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Abstract

The study of discrete dynamical systems has substantially grown in popularity
over the past 30 years with increases in computing power. The use of computer
technology to simulate the behavior of these systems has been instrumental in un-
derstanding the inner workings of many different research questions in the field. This
research report focuses primarily on explaining dynamical behavior of a certain fam-
ily of nonanalytic maps of the plane which was constructed by adding a singular
perturbation term to the well-studied quadratic complex family: zn+1 = z2n+c. The
dynamical system to be studied in this project is given by

zn+1 = z2n + c+
.001

(zn − b)2

where z, c, and b are all complex numbers. This report discusses and summarizes
the steps that were taken to understand the dynamical behavior of the system given
above. One of the main goals of the project was to understand how the values of
parameters b and c influence this dynamical behavior. Findings suggest explanations
of some of the numerical experiments.

∗Note: This report summarizes the results of an undergraduate research project (UROP) performed
by the first author under the supervision of the second author from Fall 2014 through Spring 2015 at the
Department of Mathematics and Statistics, Univerisity of Minnesota Duluth (UMD), Duluth, MN 55812.
The original report was edited and modified in spring 2019 by the second author.
†Email: arth0074@d.umn.edu
‡Email:bpeckham@d.umn.edu.
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1 Introduction

This report summarizes the results of a UROP project that took place Fall 2014 through
Spring 2015 at the Univerisity of Minnesota Duluth (UMD). The project was conducted
by the first author (MA) through the UMD’s Department of Math and Statistics and
advised by the second author (BP). The dynamical systems studied in this projected are
variants of more heavily studied maps, such as the singularly perturbed maps of the form
zn + c+ α/zd studied by Devaney et al. [3, 4].

Background. Dynamical systems is a broad field of mathematics, and one of the most
studied due to its applications to science and nature. Dynamical systems can appear in
the form of differential equations or iteration formulas. This study focuses exclusively on
the latter. See a textbook such as [2] for an introduction to dynamics.

The particular system studied in this project is defined as follows. Let f : <2 7→ <2

be defined as

f(c,b)(z) = z2 + c+
β

(z − b)2
(1)

with z ∈ C, and parameters c, b ∈ C. The auxiliary parameter β is set to 0.001 for this
paper. The system’s corresponding iteration formula is then given by: zn+1 = f(c,b)(zn).
The initial condition, or seed for this system is denoted z0. Fixing c and b (and β) defines
a particular map in this family, and then selecting z0 generates a sequence of values for
the system. This sequence, {z0, z1, z2, ...}, is known as an orbit. The goal in dynamical
systems is to understand the long term behavior of all such orbits for all values of c, b
and all initial conditions. The parameter b was introduced to the project with the goal
explaining the behavior of orbits as the singularity of the map shifts. The majority of the
report, however, considers the special case where b = 0, although there is a section on 1D
maps which provides more details related to changes in this special parameter. When b
is fixed at zero, we often abbreviate f(c,0) as fc. The goal of understanding the long term
behavior of orbits is easier to achieve for some dynamical systems than for others. The
system in this report is a perturbation of a map whose dynamics mathematicians for the
most part fully understand: z 7→ Qc(zn) = z2 + c. The addition of the perturbation term
in this study changes the behavior of orbits in this system in a number of ways. First
of all, the pertubation is singular, and so points near z = b map to a large magnitude
point, and successive iterates increase without bound (or “go off to infinity”, terminology
which will be used throughout the report). Perhaps the most significant complication in
this case stems from the addition of z in the perturbation term. Including this term with
z changes the function f(c,b) so that it is no longer complex analytic. The full details on
this nonanalytic classification are beyond the scope of this report, but essentially f(c,b) is
put into another class of functions which run no longer from C to C, but from <2 to <2.
Many theorems in complex dynamical systems apply only to complex analytic maps, so
proving results about this family can require significantly new approaches.
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1.1 Methods and Terminology

Research in dynamical systems is typically a combination of numerical experimentation
and analysis. Since few mathematicians have studied the dynamics of f(c,b), existing
dynamics software had to be modified or built from scratch to accomodate the needs of
this project. Over the course of this study, much time and effort was spent attempting
to optimize computer programs to carry out certain tasks. This section focuses on the
different tools used in this project and the role of computer technololgy in utilizing these
tools. We set b = 0 in this section and abbreviate f(c,0) by fc.

Escape Sets One first step that researchers use to begin to understand orbit behaviors
for any iteration function is to distinguish orbits which stay bounded from those that are
unbounded. For fixed c and b, the set of all z values whose orbits stay bounded is called
a Filled Julia Set. To make this a bit more formal, let Kc denote the Filled Julia Set for
c. Then

Kc = {z ∈ C|∃k <∞ : ∀n ∈ N, |fnc (z)| ≤ k}.
Kc is the set of initial conditions corresponding to bounded orbits; its complement is called
the escape set. This terminology makes sense for our family because infinity is attracting.
That is, orbits whose entries reach a certain magnitude necessarily have successive entries
that escape to infinity. It is a phase-plane escape set because z is the phase variable
(also called the dynamic variable, as opposed to a parameter) in this family. Colors are
assigned based on how many iterates a given orbit takes to exit a disk of a certain radius.
Darker colors indicate faster escape, except that black indicates an orbit that does not
escape, at least through the finite number of iterates checked by the escape algorithm.
See numerically computed escape picture in Fig. 1. Note the brown region near the origin
in Fig. 1b. Following terminology from [3], this escape region is called the trap door.
Additional brown regions in that figure are preimages of the trap door.

Another kind of escape set which is common for mathematicians to study is the
parameter-plane escape set. Recall that Kc is calculated by fixing parameter values and
varying initial condition values, z0. Parameter-plane escape sets are computed by fixing
an initial condition value for z0 and varying parameters. Similar to the definition of Kc,
let Mz0 denote the parameter plane escape set for a given value of z0 . Then,

Mz0 = {c ∈ C|∃k <∞ : ∀n ∈ N, |fnc (z0)| ≤ k}.

It would also be possible to consider b plane parameter escape sets, although none
are considered in this report. The notation Mz0 refers exclusively to a c-plane parameter
escape set, whose map will be made clear by context. Figures 1a and 1b below show K−1

for the quadratic map Q−1(z) = z2 − 1, and function f−1(z), repectively. Note that a
different value for z0 was chosen for the parameter-plane escape sets in Figures 2a and
2b. The reason for this will be addressed shortly, but the reasoning behind this choice of
z0 turns out to be one of the key investigative questions of this report. In 1D maps and
complex analytic maps, parameter-plane escape sets are usually computed by choosing
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(a) Unperturbed: z 7→ z2 − 1 (b) Perturbed: z 7→ z2 − 1 + 0.001
z2 .

Figure 1: Dynamic plane filled Julia sets.

a value for z0 which is a critical point (derivative equals zero) of the function in the
system. This choice of z0 is partially due to a theorem in dynamics which states that,
for iteration functions satisfying certain conditions, every attracting periodic orbit must
attract a critical point. For the map z 7→ z2 + c, there is only one such critical point, at
z = 0. Thus, when computing a parameter-plane escape set for this map, choosing the
seed z0 = 0 is the clear choice.

The choice is not so clear for the map fc. For maps of the real plane, critical points
are defined as points for which the Jacobian determinant vanishes. It turns out that the
critical set fc is not an isolated set of points, but instead a circle centered at the origin with
radius 0.0011/4 ≈ 0.17783. This can be verified using “(z, z)” coordinates, or converting
to (x, y) coordinates, where z = x + iy, and z = x − iy. This set shall be referred to as
the critical circle, and denoted J0. Its image will be denoted J1. It is not immediately
obvious which point to choose from the critical circle in the calculation of Mz0 . Further
results on this topic will are presented in Section 2 of the report.

A variety of computer software was used in the computation of escape sets throughout
this project. Initially, the mathematical software Sage was used to create escape sets. “To
Be Continued...”, a dynamical systems software authored by the second author, was also
used in the creation of these sets [9]. “To Be Continued...” already had maps of the form
of eq. (1) coded. It is also possible to compute critical sets with “To Be Continued...”,
although Mathematica was used more frequently for this task. Towards the end of the
project, Fraqtive [7], an escape set explorer application was modified to use the system in
this study. This software was optimized well to begin with, and the program can be used
to quickly modify Kc based on the position of the mouse pointer in the c plane. This tool
ended up being useful as a visual aid and to quickly observe the escape/nonescape sets
for any value of c.
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(a) Unperturbed Mandelbrot Set: M0 for
z 7→ z2 + c

(b) Perturbed Mandelbrot Set: M(0.17783,0)

for z 7→ z2 + c+ 0.001
z2

Figure 2: Parameter plane escape sets.

1.2 Studying Shifts in the Singularity: 1D Maps

Studying shifts in the location of the singularity of the system has the added difficulty
that the system’s critical sets are no longer necessarily circles. The programming to
create parameter-plane escape sets becomes much more difficult. To study variations in
the value of b, the system was restricted to the real line. If c and b are restricted to be
real, then restricting the system to the real axis is equivalent to studying the dynamics
of the real-valued system x 7→ x2 + c+ 0.001

(x−b)2 , for x, c, b ∈ <. This is not hard to see, as
all complex numbers have been removed from the system, and successive iterates of real
initial conditions must stay real.

We studied variations in b by fixing a value of c and computing an orbit diagram in the
(b, x) plane. See Figure 5. More information and analysis of these concepts is presented
later in this report.

Mathematica was used abundantly in the study of the restricted 1D case. It was first
used to compute bifurcation curves and orbit diagrams. Symbolic dynamics were consid-
ered in studying this problem, and Mathematica was used to do a preliminary analysis of
the symbolic behavior of orbits in the system, but these results are not presented here.

2 Results

The results presented in this section should provide some insight into the dynamical
behavior of this system and give directions for how research for this system might proceed
in the future. This section is divided into two parts: Part 1 discusses results about the
2D system using b = 0. Part 2 discusses results concerning the one-dimensional system
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obtained by restricting to the real axis with both c and b also real. Part 2 also discusses
future work and further direction of the research into this type of system.

2.1 Part 1: Escape sets

2.1.1 Filled Julia sets

.
Numerical escape experiments suggested that the filled Julia sets for our maps exhibit

a symmetry.
Remark 1: For all maps in the family fc(z) = z2 + c + β/z2, Kc is symmetric with

respect to the origin.

Proof. = This can be verified because the only dependence on z as z2 and z2. Replacing
z with −z in both terms yields the same value. That is, f 2

c (z) = f 2
c (−z). Thus, the orbits

of z and −z are identical after the first iterate. So the coloring of the escape experiments
for the two points is identical. Since this result is independent of c, we conclude that for
all c, Kc is symmetric with respect to the origin.

The result above is interesting because it means that when analyzing the Filled Julia
sets for this system, it is only necessary to analyze dynamical behavior for half of the
points on the z plane.

Further, if the value of c is real (and β is a fixed real number), then oribits that start
at conjugate points stay at congugate points. That is: fc(z) = fc(z). This means the
corresonding sets Kc are all symmetric across the x-axis. See, for example, Fig. 1. For
sets with both symmetries, it is only necessary to compute orbits in one quadrant to
determine the escape behavior of all orbits.

2.1.2 Parameter space escape sets with varying point on critical circle

. Some of the most interesting results in this section are concerned not with the phase-
plane escape sets, but with the parameter plane escapse sets. Section 1.1 refers to the
issue of choosing a point on the critical circle J0 with which to calculate parameter plane
escape sets for this system. The results of this study show that Mz0 varies somewhat,
based on the starting value z0 on the critical circle. For any c, fc has a critical circle
centered at the origin with radius |β|1/4. For β = 0.001, this radius is 0.0011/4.

Explaining “The Dark Brown Disks in Figures 3a and 3b. Figure 3 shows
two zooms of the center of Mz0 using, in polar coordinates, z0 = 0.0011/4ei0, and z0 =
0.0011/4e2π/3. Note the different location of the circular brown region tangent to the
middle black circular region in figure 3a versus 3b. The black disk at the center of these
escape sets is known as the Maiers region and has been explained in previous research
[6]. For maps corresponding to the Maiers region, the trap door has no preimages, so the
escape pictures for corresponding maps have only one “hole”: the trap door. The location
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of the brown disks rotates around the Maiers region (twice) as the critical point z0 rotates
around the critical circle. The dark brown center of this “primary” brown circular region
for Mz0 is a c value for which z0 lands on the pole at 0 in one iterate. This dependence can
be verified by computation. First, observe that the value of c plays no role in the location
of the critical circle J0, since the constant disappears when differentiating to obtain the
Jacobian matrix. However, the first iterate of the critical circle, J1, does depend on the
value for c. To see this relationship, it helps to consider the map in polar coordinates.
That is: z 7→ fc(z) = (reiθ)2+peiφ+ 0.001

(re−iθ)2
, where z = reiθ, and c = peiφ. This expression

can be simplified to yield

reiθ 7→ (r2 +
0.001

r2
)e2iθ + peiφ. (2)

(a) Zoom of Fig. 2b: Mz0 for z0 = (r, θ) =
(0.001(1/4), 0)

(b) Same as Fig. 3a but with z0 replaced
by (r, θ) = (0.001(1/4), π/3)

Figure 3: Zoom of c plane escape figures for z 7→ z2 + c+ 0.001
z2

. The origin is at the center
of the Maiers region, which is the black disk. The location of the brown disk depends on
z0.

The RHS of equation (2) can vanish only if p = r2 + 0.001
r2

and φ = 2θ + π. If, in

addition, reiθ is on the critical circle, then r = 0.001
1
4 , so p = 2(0.001)1/2. That is,

c = 2(0.001)1/2e2θ0+π. This is illustrated in Fig. 3a, with θ0 = 0 and c = −2(0.001)1/2 ≈
−0.0623, and in Fig. 3b, with θ0 = π/3 and c = 2(0.001)1/2e2π/3+π = 2(0.001)e5π/3 ≈
0.0623e5π/3. A similar computation can be done for more general families of the form
zd + c+ β/zd.

The center of the disk in Fig. 3a is at a c value of approximately c = −2(0.001)1/2 =
−0.0623. Using this value for c, Fig. 4 shows the critical circle J0 and its image J1 for
two different values of c, c = 0 and c ≈ −0.0623, the center of the brown disk in Fig.
3a. The critical set J0 is the same (red) circle for both figures, but while J1 for c = 0 is
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centered at the origin, J1 for c = −0.0623 is translated so that it (almost exactly) passes
through the origin.

(a) c = 0: no images inside the green circle,
so no orbits land in the trapdoor; the whole
black annulus is the bounded set.

(b) c = −.0623: the (green) critical circle
image J1 goes through the origin, so part of
the trapdoor is outside the green image of
the critical circle, so orbits can land in the
trapdoor and escape; lots of (white) preim-
ages of the trapdoor.

Figure 4: Filled Julia sets for for z 7→ z2 + c + 0.001
z2

. Critical circle in red; its image in
green.

Remark 2: If β is real, and z0 is real, then the corresponding parameter-plane escape
set, Mz0 , is symmetric with respect to the real axis.

Proof. This follows from the observation that, if fc(z) = z2 + c + β/z2, then fc(z) =
z2 + c + β/z2 = fc(z). This means orbits under fc versus fc that start out at conjugate
z values have conjugate orbits. Thus, the escape/nonescape behavior of the two orbits is
identical. This makes Mz0 symmetric across the real axis.

This result is useful because it means that for the two values of z0 on the critical circle
that lie on the real axis, it is only necessary to explain one half of the parameter plane
escape set.

2.2 Part 2: 1D Maps with varying singularity

Recall that at the beginning of this report, the map f was given in full generality as

fb,c(z) = z2 + c+
β

(z − b)2
(3)
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Figure 5: Orbit Diagram x versus b for c = −1 and β = 0.001. The critical orbit of the
right-hand (left-hand) ritical point is in red (black).

The majority of this report studies the case where β = 0.001, and b = 0, as this is
the case for which the majority of results were able to be proven. However, one of the
challenges that will be faced by researchers in this field is the study of the map in full
generality – as b is allowed to vary.

Orbit diagrams. One numerical experiment that leads to some understanding of
this family is to fix all the parameters except b, the location of the singularity, restrict
the phase variable to be real, and compute an orbit diagram in the (b, x) plane. We fixed
c = −1, and β = 0.001. Although the orbit diagram allows only one real parameter to
vary, it contains information about the phase location of the orbits. So in some ways
it includes more information and in other ways less information than the two-parameter
escape pictures for Mz0 . In particular, it is possible to identify attracting fixed and
periodic points as b varies.

The maps in this family all have two critical points. The orbit diagram in Fig. 5 is
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created by computing both critical orbits at any fixed parameter b, throwing away the first
100 iterates, and plotting the next 100. Sometimes the two critical orbits have the same
fate, other times they have different fates. For example, at b = −.3, each critical orbit
approaches its own attracting period-2 orbit. See Fig. 6a: each period-2 orbit is close to
including one of the critical points. At b = −.1, each critical orbit approaches the same
attracting period-4 orbit. See Fig. 6b. The attracting period-4 orbit is close to including
the left-hand critical point. The period-4 orbit can be seen by carefully following the
cobweb diagram starting close to that critical point. The right-hand critical point follows
a longer path before it gets drawn into the same attracting period-4 orbit. All transients
for both critical orbits are shown in Fig. 6b. Compare with Fig. 5 at b = −0.1 and
b = −0.3. The “slice” at b = −0.3 shows four points on the orbit diagram: an outside
period-2 orbit (red) and an inside period-2 orbit (black). The “slice” at b = −0.1 also
shows four points on the orbit diagram, but they corresond to a single period-4 orbit.

-2 -1 1 2

-2

-1

1

2

(a) Fates of both critical orbits for b =
−0.3; transients included, but barely visi-
ble because each critical point is almost on
the period-2 orbit to which it is attracted.

-2 -1 1 2

-2

-1

1

2

(b) The attracting period-4 fate of both
critical orbits for b = −0.1; transients in-
cluded. Five iterates of the left-hand criti-
cal point are shown in black; nine iterates
of the right-hand critical point are shown in
red. The orbit from the red arrow maps to
the black arrow, and in three further iter-
ates arrives (almost) back at the red arrow.

Figure 6: Fates for both critical orbits for x2− 1 + .001/(x− b)2. Dashed black box is for
reference.

Note the “interesting” behavior on this diagram occurs close to b = −1. The strange
behavior around b = −1 is partially due to the fact that the critical orbits land “close
enough” to the singularity at x = 0 to cause their corresponding orbits to escape almost
immediately. This explains the thin vertical white strip present in the orbit diagram in
Fig. 5 near b = −1. Note that the location of the critical points is a function of b only
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and not c. That is, the orbit diagram would iterate the same set of critical points for any
c value, but the fates would, of course, depend on c. Note in Fig. 5 that when b > 0.4
or b < −1.5, orbits in this system approach an attracting period-2 cycle close to x = 0
and x = −1. This is because the singularities are far from the period-2 orbit between
x = 0 and x = −1 that exists for x2 − 1. Most of the interesting behavior occurs over
the approximate interval (−1.2, 0), at least for the range of b values displayed in Fig. 5.
It will be a goal for future researchers to fully explain the behavior of orbits in this more
chaotic region.

Two-parameter bifurcation diagrams. Another approach to gain insight into the
dynamics for our one-dimensional family in eq. (3) is to numerically compute codimension-
one bifurcation curves in the (b, c) parameter plane. The curves we computed used con-
tinuation algorithms from “To Be Continued...”, a dynamical systems software package
[9]. Fig. 7 below shows several fixed-point bifurcation curves in the (b, c) parameter plane.
Corresponding cobweb phase diagrams are show in Fig. 8. The curves displayed are only
a sample of “all” the bifurcation curves which exist for the two-parameter family. A
full discussion of the bifurcations for this family is beyond the scope of this report. In
particular, we have computed only fixed-point bifurcations. There is an infinity of other
bifucation curves for other periods. All of the missing curves, however, exist between the
highest and lowest curves in Fig. 7. That is, no bifurcation curves exist above the the
two (green) saddle-node curves (through (a) and (d)), and no bifurcations occur below
the the lower of the magenta critical orbit prefixed curve through (j) and the cyan critical
orbit prefixed curve through (k). For any c-values “above” the saddle-nodes, all orbits
escape to infinity; for any c-values “below” the prefixed curves, the dynamics is (appears
to be) conjugate to a full shift on four variables, with the bounded set being a Cantor set
created by removing three intervals at each stage of its construction.

Note that when c = −1, the two-parameter bifurcation diagram in Fig. 7 is related
to the orbit diagram in Fig. 5. For example, the point on the green saddle node curve
at (b, c) ≈ (−.472,−1) corresponds to the saddle-node point at the left-hand endpoint of
the short curve of attracting fixed points at (b, x) ≈ (−0.472,−0.57) in Fig. 5.

.

3 Future Work

The family of dynamical systems f(c,b,β) studied in this paper (eq. (1)), and its gener-
alizations, are currently a central subject of study for the second author, students, and
colleagues. See, for example, the work in [1, 8, 11, 13, 5]. There is still much to explain
about these systems. The one-dimensional restriction may be able to be completely ex-
plained using symbolic dynamics. See, for example, the symbolic dynamics used in [8]
Future work directly related to this study may involve introducing the b parameter into
the full system from <2 to <2. As stated earlier, the critical sets for this more general

10



a
bc d

e

f

g

h

i

j

k

-1.0 -0.5 0.5 1.0 1.5 2.0
b

-3

-2

-1

1

c

Bifurcations

Figure 7: Bifurcation curves in the (b, c) plane for z 7→ z2 + c + 0.001
(z−b)2 . Labelled points

along b = 0.4 correspond to cobweb diagrams in Fig. 8. Green: saddle-node, Red: su-
perattracting, blue: period-doubling, Magenta: right-hand critical point is fixed after two
iterates, Cyan: left-hand critical point is fixed after two iterates.

system are curves rather than points. In many examples studied so far, the critical sets
are circles. Significant further analysis will be necessary to fully understand the dynamics
in the real plane.

4 Conclusions

The point of this study was to gain a better understanding of certain rational maps of the
plane. This is a massive area of study in discrete dynamical systems. To date, much more
is known about complex-analytic rational maps of the complex plane, versus rational
maps of the real plane Perturbing a known complex-analytic system by a nonanalytic
term begins to generalize the problem away from the complex plane and to the real plane.
This study focused on one such perturbed system and a partial analysis of its behavior.
The study also sought to compare the perturbed system to the original system to gain
insight into the changes brought about by adding in a nonanalytic term. This study used
a variety methods from both primary and secondary sources to aid in the research process,
and the results from the study have helped shed a small amount of light on the family
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(a) c = 0.215226: saddle-node
fixed-point
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(b) c = 0.184423: super-
attracting fixed point
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(c) c = 0.15: period-doubling
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(d) c = 0.143382: saddle-node
fixed-point
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(e) c = 0.101819: critical orbit
pre-fixed
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(f) c = −0.0201147: superat-
tracting fixed-point
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(g) c = −0.753964: period-
doubling fixed-point
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(h) c = −1.29985: critical orbit
pre-fixed (left of singuarity)
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(i) c = −1.33110: critical orbit
pre-fixed (right of singularity)
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(j) c = −2.0089: critical orbit
pre-fixed
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(k) c = −2.49695: critical orbit
pre-fixed

Figure 8: Cobweb phase graphs at bifurcation c-values for x2 + c+ 0.001/(x− 0.4)2

. Green lines emphasize the bifurcation point; red lines mark pre-fixed critical orbits.
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of dynamical systems that was studied. There are still far more questions than answers
for both this system and perturbed discrete dynamical systems in general. The studies
conducted througout this project are a small step in understanding the dynamics of a
very broad and complicated class of systems.
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