not all of them satisfy the requirement Q1

q < γ. The details of selecting valid
coexistence equilibria is shown in the next section figure (4.3.6)).

The eigenvalue plot of each equilibrium solution is showed in Appendix IV. A bifurcation
diagram for case L is shown in figure (4.2.5).
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4.3 The Full Model of One Producer And One Consumer

The full model of one producer and one consumer (4.0.1) contains the equilibrium solutions
in case H and case L. At a fixed NT > 0.06, as the producer’s growth rate b1 increases, the
min function of biomass conversion efficiency serves as a switch, changing the equilibrium
(P1C) from case H to case L. (P1C) in the full model is the same as (P1C)H in case H when
b1 satisfies F (P+) < 0 or P+ is complex. At F (P+) = 0, a saddle node bifurcation occurs
and creates two additional equilibrium (P1C)L solutions. Since the stoichiometric ratios
are low at those equilibrium points (satisfy Q1

q < γ), the biomass conversation rate can

switch to Q1

q from γ. At the same time, (P1C)H still satisfies Q1

q ≥ γ. So there are three

(P1C) equilibria. As b1 increases further, (P1C)H reaches its limit Q1

q = γ and intersects
with one of the (P1C)L solutions. After that (P1C)H and one of the (P1C)L solutions
are no longer an equilibrium solution in the system. This is a (non-smooth) saddle node
bifurcation caused by the min function. It can be illustrated by the figure (4.3.6). In graph
(4.2.4), there is no red region when NT < 0.06. In other words, a saddle node bifurcation
does not occur at such a low nutrient level. However, there is still a switch of equilibrium
(P1C) from case H to case L on the border line between the yellow and the other colors. For
example, set NT = 0.05 and calculate the biomass conversion efficiency at the equilibrium.
(Shown in figure (4.3.7))
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Figure 4.3.6: A Plot of Q1

q At Coexistence Equilibrium Against b1 for moderate
NT

In region A, there is a single (P1C)L solution in case L but its efficiency is above γ. Thus,
there is no (P1C)L equilibrium in region A. In region B, there are three (P1C)L solutions.
However, only two of them satisfy the condition Q1

q < γ. In region C, case L has one
(P1C)L solution, and it satisfies the condition. It seems that the (P1C)L equilibrium in
case L are born by the saddle node bifurcation at f(P+) = 0. In the full system of equations,
the min function plays a role in choosing the biomass conversion efficiency. In region A,
there is only one equilibrium (P1C) and it behaves as in case H. In region B, however,
two additional equilibrium (P1C)s are born by the the saddle node bifurcation in case L.
In the first half of the region B, the solution of (P1C)H in case H is still able to provide
enough nutrient to consumer until the solution (P1C)H satisfies Q1

q = γ. Thus, the full

system has three (P1C) equilibria in the first half of region B. At Q1

q = γ, a non-smooth
saddle node bifurcation occurs and both (P1C)H and one of the (P1C)L disappears along
the bifurcation.
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Figure 4.3.7: A Plot of Q1

q At Coexistence Equilibrium Against b1 for low NT
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The bifurcation diagram of the full system is shown in figure (4.3.8), and the corresponding
phase portraits are shown in figure (4.3.10), (4.3.11),(4.3.12),(4.3.13),(4.3.14), and (4.3.15).
In each phase portrait, solutions of P1, C, and Q1 with initial values are plotted against
the time. Solution orbits are also projected onto the P1C plane, and the center of the
equilibria labels are the locations of the equilibria. As a comparison, figure (4.3.9) shows
a bifurcation diagram of a model without stoichiometry.

For any NT > 0, there is a transcritical bifurcation at b1 = dP1 , left to region A. For
0 < b1 < dP1 , both producers and consumers die out as described in appendix II. On
the boundary of regions A and B, there is a second transcritical bifurcation allowing the
consumer to enter and survive in the system. A Hopf bifurcation occurs on the boundary
of regions B and C. Solutions now approach a limit cycle in region C. On the boundary
of regions C and D, a saddle-node bifurcation occurs and a pair of equilibria are born.
There are three coexistence equilibria in region D, one attracting and two saddles. Almost
all solutions now approach the attracting equilibrium. On the boundary of regions D and
E, a non-smooth saddle-node bifurcation occurs and the two saddle equilibria meet and
vanish. There is a third transcritical bifurcation on the boundary of regions E and F. The
consumer is unable to survive in region F.
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Figure 4.3.8: A Bifurcation diagram of Model (4.0.1)
The parameter space b1 × NT is divided into six regions. Regions A and F, and regions
B and E are connected. The differences between A and F, and B and E are the biomass
conversion rates. In regions A and B, the biomass conversion rate is γ, but it is Q1

q in
regions E and F. The red dot in each region is chosen to show the standard phase portrait
in the region.
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Figure 4.3.9: A Bifurcation Diagram of One-Producer-And-One-Consumer
Model Without Stoichiometry
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Figure 4.3.10: Phase Portrait in region A
The equilibrium (P1) is attracting, but (P1C) is still a saddle and not yet in the first
quadrant. Illustrated by the simulation, the population of consumers goes extinct and
producers remain. The producer-consumer system turns into a monoculture system.
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Figure 4.3.11: Phase Portrait in region B
The coexistence equilibrium (P1C)H is attracting. Populations of producers and consumers
both coexist and tend to certain constant population sizes.
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Figure 4.3.12: Phase Portrait in region C
Solutions in region C approach a limit cycle. The geometry of the cycle is influenced by
parameters in the system. For example, the growth rate b1 can influence the amplitude
of the cycle. When solutions approach a limit cycle, the populations of producers and
consumers oscillate periodically in the long run.
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Figure 4.3.13: Phase Portrait in region D
However, only one (P1C) which is born from the saddle-node bifurcation is stable. The
(P1C) from case H is saddle in region D. The other (P1C) from the saddle-node bifurcation
is also saddle. The large oscillated cycles of producers and consumers stop, and the pop-
ulations approach to certain stable size. The nutrient carbon ratio in producers, however,
becomes very low, Q1

q < γ.
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Figure 4.3.14: Phase Portrait in region E
The solutions are similar to the solutions in region D. However, there is only one coexistence
equilibrium in region D.
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Figure 4.3.15: Phase Portrait in region F
Equilibrium (P1C) is now a saddle in the fourth quadrant while (P1) is the stable attrac-
tor. This system is similar to the system in region A except the nutrient carbon ratio in
producers is very low.
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5 Two-Producers-One-Consumer Model

Let P2 be the population density of the second producer. λ11 and λ22 are the self-limiting
population growth coefficients. λ12 and λ21 are the interference coefficients from producer
P2 to producer P1 and from producer P1 to producer P2.



dP1
dt = ((b1 − λ12P2 − λ11P1)+ − dP1 − αC

h+P1+P2
)P1

dP2
dt = ((b2 − λ21P1 − λ22P2)+ − dp2 − αC

h+P1+P2
)P2

dC
dt = (min(γ, 1

q
Q1P1+Q2P2

P1+P2
)α(P1+P2)
h+P1+P2

− dc)C

dQ1

dt = ((NT − qC −Q1P1 −Q2P2)β1 −Q1)(b1 − λ12P2 − λ11P1)+

dQ2

dt = ((NT − qC −Q1P1 −Q2P2)β2 −Q2)(b2 − λ21P1 − λ22P2)+

(5.0.1)

Note that dC
dt is not defined for P1 = P2 = 0, but it can be continuously extended to

dC
dt = −dC .
For our numerical investigrations, the parameter values for the model are listed below.
Self-limiting coefficients λ11 = λ22 = 0.5,
Interference coefficients λ12 = λ21 = 0.2,
Producer death rates dP1 = dP2 = 0.05,
Consumer death rate dc = 0.17,
Consumer stoichiometric ratio q = 0.05,
The efficient conversation rate γ = 0.1,
The maximal and half-saturation coefficients in the predation function α = 2.75 and
h = 0.75,
Transpiration constants β1 = β2 = 0.3 (even if P1 = 0).

5.1 Invariant Regions

Based on the biological Interpretation of the model, we expect that

1) P1, C, and Q1 should be non-negative at any time t.
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2) The amount of mineralized nutrient (NT − qC − Q1P1 − Q2P2) cannot be
negative.

3) The growth functions (b1 − λ12P2 − λ11P1)+ = max(0, b1 − λ12P2 − λ11P1)
and (b2−λ21P1−λ22P2)+ = max(0, b2−λ21P1−λ22P2) should be greater than
or equal to zero.

The Qi is defined as Ni
Pi

. When Pi = 0, Qi is not defined.

Proposition 5.1.1. Assume λ11, λ12, λ21, λ22, dP1, dP2, dc, q, γ, α, h, β1, and β2 are
> 0. If (NT − qC − Q1P1 − Q2P2) is non-negative at the initial value of a solution, then
(NT − qC − Q1P1 − Q2P2) should always remain non-negative at any time t along the
solution, assuming P1, P2, C, Q1, and Q2 are positive.

Proof. Assume (NT − qC − Q1P1 − Q2P2) is equal to zero at some time t′. Let P1
′, P2

′,
C ′, Q1

′, and Q2
′ be the values of P1, P2, C, Q1, and Q2 at time t′.

Consider the derivative of (NT − qC −Q1P1 −Q2P2) at t = t′.

d
dt(NT − qC −Q1P1 −Q2P2)|t=t′

= −q dCdt |t=t′ −Q1
′ dP1
dt |t=t′ − P1

′ dQ1

dt |t=t′ −Q2
′ dP2
dt |t=t′ − P2

′ dQ2

dt |t=t′

= −qC ′(min(γ, 1
q
Q1
′P1
′+Q2

′P2
′

P1
′+P2

′ )α(P1
′+P2

′)
h+P1

′+P2
′ − dc)

−Q1
′((b1 − λ12P2

′ − λ11P1
′)+ − dP1 − αC′

h+P1
′+P2

′ )P1
′

−P1
′((NT − qC ′ −Q1

′P1
′ −Q2

′P2
′)β1 −Q1

′)(b1 − λ12P2
′ − λ11P1

′)+

−Q2
′((b2 − λ21P1

′ − λ22P2
′)+ − dP2 − αC′

h+P1
′+P2

′ )P2
′

−P2
′((NT − qC ′ −Q1

′P1
′ −Q2

′P2
′)β2 −Q2

′)(b2 − λ21P1
′ − λ22P2

′)+
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= −qC ′(min(γ, 1
q
Q1
′P1
′+Q2

′P2
′

P1
′+P2

′ )α(P1
′+P2

′)
h+P1

′+P2
′ − dc)

−Q1
′((b1 − λ12P2

′ − λ11P1
′)+ − dP1 − αC′

h+P1
′+P2

′ )P1
′

−P1
′(0−Q1

′)(b1 − λ12P2
′ − λ11P1

′)+

−Q2
′((b2 − λ21P1

′ − λ22P2
′)+ − dP2 − αC′

h+P1
′+P2

′ )P2
′

−P2
′(0−Q2

′)(b2 − λ21P1
′ − λ22P2

′)+

= −qC ′(min(γ, 1
q
Q1
′P1
′+Q2

′P2
′

P1
′+P2

′ )α(P1
′+P2

′)
h+P1

′+P2
′ − dc)

−Q1
′(−dP1 − αC′

h+P1
′+P2

′ )P1
′

−Q2
′(−dP2 − αC′

h+P1
′+P2

′ )P2
′

= −qC ′(min(γ, 1
q
Q1
′P1
′+Q2

′P2
′

P1
′+P2

′ )α(P1
′+P2

′)
h+P1

′+P2
′ − dc) +Q1

′P1
′(dP1 + αC′

h+P1
′+P2

′ )

+Q2
′P2
′(dP2 + αC′

h+P1
′+P2

′ )

= qC ′dc +Q1
′P1
′dP1 +Q2

′P2
′dP2 −

qαC′(P1
′+P2

′)
h+P1

′+P2
′ (Q1

′P1
′+Q2

′P2
′

q(P1
′+P2

′)
−Min(γ, 1

q
Q1
′P1
′+Q2

′P2
′

P1
′+P2

′ ))

If γ ≤ Q1
′P1
′+Q2

′P2
′

q(P1
′+P2

′)
, then qC ′dc+Q1

′P1
′dP1+Q2

′P2
′dP2−

qαC′(P1
′+P2

′)
h+P1

′+P2
′ (Q1

′P1
′+Q2

′P2
′

q(P1
′+P2

′)
−γ) ≥ 0

If γ > Q1
′P1
′+Q2

′P2
′

q(P1
′+P2

′)
, then qC ′dc + Q1

′P1
′dP1 + Q2

′P2
′dP2 −

qαC′(P1
′+P2

′)
h+P1

′+P2
′ (Q1

′P1
′+Q2

′P2
′

q(P1
′+P2

′)
−

Q1
′P1
′+Q2

′P2
′

q(P1
′+P2

′)
) ≥ 0

This means (NT −qC−Q1P1−Q2P2) cannot be negative if a solution starts with a positive
(NT − qC −Q1P1 −Q2P2).

Proposition 5.1.2. An invariant region of model (5.0.1) is 0 ≤ P1 ≤ b1
λ11

, 0 ≤ P2 ≤ b2
λ22

,
0 ≤ C ≤ NT

q , 0 ≤ Q1 ≤ NTβ1, 0 ≤ Q2 ≤ NTβ2, and (NT − qC − Q1P1 − Q2P2) ≥ 0. If
a solution initially starts in the interior of the invariant region or on the boundary of the
invariant region, the solution will stay in region.

Proof. If the solution initially starts on the boundary but does not go through the bound-
ary, then all solutions start initially in this invariant region should stay in this region at
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any future time t.

Solutions on the side planes P1 = 0, P2 = 0, and C = 0, the solutions cannot go over the
side planes since dP1

dt = 0, dP2
dt = 0, and dC

dt = 0.

Solutions on Q1 = 0 or Q2 = 0 and keep other variable inside the region, the solutions
would not exit the invariant region through Q1 = 0 and Q2 = 0 since dQ1

dt = (NT − qC −
Q2P2)β1(b1−λ12P2−λ11P1)+ ≥ 0 and dQ2

dt = (NT−qC−Q1P1)β2(b2−λ21P1−λ22P2)+ ≥ 0

Solutions on the surface (NT − qC − Q1P1 − Q2P2) = 0, then the solutions move to the
interior of the region since the derivative of (NT −qC−Q1P1−Q2P2) is positive by Propo-
sition (5.1.1).

Solutions on the plane P1 = b1
λ11

, then P1 decreases since dP1
dt is negative (see below). Sim-

ilarly, the derivative of P2 is also negative on the plane P2 = b2
λ22

.

dP1

dt
= ((−λ12P2)+ − dP1 −

αC

h+ b1/λ11 + P2
)P1 ≤ 0

Solutions on the plane Q1 = NTβ1

dQ1

dt
= ((−qC −Q1P1 −Q2P2)β1)(b1 − λ12P2 − λ11P1)+ ≤ 0

Q1 decreases since dQ1

dt is negative. If solutions are on the plane Q2 = NTβ2, Q2 also
decreases by the similar reason.

Solutions on the plane C = NT
q , then NT − qC − Q1P1 − Q2P2 = −Q1P1 − Q2P2. That

implies Q1P1 +Q2P2 is zero. Assuming both P1 and P2 are not zero at the same time, the
derivative of C is negative and C decreases (see below).

dC

dt
= (min(γ, 0)

α(P1 + P2)
h+ P1 + P2

− dc)C = −dcC < 0
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The value of 1
q
Q1P1+Q2P2

P1+P2
is always less than max(Q1, Q2). If both P1 and P2 are both zero,

by the continuous extension of (5.0.1) gives

dC

dt
= −dcC ≤ 0

.

In the system of equations (5.0.1), (b1−λ12P2−λ11P1) and (b2−λ21P1−λ22P2) are set to
be positive and zero only with a function ()+ to prevent these growth terms from becoming
negative. In graph (5.1.1), both P1 and P2 in the red intersection of the area under the
lines satisfy b1 − λ12P2 − λ11P1 ≥ 0 and b2 − λ21P1 − λ22P2 ≥ 0. The dashed line box in
the graph is the projected invariant region onto P1P2 plane. Without the function ()+, the
growth terms may become negative and cause mis-calculations.
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Figure 5.1.1: The Conditions on P1 and P2

The lines are the producers’ growth terms (b1 − λ12P2 − λ11P1) and (b2 − λ21P1 − λ22P2).
Both growth terms are positive in the red intersection.
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5.2 Equilibria In Two-Producer-One-Consumer Model

Similar to the one producer model, there are case H (the biomass conversion efficiency is γ)
and case L (the biomass conversion efficiency is 1

q
Q1P1+Q2P2

P1+P2
, depending on nutrient ratio

in the combined food source).

Equilibria In Case H

Let γ be the biomass conversion efficiency.



dP1
dt = ((b1 − λ12P2 − λ11P1)+ − dP1 − αC

h+P1+P2
)P1

dP2
dt = ((b2 − λ21P1 − λ22P2)+ − dP2 − αC

h+P1+P2
)P2

dC
dt = (γ α(P1+P2)

h+P1+P2
− dc)C

dQ1

dt = ((NT − qC −Q1P1 −Q2P2)β1 −Q1)(b1 − λ12P2 − λ11P1)+

dQ2

dt = ((NT − qC −Q1P1 −Q2P2)β2 −Q2)(b2 − λ21P1 − λ22P2)+

(5.2.2)

Equilibrium solutions are the following (in (P1, P2, C,Q1, Q2) format):

Equilibria that are in the P2 = 0 plane or P1 = 0 plane are same as the equilibria in the
single-producer-single-consumer model in the last chapter. They are listed below.

The origin (O)H : (0, 0, 0, Q1
∗, Q2

∗)

The monoculture equilibrium (P1)H : ( b1−dP1
λ11

, 0, 0, NT β1λ11

λ11+(b1−dP1
)β1
, Q2

∗)

The monoculture equilibrium (P2)H : (0, b2−dP2
λ22

, 0, Q1
∗, NT β2λ22
λ22+(b2−dP2

)β2
)

The one-producer coexistence equilibrium (P1C)H :

( dch
γα−dc , 0,

γh(b1−dP1
)

αγ−dc − γdch2λ11

(αγ−dc)2 ,
β1(NT (αγ−dc)−hqγ(b1−dP1

)− dcqγh
2λ11

αγ−dc
)

αγ−dc(hβ1−1) , Q2
∗).

The one-producer coexistence equilibrium (P2C)H :

43



(0, dch
γα−dc ,

γh(b2−dP2
)

αγ−dc − γdch2λ22

(αγ−dc)2 , Q2
∗,
β2(NT (αγ−dc)−hqγ(b2−dP21)− dcqγh

2λ22
αγ−dc

)

αγ−dc(hβ2−1) ).

The following are the new coexistence equilibria in the two-producer-one-consumer model.

The coexistence equilibrium without consumer (P1P2)H :

Set C = 0 and assume all other variables are positive. The equilibrium solution is

(λ22(b1−dP1
)−λ12(b2−dP2

)

λ11λ22−λ12λ21
,
λ11(b2−dP2

)−λ21(b1−dP1
)

λ11λ22−λ12λ21
, 0,

NT β1(λ11λ22−λ12λ21)
(b1−dP1

)(β1λ22−β2λ21)+(b2−dP2
)(β2λ11−β1λ12)+λ11λ22−λ12λ21

,

NT β2(λ11λ22−λ12λ21)
(b1−dP1

)(β1λ22−β2λ21)+(b2−dP2
)(β2λ11−β1λ12)+λ11λ22−λ12λ21

).

In the absence of consumers, both producers co-exist under the competition of sharing
resources. Note that the sum of the self-limitations λ11 + λ22 is assumed to be larger than
the sum of the interference-limitations λ12 + λ21.

The coexistence equilibrium (P1P2C)H :

When the growth terms are positive, the equilibrium solution is

(
(b1−dP1

−b2+dP2
− dch(λ22−λ12)

αγ−dc
)

λ11+λ22−λ12−λ21
,

(b2−dP2
−b1+dP1

− dch(λ11−λ21)
αγ−dc

)

λ11+λ22−λ12−λ21
,

γh((b−1−dP1
)(λ22−λ21)−(b2−dP2

)(λ11−λ12))

αγ−dc
+
γdch

2(λ11λ22−λ12λ21)

(αγ−d−c)2

λ11+λ22−λ12−λ21
,

β1(NT−q

γh((b−1−dP1
)(λ22−λ21)−(b2−dP2

)(λ11−λ12))

αγ−dc
+
γdch

2(λ11λ22−λ12λ21)

(αγ−d−c)2
λ11+λ22−λ12−λ21

)

1+β1

(b1−dP1
−b2+dP2

− dch(λ22−λ12)
αγ−dc

)

λ11+λ22−λ12−λ21
+β2

(b2−dP2
−b1+dP1

− dch(λ11−λ21)
αγ−dc

)

λ11+λ22−λ12−λ21

,

β2(NT−q

γh((b−1−dP1
)(λ22−λ21)−(b2−dP2

)(λ11−λ12))

αγ−dc
+
γdch

2(λ11λ22−λ12λ21)

(αγ−d−c)2
λ11+λ22−λ12−λ21

)

1+β1

(b1−dP1
−b2+dP2

− dch(λ22−λ12)
αγ−dc

)

λ11+λ22−λ12−λ21
+β2

(b2−dP2
−b1+dP1

− dch(λ11−λ21)
αγ−dc

)

λ11+λ22−λ12−λ21

).

Note that when either or both growth terms are zero, the equilibrium solution does not
exist.

Since the equilibria (P1)H and (P2)H , (P1C)H and (P2C)H are conjugates, we just study
(P1)H and (P1C)H . The eigenvalue plots of these equilibrium solutions in parametric space
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b2

b1

(a) (P1)

b2

b1

(b) (P1P2)

Figure 5.2.2: Eigenvalue Diagrams in case H
Equilibrium (P1P2) is in the first quadrant when (b1, b2) is in the wedge shape gray area in
figure (5.2.2(b)). The wedge shape is caused by the competition between the two producers.
Equilibrium (P1P2) is outside the first quadrant when (b1, b2) is in the blue areas to the
left and right of the gray wedge. That implies one of the producers is going to be extinct
under the competition. (The color scheme is described in table(5.2.1) )

b1 : [0, 5]× b2 : [0, 5] with a fixed NT are shown individually in figures (5.2.2) and (5.2.3).
They are computed numerically using Mathematica 6.0.

45



b2

b1

(a) (P1C)

b2

b1

(b) (P1P2C)

Figure 5.2.3: Eigenvalue Diagrams in case H
The diagonal dashed line in figure (3(b)) is when b1 = b2. The blue lines are the bound-
aries of equilibrium (P1P2) being in the positive quadrant. (The color scheme is in the
table(5.2.1) )
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Color Number of Eigenvalues with a Positive Real Part Stability
All Real Eigenvalues

Pink / Salmon 0 Attracting
Silver 1 Saddle

Light Blue 2 Saddle
Magenta 3 Saddle

Light Orange 4 Saddle
Lime 5 Repelling

Containing Complex Eigenvalues
Red 0 Attracting
Gray 1 Saddle
Blue 2 Saddle

Purple 3 Saddle
Orange 4 Saddle
Green 5 Repelling

Table 5.2.1: Color Scheme For The Stability diagrams

A bifurcation diagram for case H is shown in figure (5.2.4). The difference between (P1)
and (P1P2) is that (P1) lies on the side P1C plane and (P1P2) lies on the plane C = 0.
There are two layers in the bifurcation graph. When the consumer C is zero, the light
color dashed lines are the transcritical bifurcations. Two-producer coexistence (P1P2) is
attracting in the wedge, while monoculture (P1) and (P2) are attrating on the right and
left of the wedge, respectively. (Refers to figure (5.2.2(b))) Equilibrium (O) is attracting
in region (0 ≤ b1 ≤ dP1) ∪ (0 ≤ b2 ≤ dP2). Since the death rates of both producers are
relatively small, this (O) attracting region cannot be displayed at this scale. Region A is
the case where two producers coexist but C = 0. From region A to B, there is a trans-
critical bifurcation. In region B, solutions of populations approach the equilibrium point
(P1P2C)H . From region B to C, there is a Hopf bifurcation. In region C, solutions ap-
proach a limit cycle around (P1P2C)H in the interior space of the first quadrant. In region
Z and Z̃, solutions also approach a limit cycle in the interior but (P1P2C)H is no longer
in the first quadrant. From region F to Z, there is a transcritical bifurcation of periodic
orbits. This is a new bifurcation that the single producer single consumer model does not
have. Also, the geometry of limit cycle changes due to this new bifurcation. There is a
discussion about the geometry of limit cycles in next section. Regions D, E, and F are the
regions where solutions approach the side plane P2 = 0 since b1 > b2. Therefore, D corre-
sponds to the monoculture region in the one-producer-one-consumer model. E corresponds
to the coexisting region, and F corresponds to the coexisting region with the population
oscillating in the long run.
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Figure 5.2.4: A Bifurcation Diagram In Case H (5.2.2)
The diagonal dashed line is b1 = b2 for reference. The other dashed lines indicate the
bifurcations when C = 0, while the solid curves indicate the bifurcations in the space
C > 0. The yellow colored regions are the regions where two-producer-one-consumer
coexistence solutions can exist. In the unlabeled region, equilibrium solutions (P1C)H and
(P1P2C)H do not satisfy 1

q
Q1P1+Q2P2

P1+P2
≥ γ. From region Z to F, there is a transcritical

bifurcation of periodic orbits. The parameter values of that bifurcation are numerically
approximated by the pink curve.
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Equilibria In Case L

In this case the biomass conversion efficiency becomes 1
q
Q1P1+Q2P2

P1+P2
.



dP1
dt = ((b1 − λ12P2 − λ11P1)+ − dP1 − αC

h+P1+P2
)P1

dP2
dt = ((b2 − λ21P1 − λ22P2)+ − dP2 − αC

h+P1+P2
)P2

dC
dt = (Q1P1+Q2P2

q(P1+P2)
α(P1+P2)
h+P1+P2

− dc)C

dQ1

dt = ((NT − qC −Q1P1 −Q2P2)β1 −Q1)(b1 − λ12P2 − λ11P1)+

dQ2

dt = ((NT − qC −Q1P1 −Q2P2)β2 −Q2)(b2 − λ21P1 − λ22P2)+

(5.2.3)

Equilibrium solutions are the following (in (P1, P2, C,Q1, Q2) format):

The origin (O)L and all monoculture equilibrium (P1)L, (P2)L, and (P1P2)L are the same
as the ones in case H.

The procedure of finding (P1C)L is described in the last section (one producer and one
consumer model). The coexistence equilibrium (P1P2C)L are also the roots of a cubic
equation F (P1) (See Appendix V).

F (P1) = (NT − q
α(1

2(b1 + b2 − dP1 − dP2 − λ12
b1−b2−dP1

+dP2
−P1λ11+P1λ21

λ12−λ22

−λ11P1 − λ21P1 − λ22
b1−b2−dP1

+dP2
−P1λ11+P1λ21

λ12−λ22
))

(h+ P1 + b1−b2−dP1
+dP2

−P1λ11+P1λ21

λ12−λ22
))

(β1P1 + β2
b1−b2−dP1

+dP2
−P1λ11+P1λ21

λ12−λ22
)

− qdc
α (1 + P1β1 + β2

b1−b2−dP1
+dP2

−P1λ11+P1λ21

λ12−λ22
)

(h+ P1 + b1−b2−dP1
+dP2

−P1λ11+P1λ21

λ12−λ22
)

(5.2.4)
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The explicit coefficients of F are too long to display. The coefficient of the P1
3 term does

not depend on the parameters b1, b2, and NT . Numerically, it is apparently always positive
with the parameter setting in this paper. However, the y-intercept is no longer independent
of the parameters b1, b2, and NT . Let P+ and P− be the locations of the extreme values
of F (P1). As b1 and b2 change, P+ and P− also move. When F (P−) > 0 and F (P+) < 0,
the cubic equation F has three real roots. When F (P+) > 0 and F (P−) > 0, the cubic
F changes back having one real root. The changes in the number of roots is likely due
to saddle-node bifurcations (see graphs (5.2.5) ). Not all solutions of the cubic equation
satisfy 1

q
Q1P1+Q2P2

P1+P2
< γ. The details of selecting valid coexistence equilibria is shown in

the next section figure (5.4.9).
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(a) Solutions for P1, P2, and C
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Figure 5.2.5: Fixing NT and b2, as b1 increases, a saddle-node bifurcation occurs and
creates two additional solutions. As b1 increase further, another saddle-node bifurcation
occurs eliminating two solutions. Here Q1 and Q2 are the same because both transpiration
rates are the same (β1 = β2).
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b2

b1

(a) (P1C)L

b2

b1

(b) (P1P2C)L

Figure 5.2.6: Eigenvalue Diagrams in Case L
The eligible equilibrium solutions are born via a saddle-node bifurcation. An equilibrium
(P1P2C)L is in the first quadrant when (b1, b2) is in the diagonal wedge region (pink and
gray). At the end of the wedge (gray) and in other areas, equilibrium (P1P2C)L is outside
of the first quadrant.

The eigenvalue diagrams of the equilibrium solutions in parametric space b1 : [0, 5] × b2 :
[0, 5] with a fixed NT are shown individually in figure (5.2.6). The overall bifurcation
diagram for case L is shown in figure (5.2.7). In region J there are two valid (P1P2C)L
equilibria and one valid (P1P2C)H equilibrium. Thus, there are three (P1P2C) equilibrium
solutions in the full model. A non-smooth saddle-node bifurcation occurs on the boundary
of regions J and K. It makes the saddle (P1P2C)L and (P1P2C)H vanish. Thus, there is
only one (P1P2C) equilibrium in region K (the node (P1P2C)L ). A transcritical bifurcation
occurs on the boundary of regions K and M. So the system changes back to two producer
coexistence. Region N is the region after a saddle-node bifurcation on the side plane P1C.
Region N, O, and P represent corresponding results in the one-producer-one-consumer
model. (The same holds for regions Ñ, Õ, and P̃ since they are the conjugates of N, O,
and P).
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P~
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O~

b2

b1

Figure 5.2.7: A Bifurcation Diagram In Case L (5.2.3)
There are two layers in this figure. The diagonal dashed line is b1 = b2 for reference.
The other dashed curves indicate the bifurcations on the plane C = 0. (Refer to figure
(5.2.2(b))) The solid curves indicate the bifurcations in the space C > 0. The yellow colored
regions are the regions where solutions approach the two producer-consumer coexistence
equilibrium or limit cycle.
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5.3 The Geometry Of The Limit Cycles

The geometry of the limit cycles seems not to be caused by the stoichiometry since limit
cycles come after the Hopf bifurcation and are destroyed by the saddle-node bifurcation
in the case L (It happens in one-producer-one-consumer model). The geometry that we
concerned in this paper is the order of population growth. It is defined in below.

Definition 1. In every limit cycle, there is a point V0 on the cycle that has the shortest
distance from the origin. Starting from V0 and moving along the limit cycle in a forward
time, a population that grows at the fastest rate is said to be the “first”. The population
that grows at the second fastest rate is the “second”, and so on. The order of the population
growth starting at V0 is called the sequence of a limit cycle.

According to the bifurcation diagram (5.2.4), the regions that have limit cycles are C, F, Z,
F̃, and Z̃. In region C, the whole limit cycle exists in the interior space of P1P2C space (See
figure (5.3.8(a))). The sequence of a cycle usually is that the producer with the highest
growth rate would be the first, the other producer is the second, and the consumer is the
last. Depending on the difference between b1 and b2 (assuming b1 > b2), the producer P1

will grow first, approaching its C = 0 carrying capacity, and then the producer P2 will
grow if the difference in b1 and b2 is significant. Otherwise, both producers growth simul-
taneously.

In regions F and F̃, the limit cycles are on the side plane P2 = 0 and P1 = 0, respectively.
The sequence of a cycle is that the producer is first and then consumer is second (last)
(See figure (5.3.8(b))).

In regions Z and Z̃, the limit cycle exists in the interior space without an equilibrium point
in the interior. The sequence of a cycle is that the producer with the highest growth rate
would be the first. The consumer then starts to grow and the second producer starts to
grow at a high rate and then the consumer population continues to increase (See figure
(5.3.8(c))).

5.4 A Full Model Of Two Producers And One Consumer

The biomass conversion efficiency is a min function. The system of equations is (5.0.1).
A process of selecting valid coexistence equilibria is described in figure (5.4.9). An over-
all bifurcation diagram with a fixed NT = 0.1 is shown in figure (5.4.10). The figures
have two layouts. The light color dashed curves indicate the bifurcations on the plane
C = 0. (Refers to figure (5.2.2(b))) The solid curves indicate the bifurcations in the space

54



(a) A Limit Cycle In Region C (b) A Limit Cycle In Region F

(c) A Limit Cycle In Region Z

Figure 5.3.8: Limit Cycles
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Figure 5.4.9: A Plot of 1
q
Q1P1+Q2P2

P1+P2
At Coexistence Equilibrium Against b1 with

Fixed NT and b2
The red curve is the efficiency 1

q
Q1P1+Q2P2

P1+P2
according to (P1P2C)L, and the blue line is the

efficiency 1
q
Q1P1+Q2P2

P1+P2
according to (P1P2C)H . The horizontal dashed line is γ. The first

and second vertical dashed lines indicate the first and non-smooth saddle-node bifurcations.
The third dashed line is the saddle-node bifurcation in case L only and does not exist in the
full model. Before the first saddle bifurcation, the efficiencies from both cases are always
above γ. After the first saddle-node bifurcation, there are two additional efficiencies in case
L, which are below γ. As b1 increases, the efficiency in case H decreases and passes below
γ. When the efficiency in case H is equal to γ, one of the case L efficiencies is also equal to
γ. Thus, the non-smooth saddle-node bifurcation occurs where QH

q = γ in the full model.

C > 0. The yellow colored regions are the regions where solutions approach the two-
producers-one-consumer coexistence equilibrium or limit cycle. A bifurcation diagram of
the two-producer-one-consumer model without stoichiometry is shown in figure (5.4.12).
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Figure 5.4.10: A Bifurcation Diagram For The Full System (5.0.1) With Fixed
Total Nutrient NT = 0.1
In the lower left corner, the system behaves more like the case H since the growth rates
are relatively low and thus allow high nutrient level in the system. A zoom in on the lower
left corner is the next graph (5.4.11).
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Figure 5.4.11: A Bifurcation Diagram For The Full System (5.0.1) (Zoom In)
The diagonal dashed line is where b1 = b2. The other two diagonal dashed lines indicate
the wedge-shaped region where (P1P2) is in the first quadrant. There are three coexistence
(P1P2C) equilibria in regions N, J, and Ñ. The green lines in region J denote the transcrit-
ical bifurcations of (P1P2C)H and (P1C)H , but do not affect the attracting equilibrium.
Crossing the solid border between regions J and N, one of the (P1P2C)L and one of the
(P1C)L would have a transcritial bifurcation.
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Figure 5.4.12: A Bifurcation Diagram Of The Two Producer And One Consumer
Model Without Stoichiometry
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Regions Species Regions Species
A, M P1, P2 B, J, K P1, P2, C
D, P P1 E, N, O P1, C
D̃, P̃ P2 Ẽ, Ñ, Õ P2, C
C, Z, Z̃, F, F̃ P1, P2, C (cycle)

Model (5.0.1) with the parameter settings chosen in this paper supports a typical sequence
of bifurcations as the producer growth rates increase. First, one producer is able to survive.
Second, the consumer is able to survive. Third, a Hopf bifurcation occurs causing oscilla-
tions in the populations of the producer and consumer. Fourth, the population oscillations
are stopped by a saddle-node bifurcation. Fifth, consumer is unable to survive due to the
poor food quality, and the system changes back to have producers only.

The phase portraits of the regions are shown in figures (5.4.13). Since regions D̃, P̃, Ẽ, F̃,
Z̃, Ñ, and Õ are the conjugates of regions D, P , E, F, Z, N, and O, the phase portraits
in these regions are not shown. In each phase portrait, solutions of P1, P2, C, Q1 and
Q2 with initial values are plotted against the time. Solution orbits are also projected into
the P1P2C space, and the center of the equilibrium labels are the locations of the equilibria.

The table below describes the bifurcations between any two regions.

Denoting W to this region (0 ≤ b1 ≤ dP1) ∪ (0 ≤ b2 ≤ dP2).

60



Regions Type of Bifurcation Involved Attractors Involved Non-Attractors
W → A Transcritical (O) → (P1P2)
W → D Transcritical (O) → (P1)
D → A Transcritical (P1) → (P1P2)
A → B Transcritical (P1P2) → (P1P2C)H

D → E Transcritical (P1) → (P1C)H

E → B Transcritical (P1C)H → (P1P2C)H

B → C Hopf (P1P2C)H

→ Interior limit cycle
E → F Hopf (P1C)H

→ P1C plane limit cycle
F → Z Transcritical Limit cycle in P1C plane

→ the interior limit cycle
Z → C Transcritical Interior limit cycle (P1C)H → (P1P2C)H

→ Interior limit cycle
C → J Saddle-node Interior limit cycle Two (P1P2C)L are born

→ Stable (P1P2C)L

Z → J Saddle-node Interior limit cycle Two (P1P2C)L are born
→ Stable (P1P2C)L

F → N Saddle-node P1C plane limit cycle Two (P1C)L are born
→ Stable (P1C)L

N → J Transcritical (P1C)L → (P1P2C)L

J → K Non-Smooth Stable (P1P2C)L (P1P2C)H and (P1P2C)L

Saddle-node → Stable (P1P2C)L (eliminated)
N → O Non-Smooth Stable (P1C)L (P1C)H and (P1C)L

Saddle-node → Stable (P1C)L (eliminated)
O → J Transcritical (P1C)L → (P1P2C)L

O → K Transcritical (P1C)L → (P1P2C)L

K → M Transcritical (P1P2C)L → (P1P2)
O → P Transcritical (P1C)L → (P1)
P → M Transcritical (P1) → (P1P2)
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HP1P2L 80.547619, 0.380952, 0<
HP1CLH 81.21429, 0, -0.183673<
HP1CLL 8N�A<
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Figure 5.4.13: A Phase Portrait in Region A
This is a multiculture system with both producers coexisting under the resource competi-
tions. Two-producer-coexistence equilibrium (P1P2) is in the first quadrant and attracting.
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Figure 5.4.14: A Phase Portrait in Region B
Coexistence equilibrium (P1P2C)H moves into the first positive quadrant and becomes
attracting. Consumers are able to enter the system.
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Figure 5.4.15: A Phase Portrait in Region C
Solutions of the model approach a limit cycle and equilibrium (P1P2C)H is in the first
positive quadrant.
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Figure 5.4.16: A Phase Portrait in Region J
Solutions approach a stable equilibrium (P1P2C)L. There are two additional two-producer-
one-consumer coexistence equilibria.
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Figure 5.4.17: A Phase Portrait in Region K
Solutions approach a stable equilibrium (P1P2C)L, and there is one two-producer-one-
consumer coexistence equilibrium.
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Figure 5.4.18: A Phase Portrait in Region MEquilibrium (P1P2) is the attractor.
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Figure 5.4.19: A Phase Portrait in Region D
This is a monoculture system with only one producer. Equilibrium (P1) is attracting.
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Figure 5.4.20: A Phase Portrait in Region E
Equilibrium (P1C)H is attracting in the P1C plane.
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Figure 5.4.21: A Phase Portrait in Region F
Solutions approaches a limit cycle on the P1C plane.

70



Out[27]=

200 400 600 800 1000
t

1

2

3

4

Populations
P1:Blue P2:Green C:Red

200 400 600 800 1000
t

0.000

0.010

0.015

0.020

0.025

Nutrient Ratios

Q1:Blue Q2:Green

P1

P2

P1CH
P1P2CH

0
1

2
3

4

p1

0

1

2

3
p2

0.0

0.5

1.0

1.5

2.0

C

b1 = 2.1, b2 = 1.6, NT = 0.1

Equilibrium Location

HP1L 84.1, 0, 0<
HP2L 80, 3.1, 0<
HP1P2L 83.40476, 1.7381, 0<
HP1CLH 81.21429, 0, 1.03061<
HP1CLL 8N�A<
HP1P2CLH 81.44048, -0.22619, 0.982143<
HP1P2CLL N�A

Figure 5.4.22: A Phase Portrait in Region Z
The limit cycle on the P1C plane is unstable, and solutions approach a limit cycle in the
interior positive quadrant. However, there is no equilibrium in the positive quadrant.
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Figure 5.4.23: A Phase Portrait in Region N
Solutions approach an attracting coexistence equilibrium (P1C)L in the P1C plane. There
are two additional one-producer-one-consumer coexistence equilibria in the P1C plane.
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Figure 5.4.24: A Phase Portrait in Region O
Solutions approach an attracting coexistence equilibrium (P1C)L in the P1C plane; there
is no other one-producer-one-consumer coexistence equilibrium (P1C) in the P1C plane.
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Figure 5.4.25: A Phase Portrait in Region PEquilibrium (P1) is attracting.
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6 Conclusions

The model in this paper is a generalization of the Rosenzweig and MacArthur model (see
equations (2.0.2)), which is a single-producer-single-consumer model. First, we introduce
stoichiometry into Rosenzweig and MacArthur model. Second, we consider having two
producers instead of one in Rosenzweig and MacArthur model. Finally we consider two
producer one consumer model with stoichiometry.

Due to the stoichiometry, both models with one producer and two producers have more
than the three bifurcations typically observed in the Rosenzweig and MacArthur model. As
the producer’s growth rates increase with a fixed amount of nutrient in the system, there is
a typical sequence of bifurcations: a first transcritical for the producer entering the system,
a second transcritical for the consumer entering and surviving, a Hopf creating coexistence
limit cycles, a first saddle-node destroying the cycles, a second saddle-node taking the two
“extra” saddle coexistence equilibria away, and a transcritical for the consumer leaving
the system. The first saddle-node bifurcation occurs on the limit cycle, and destroys the
periodic solution. Orbits which previously approached a limit cycle will now approach a
coexistence equilibrium. That attracting equilibrium is the node born in the saddle-node
bifurcation. Before the second saddle node bifurcation, there is a total of three coexistence
equilibrium solutions, one from case H, and the other two from the first saddle node bifur-
cation in case L. When the second saddle node bifurcation occurs, the saddle coexistence
equilibrium solution from case L and coexistence equilibrium solution from case H merge
and vanished (see figure (4.3.6) and (5.4.9)).

By adding a second producer, some additional factors, such as the variation of producers
(in terms of the growth rates) and the competition between the two producers, can be
introduced into the model. When the producers’ growth rates are low (allowing relatively
high nutrient food to the consumer), the criteria for coexistence of both producers and
the consumer is highly exclusive to the variations of producers’ growth rates. If growth
rates are not chosen from a narrow band along the b1 = b2 diagonal, the producer with a
lower growth rate will go extinct, and the system changes to an one-producer-one-consumer
model. When the producers’ growth rates are high (providing relatively low nutrient to the
consumer), the criteria for coexistence of both producers and the consumer is more tolerant
to the variations of producers’ growth rates, and approaches the criteria for coexistence
of both producers in the absence of the consumer. (See the yellow coexistence regions in
figures (5.4.10) and (5.4.11)). When the growth rates are sufficiently high, there is no more
two-producer-one-consumer coexistence (region M).

Another impact of adding a second producer is to allow the limit cycles to have more in-
teresting geometry. Limit cycles can exist in the case of two producers and one consumer
for certain growth rates b1 and b2. All appear to have been born in Hopf bifurcations (see
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figure (5.2.4)). Usually, the growth sequence starting from low population values is (1)
the producer with a higher growth rate, (2) the producer with a lower growth rate, and
then (3) the consumer. The time interval of traveling from step (1) to step (2) is short.
If both producer growth rates are very close, then step (1) and step (2) happen simulta-
neously. Once the populations of producers approach their carrying capacities, consumers
start to grow (See figure (5.3.8(a))). There are some exceptional cases in which the limit
cycle starts with (1) the faster growing producer, (2) consumer, and (3) the slower growing
producer (See figure (5.3.8(c))). This happens when the growth rates of both producers
are significantly different.

In brief, the introduction of a stoichiometry to the model causes the loss of large amplitude
limit cycles. Because the total nutrient NT is fixed, a sufficiently high growth in producers
results in the extinction of the consumer. Adding second primary parameter (the second
growth rate) creates additional interesting bifurcations (see figures (5.4.10) and (5.4.11))
and provides the criteria of two-producer-one-consumer coexistence in the long run.

76



7 Appendix

I Biomass Conversion Rate With Two Food Sources

Assume there are two food sources for the consumers. f1 and f2 are the predation rates for
producers P1 and P2. Let γ be the optimal biomass conversation efficiency, and Q be the
stoichiometric ratio of the food (the producers) in the gut. Assume that 1− γ of ingested
carbohydrates are excreted or respired. There is a relationship between γ and Q.

The nutrient concentration in the refined food in the gut is

Qgut =
1
γ

[
rate of nutrient ingestion

rate of carbohydrate ingestion
]

The rate of consumer conversion of nutrients is
q × rate of generating refined carbons , if Q > q,

Q
q × q × rate of generating refined carbons , if Q ≤ q

= rate of generating refined carbons ×


q , if Q > q,

Q , if Q ≤ q

= γ × rate of carbohydrate ingestion×min[q,Q]

= q × rate of carbohydrate ingestion×min[γ, 1
q [ rate of nutrient ingestion

rate of carbohydrate ingestion ]]

Note that the rate of generating refined carbons is assumed to be γ×rate of carbohydrate ingestion.

From the above, {rate of carbohydrate ingestion × min[γ, 1
q [ rate of nutrient ingestion

rate of carbohydrate ingestion ]]} is
the consumer biomass conversion rate. The ingestion rates of producers one and two are
f1C and f2C. The ingestion rate of nutrient from producers one and two are Q1f1C and
Q2f2C, respectively. Therefore, the biomass conversion rate is

min[γ,
1
q

[
Q1f1C +Q2f2C

f1C + f2C
]](f1C + f2C)

= min[γ,
1
q

[
Q1f1 +Q2f2

f1 + f2
]](f1C + f2C)].
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In our model, f1 = af(P1 + P2) = P1
P1+P2

f(P1 + P2) and f2 = (1 − a)f(P1 + P2) =
P2

P1+P2
f(P1 + P2). Thus, the biomass conversion rate in our model is

min[γ, 1
q [
Q1

P1
P1+P2

f(P1+P2)+Q2
P2

P1+P2
f(P1+P2)

P1
P1+P2

f(P1+P2)+
P2

P1+P2
f(P1+P2)

]]( P1
P1+P2

f(P1 + P2)C + P2
P1+P2

f(P1 + P2)C)

= min[γ, 1
q [Q1P1+Q2P2

P1+P2
]]f(P1 + P2)C.
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NT

b1

(a) (P1)H

NT

b1

(b) (P1C)H

Figure 7.2.1: Eigenvalue Plot (The color scheme is described in table (7.2.1))

II The Eigenvalue Plots For Equilibrium (P1)H And (P1C)H

The Eigenvalue plots for equilibrium (P1)H and (P1C)H for model (4.2.2) in the parametric
space b1 : [0, 20]×NT : [0, 2] are shown in figure (7.2.1). The colors indicate the eigenvalue
states of the equilibrium solution in the sets of parameters b1 and NT . The lower right
corners in graphs are not colored because the solutions (P1)H and (P1C)H are unable to
provide enough nutrient Q1 to satisfy Q1

q ≥ γ.
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Color Number of Eigenvalue with a Positive Real Part Stability
Real Eigenvalues

Pink / Salmon 0 Attracting
Silver 1 Saddle

Light Blue 2 Saddle
Magenta 3 Repelling

Complex Eigenvalues
Red 0 Attracting
Gray 1 Saddle
Blue 2 Saddle

Purple 3 Repelling

Table 7.2.1: Color Scheme for figure (7.2.1)

(P1)H and (P1C)H are equilibrium solutions in case H when NTλ11β
λ11+(b1−dp1 )β > qγ and

β(NT (αγ−dc)−hqγ(b1−dp1 ))

αγ−dc(hβ−1) > qγ respectively. Between the region b1 = 0 and b1 = dP1 = 0.05,
the equilibrium (O)H is attracting. As b1 increases, a transcritial bifurcation occurs at
b1 = 0.05. The stabilities of equilibrium (O)H and equilibrium (P1)H exchange. From
b1 = 0.05 to b1 = dP1 + hλ11dc

αγ−dc = 0.6571, equilibrium (P1)H is attracting. At b = 0.6571,
another transcritial bifurcation occurs exchanging the stabilities of (P1)H and (P1C)H .
In other words, there is enough food supply for the consumer to entry the system. As
b1 increases further, a damped oscillation occurs in the solution curve of (P1, C). At
b1 = 1.6393, a Hopf bifurcation occurs, which is indicated in the (P1C)H plot where the
color is changed from RED to BLUE. The solution of (P1, C) now forms a limit cycle. As
b1 further increases, the cycle enlarges in the geometric sense. The population curves of
P1 and C have a high amplitude oscillation. The phase portraits from different regions of
parameter space b1 ×NT are shown below.
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0.5 1.0 1.5 2.0 2.5
P1

-0.4

-0.2

0.2

0.4

0.6

C
Simulations at b1 = 0.03

0.5 1.0 1.5 2.0 2.5
P1

-0.4

-0.2

0.2

0.4

0.6

C
Simulations at b1 = 0.06

At b1 = 0.03, both equilibrium solutions (P1)H and (P1C)H are outside the first octant.
All five simulated solutions (with different initial values) are going to the origin, which is
an attracting equilibrium point when b1 < dP1 = 0.05. When b1 = 0.06, (P1)H comes into
the first octant and becomes attracting after a transcritical bifurcation with the origin at
b1 = dP1 .

0.5 1.0 1.5 2.0 2.5
P1

0.2

0.4

0.6

C
Simulations at b1 = 0.6

0.5 1.0 1.5 2.0 2.5
P1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
Simulations at b1 = 0.7

At b1 = 0.6, the equilibrium (P1C)H is outside the first octant. All simulated solutions
approach (P1)H . At b1 = 0.7, (P1C)H comes into the first octant and becomes attracting
after a transcritical bifurcation with (P1)H at b1 = dP1 + hλ11dc

αγ−dc = 0.6571.
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0.5 1.0 1.5 2.0 2.5 3.0
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C

Simulations at b1 = 1.5

200 400 600 800 1000
t

0.5

1.0

1.5

2.0

2.5

populations
Producers::Red, Consumers::Blue

At b1 = 1.5, (P1C)H is still attracting, but populations have some damped oscillations at
the beginning of time.

1 2 3 4 5
P1

-0.5

0.5

1.0

1.5

C

Simulations at b1 = 2.3

200 400 600 800 1000
t

1

2

3

4

populations
Producers::Red, Consumers::Blue

At b1 = 2.3, (P1C)H has gone through a Hopf bifurcation. The simulated solutions ap-
proach an attract limit cycle rather than the equilibrium point (P1C)H .
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III Finding (P1C)L In The One-Producer-One-Consumer Model

Assuming the biomass conversion efficiency depends on the nutrient carbon ratio in pro-
ducer.



dC
dt = (Q1

q
α(P1)
h+(P1) − dc)C

dP1
dt = (b1 − λ11P1 − dp1 − αC

h+(P1))P1

dQ1

dt = ((NT − qC −Q1P1)β −Q1)(b1 − λ11P1)

(7.3.1)

Set dC
dt , dP1

dt , and dQ1

dt to zero.



Q1

h+(P1) = qdc
α

1
P1

αC
h+(P1) = b1 − λ11P1 − dp1

NT
h+P1

= Q1

h+P1
( 1
β + P1) + q

α
αC
h+P1

NT

h+ P1
=
qdc
α

1
P1

(
1
β

+ P1) +
q

α
(b1 − λ11P1 − dp1)

NTP1 =
qdc
α

(
1
β

+ P1)(h+ P1) +
qP1

α
(b1 − λ11P1 − dp1)(h+ P1)

qdc
α

(
1
β

+ P1)(h+ P1) +
qP1

α
(b1 − λ11P1 − dp1)(h+ P1)−NTP1 = 0

Expanding the products and regrouping the power terms of P1, equation (10) is formed.

f(P1) = (P1)3c3 + (P1)2c2 + (P1)c1 + c0 = 0,
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where
c3 = −λ11

c2 = b1 − dp1 + dc − hλ11

c1 = (b1 − dp1 + dc)h− NTα
q + dc

β

c0 = hdc
β
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NT

b1

(a) (P1)L

NT

b1

(b) (P1)L Zoom In

(c) (P1C)L

NT

b1

(d) (P1C)L Zoom In

Figure 7.4.2: Eigenvalue Plots (The color scheme is described in table (7.4.2))

IV The Eigenvalue Plots For Equilibrium (P1)L And (P1C)L
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Color Number of Eigenvalue with a Positive Real Part Stability
Real Eigenvalues

Pink / Salmon 0 Attracting
Silver 1 Saddle

Light Blue 2 Saddle
Magenta 3 Repelling

Complex Eigenvalues
Red 0 Attracting
Gray 1 Saddle
Blue 2 Saddle

Purple 3 Repelling

Table 7.4.2: Color Scheme for figure (7.4.2)

The eigenvalue plots for equilibrium (P1)L and (P1C)L in the parametric space b1 :
[0, 20]×NT : [0, 2] are shown in figures (7.4.2) and (7.4.3). The color scheme is described
in the table below. The upper regions are not colored because for parameters in this region
solutions (P1)L and (P1C)L do not satisfy the requirement Q1

q < γ.

There are two (P1C)L solutions in the Saddle and Node region. One is a node and other one
is a saddle. (They are shown in fig(7.4.3).) The vertical dashed line at b1 = dchλ11)

αγ−dc − dp =
0.657143 is the transcritical bifurcation between (P1)H and (P1C)H in case H. In graph
(7.4.2), b1 = 0.657143 is also the minimum producer’s growth rate to permit a transcritical
bifurcation allowing consumer’s entry to the system in case L (same as in case H). Further-
more, the occurrence of transcritical bifurcation between (P1)L and (P1C)L now depends
on both b1 and NT .
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(a) (P1)L (A Node)

(b) (P1)L (A Saddle)

Figure 7.4.3: Eigenvalue Plots (The color scheme is described in table (7.4.2))
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V Finding (P1P2C)L In The Two-Producer-One-Consumer Model

Assuming the biomass conversion efficiency is 1
q
Q1P1+Q2P2

P1+P2



dP1
dt = ((b1 − λ12P2 − λ11P1)+ − dP1 − αC

h+P1+P2
)P1

dP2
dt = ((b2 − λ21P1λ22P2)+ − dP2 − αC

h+P1+P2
)P2

dC
dt = (Q1P1+Q2P2

q(P1+P2)
α(P1+P2)
h+P1+P2

− dc)C

dQ1

dt = ((NT − qC −Q1P1 −Q2P2)β1 −Q1)(b1 − λ12P2 − λ11P1)+

dQ2

dt = ((NT − qC −Q1P1 −Q2P2)β2 −Q2)(b2 − λ21P1 − λ22P2)+

Set dC
dt , dP1

dt , dP2
dt , dQ1

dt , and dQ2

dt to zero, and assume (b1 − λ12P2 − λ11P1)+ > 0 and
(b1 − λ21P1λ22P2)+ > 0.



b1 − λ12P2 − λ11P1 − dP1 = αC
h+P1+P2

b1 − λ21P1 − λ22P2 − dP2 = αC
h+P1+P2

Q1P1+Q2P2

q
α

h+P1+P2
− dc = 0

(NT − qC −Q1P1 −Q2P2)β1 = Q1

(NT − qC −Q1P1 −Q2P2)β2 = Q2

By the last two equations,

Q1 =
(NT − qC)β1

1 + P1β1 + P2β2

Q2 =
(NT − qC)β2

1 + P1β1 + P2β2
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Substitute Q1 and Q2 into the third equation,

(Q1P1 +Q2P2) =
qdc
α

(h+ P1 + P2)

to obtain

(
NT

h+ P1 + P2
− q

α

αC

h+ P1 + P2
)(β1P1 + β2P2) =

qdc
α

(1 + P1β1 + P2β2)

By the first two equations,

P2 =
b1 − b2 − dP1 + dP2 − P1λ11 + P1λ21

λ12 − λ22

C =
h+ P1 + P2

2α
(b1 + b2 − dP1 − dP2 − λ11P1 − λ12P2 − λ21P1 − λ22P2)

Substitute P2 and C into the third equation, equation (5.2.4) is formed.

F (P1) = (NT − q
α(1

2(b1 + b2 − dP1 − dP2 − λ12
b1−b2−dP1

+dP2
−P1λ11+P1λ21

λ12−λ22

−λ11P1 − λ21P1 − λ22
b1−b2−dP1

+dP2
−P1λ11+P1λ21

λ12−λ22
))

(h+ P1 + b1−b2−dP1
+dP2

−P1λ11+P1λ21

λ12−λ22
))

(β1P1 + β2
b1−b2−dP1

+dP2
−P1λ11+P1λ21

λ12−λ22

− qdc
α (1 + P1β1 + β2

b1−b2−dP1
+dP2

−P1λ11+P1λ21

λ12−λ22
)

(h+ P1 + b1−b2−dP1
+dP2

−P1λ11+P1λ21

λ12−λ22
))
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