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PERIOD DOUBLING WITH HIGHER-ORDER DEGENERACIES*

BRUCE B. PECKHAMYt AND IOANNIS G. KEVREKIDIS}

Abstract. A family of local diffeomorphisms of R” can undergo a period doubling (flip) bifurcation as
an eigenvalue of a fixed point passes through —1. This bifurcation is either supercritical or subcritical,
depending on the sign of a coefficient determined by higher-order terms. If this coefficient is zero, the
resulting bifurcation is “degenerate.” The period doubling bifurcation with a single higher-order degeneracy
is treated, as well as the more general degenerate period doubling bifurcation where a fixed point has —1
eigenvalue and any number of higher-order degeneracies. The main procedure is a Lyapunov-Schmidt
reduction: period-2 orbits are shown to be in one-to-one correspondence with roots of the reduced “bifurca-
tion function,” which has Z, symmetry. Illustrative examples of the occurrence of the singly degenerate
period doubling in the context of periodically forced planar oscillators are also presented.
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1. Introduction. This paper describes the local bifurcations that take place when
we perturb a diffeomorphism G, of R” which has a fixed point with a single eigenvalue
equal to —1. Since G, has a nonhyperbolic fixed point, it is necessary to consider
higher-order (nonlinear) terms in order to describe the phase portraits near the fixed
point of the map G,, both by itself and also under perturbation in a family G,, p € R".

When G, is a map of R, any even-order term in its Taylor series expansion can
be eliminated by a change of variables. This is a direct result of the normal forms
theorem. After eliminating the constant and second-order terms, the linear coefficient
will be —1 and the sign of the resulting coefficient of the third-order term will determine
whether G, will undergo a supercritical or subcritical period doubling (flip) bifurcation
[Ar], [GH]. If the third-order coefficient should happen to be zero (a higher-order
degeneracy), then the sign of the fifth-order term becomes important. Perturbations of
the resulting map (Gy(x)=—x+cx’+0(x’),c#0) produce a greater number of
topologically distinct phase portraits than do perturbations of the nondegenerate
(Go(x) =—x+cx’+ 0(x?), ¢ #0) map. Two parameters are needed to fully capture all
possible phase portraits near the (singly) degenerate map. By the same token, a
degenerate bifurcation will generically occur only in families with at least two par-
rameters.

This discussion naturally extends to multiply degenerate period doubling maps:
Go(x)=—x+cx*"+0(x**"), c#0 (k—1 times degenerate). These codimension-k
bifurcations will generically occur only in families with at least k parameters.

In § 2, we consider the model k—1 times degenerate period doublings fo(x) =
—x+ 8x***! where 8 = £1, and the corresponding model k-parameter unfoldings £, (x) =
—(g;+1)x— x> — - - — g x** '+ 8x**"', We present the mathematical theory in § 3.
We show that the period-2 orbits of the individual maps we study are in one-to-one
correspondence with the zeros of a “reduced” bifurcation function. This bifurcation
function is obtained by using a standard Lyapunov-Schmidt reduction. Because the
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topological equivalence of the maps we study is determined by the period-2 orbits and
their stability, knowledge of the corresponding bifurcation functions is sufficient to
provide us with the topological classification of the original maps. When we consider
a family of maps, the possible behaviors of the bifurcation functions are given by
standard singularity theory. We need only interpret the singularity theory results in
the bifurcation context of the original family of maps. In particular, we show that each
family in the class of period doubling bifurcations that we treat is “‘equivalent” to one
of the model families we describe in § 2.

The singly degenerate period doubling has a special significance in two-parameter
families of maps such as those generated by periodically forced oscillators, which
possess period-q “resonance horns” whose boundaries typically consist of saddlenode
bifurcations for the gth iterate of the map. We and other researchers [ KAS], [MSA],
[P1], [P2], [P3], [SDCM], [VR] have repeatedly observed such a degenerate period
doubling bifurcation on the boundaries of period-2 resonance horns. In § 4 we describe
two models of periodically operated chemical reactors (a chemostat with simple
predator-prey kinetics, and a continuous stirred tank reactor (CSTR) with a single
irreversible exothermic reaction) where this bifurcation occurs.

The bifurcation diagrams we obtained for our degenerate period doublings turned
out to be virtually the same as those for a Hopf bifurcation with higher-order
degeneracies for a flow [GS], [Ta]. Consequently, work on the Hopf bifurcation
suggested approaches to the period doubling problem. Our analysis in its final form
parallels that of Golubitsky and Schaeffer [GS, Chap. VIII]. In particular, the use of
the Lyapunov-Schmidt reduction to obtain a bifurcation function, as well as the
unreduced function with which to start, was suggested by their exposition. Using the
reduction on a ‘“finite sequence space,” however, appears to be a new idea in this
paper. (We have since found out that Vanderbauwhede [Va] and Brown and Roberts
[BR] have independently started using the Lyapunov-Schmidt reduction on finite
sequence spaces in current research as well.) See also the bibliography in [GS] for the
original references using the Lyapunov-Schmidt reduction and singularity theory to
study the Hopf bifurcation for flows.

The Hopf problem for flows and our problem are analogous because both can be
reduced to finding roots of the same Z,-symmetric bifurcation function. The period
doubling problem, interestingly, turns out to be significantly easier to handle than the
Hopf bifurcation. Many of the issues that [GS] had to treat simply did not appear in
the period doubling analysis. Consequently, we are able to obtain slightly stronger
stability information from the bifurcation than was obtained for the Hopf bifurcation
in [GS]. We discuss the comparison with the Hopf bifurcation further in § 5.

To place our work in context, we provide Table 1, showing model unfoldings for
bifurcations with higher-order degeneracies. The unfoldings in the table are not always
exactly as in the corresponding reference, and the references are not intended to be
complete. In all cases, € € R* is the unfolding parameter of the codimension-k bifurca-
tion; § = +£1.

The most widely known higher-order degeneracy in Table 1 is the saddle-node
(for either the flow or map) with a single higher-order degeneracy, commonly called
the cusp bifurcation. The map and flow cases are exactly analogous. We will encounter
saddlenode bifurcations with higher-order degeneracies in this paper for period-2
orbits, because they appear in the unfoldings of period doubling points with more
than one higher-order degeneracy. Higher-order degeneracies in the Hopf bifurcation
for maps, however, are much more complicated to treat than degeneracies in the Hopf
bifurcation for flows. The map case includes not only all the subtleties of the flow



1554 BRUCE B. PECKHAM AND IOANNIS G. KEVREKIDIS

TABLE 1

Flows:
Name Vector field Unfolding References
Saddlenode x' = &xk+1 x'=g,+ex++gx*T + 6xkH! [Ar], [GH]
Hopf r'=&r3ktt =g rt ettt gy r?K T 4 52k [Ar], [GH],

0=w+r? 0=w+r? [GS], [Ta]
Maps:
Name Map Unfolding References
Saddlenode  x- x+&x**! x> e+ (g 1)x+- -+ g xk T+ 6xKH! [Ar], [GH]
Hopf r-> r2k+t roerterP+ o+ e r?* 1+ 8 1 +hot. [Ch]

0->0+w+r? 0->0+w+r’+hot.

Period Dblg x> —x+ 6x2**! x> —(g,+1)x—- - - — g x?K + sx2kH! this paper

case, but also some monumental additional problems caused by resonant interaction
of periodic orbits, and the existence of invariant sets other than equilibria and closed
orbits. Chenciner [Ch] has performed much work on this problem. Note that the
higher-order terms must appear, even in the model unfoldings.

We point out that [HW] provides a short description of the period doubling with
a single higher-order degeneracy (k =2 in Table 1). That model, but not the theorems
in this paper, is relatively well known to bifurcation researchers.

2. The model period doubling families. This section is devoted to describing the
bifurcations that take place in the specific families we use as our models. The new
results, including the justification for choosing these particular families as models, are
given in § 3. The interested reader may skip directly to that section, if desired. We do,
however, make some effort in this section to prepare the groundwork for the techniques
of § 3. In particular, we use the zeros of several “bifurcation functions” to help us
describe the topological classification of our model families. These bifurcation functions
will turn out to be special cases of the more general bifurcation functions obtained
from the more general maps treated in § 3. (See Corollary 3.13.)

Recall that for maps of R having a fixed point with a —1 eigenvalue, the normal
forms theorem [Ar], [GH] allows us to eliminate any even-order term by a change of
variable. Thus the absence of even-order terms from our models should seem reasonable.
Keep in mind that, because we are describing local bifurcations, we are only interested
in the germs of our functions in phase x parameter space. The base point of all our
model germs is the origin of RXRX.

DeFINITION 2.1. The local (near (x, €) =(0, 0)) family

(2.2) fors(X)=—=(ey+1)x— x> —+ - - — g x> 1+ 8x2, §==+1

is called the model local period doubling bifurcation family with k—1 higher-order
degeneracies. The map fo.i 5(x) = —x + 8x***! (for x near zero) is called the model period
doubling bifurcation map with k —1 higher-order degeneracies.

Note that the parameter € = (¢, ¢,, * * *, &) is in R¥, k=1. We will often drop
the subscripts k and & since their values are assumed to be fixed for a given family.

2.1. Individual maps: Stability of periodic orbits. We first describe the behavior of
the map f. =f.., s for fixed values of the parameters. Zero is the unique fixed point
near x =0 of f, for any € near 0. The fixed point is attracting for &, <0 and repelling
for £,> 0. Since f is an orientation preserving diffeomorphism of R, fixed points are
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the only form of recurrence it can have. Once these fixed points of f. have been
located, the topological equivalence class of f2, and therefore that of the orientation
reversing f,, is determined by the directions in which iterates of f2 progress in the
intervals of R\{fixed points of fZ}. (This can be proven by fundamental interval
arguments.) For nonzero x, it is apparent that if f2(x)—x =0, then x is on a period-2
orbit for f, ; if f2(x) — x > 0, the orbit of x increases under iteration of f2; if f2(x) —x <0,
the orbit of x decreases under iteration of fZ. Since the behavior of f, is completely
determined by the roots and sign of the function f2(x)—x, we call it a “bifurcation
function” associated with the family f, = f,., 5 in (2.2).

Even in the nondegenerate case (k=1 in f,; ), the second iterate 2 is somewhat
cumbersome to handle. The algebra is greatly reduced by noticing that f, is an odd,
or Z,-symmetric, function of x : f,(—x) = —f.(x). The consequence is that x is a period-2
orbit if and only if f,(x)=—x. Thus fZ(x)—x =0 is equivalent to —f,(x) —x =0. We
have chosen to use —f.(x)—x instead of f,(x)+ x because when they do not equal
zero, sgn (f2(x) — x) =sgn (—f.(x) — x). Thus the function —x — f,(x) is also a bifurca-
tion function for (2.2).

Furthermore, —x — f.(x) = xP.(x?), where

(2.3) P..s(u)=P.(u)=¢e,+eu+---+egu*"'—suk

Since x =0 is always a fixed point, the roots of P.(x*) with x # 0 are precisely the
period-2 points. That is, each positive root r* of P.(u) corresponds to the period-2
orbit r<> —r. For x#0 the sign of —f,(x)—x and therefore the sign of f2(x)—x is
determined by the sign of P.(x?). So the stability of the fixed point and any period-2
orbit is also determined by the sign of P, . Thus, P,(u) becomes our third and simplest
bifurcation function.

It may help to keep in mind Fig. 1a, where we graph the three bifurcation
functions fZ(x)—x,—f.(x)—x, and P.(x*) for a specific example: (g;k 8)=
((.000016, .0024,.09), 3, +1). Figure 1b shows the phase portrait for f2 that Fig. la
determines.

2.2. Bifurcations. We are now ready to analyze the bifurcation sets in phase X
parameter space (RxR¥) that exist in the model families £, for fixed values of k
and 8. These consist of the nonhyperbolic fixed and period-2 points, possibly with
higher-order degeneracies.
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F1G. 1a. Three bifurcation functions. FI1G. 1b. The “flow” of f2.
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We will treat the fixed-point bifurcations first. Since f, is an orientation reversing
diffeomorphism of R, the only potential bifurcations for the unique fixed point zero
are period doublings. From (2.2), the set in Rx R* of fixed points, which we call D°,
is {x =0}; the set of period doubling bifurcations is D" := {x = £, =0}; more generally,
the set of period doubling bifurcations with at least i —1 higher-order degeneracies is
apparently (look ahead to Definition 3.1—the model families in (2.2) are already in
normal form on the center manifold) the codimension i + 1 (dimension k — i) hyperplane
given by

(2.4) Di=Di={(x,e)eRxR: x=¢,=---=¢ =0}, i=0,---,k

The superscripts have been chosen to indicate the codimension of the corresponding
set when projected to the k-dimensional parameter space. The set of simple (nondegen-
erate) period doubling bifurcation parameters is thus, as usual, a codimension-1 set
in the parameter space.

The nonhyperbolic period-2 points are treated by considering f2. Since f2 is an
orientation preserving diffeomorphism of R, the only potential bifurcations for the
period-2 orbits are saddlenodes, possibly with higher-order degeneracies. By definition
[Ar], [GH], a map g:R~ R has a saddlenode with i—1 higher-order degeneracies at
¥o if g(¥)—y has a zero of multiplicity i+1 at y =y,. So the period-2 points in our
models have saddlenode bifurcations with i —1 higher-order degeneracies at x, if, for
a fixed value of €, f2(x)— x has a zero of multiplicity i+ 1 at x = x,# 0. But f2(x)—x
having a zero of multiplicity i+ 1 at x = x,# 0 is equivalent to P,(x”) having a zero of
multiplicity i+1 at x = x,# 0. If we define S}, as the set of period-2 points and S}
as the set of period-2 saddlenode points with at least j —1 higher-order degeneracies
for 1=j=k—1, then these sets are

(2.5) §/:=8}s={(x,e)eRxR*: P)(x*) =0for0=i=j, x #0}.

2.3. The low codimension period doublings. We can now use (2.4), (2.5), and the
sign of P, to determine the bifurcation diagrams and phase portraits for the
codimension-k bifurcations with k=1, 2, 3.

k=1. When k =1then ¢ = ¢, and (2.2) becomes the simple (nondegenerate) period
doubling bifurcation: f,.; s(x)=—(g,+1)x+8x’. P.(u)=¢,—8u and P.(u)=-8#0.
From (2.5) we see that period-2 points exist whenever 8¢ >0 and are located on the
parabola x = +v/8¢. The period-2 orbits are stable for § =+1 and unstable for 8 = —1.
Since P.(u)#0 all period-2 points are hyperbolic. A bifurcation diagram with three
representative phase portraits for 6 =+1 is shown in Fig. 2. This is the supercritical
case. The arrows on these phase portraits indicate the direction of travel of second
iterates of f,. The same figure can be used for § = —1, the subcritical case, by reversing
the direction of the e-axis and the direction of the arrows on the phase portraits.
Changing the arrow directions means that the stability of the fixed point and any
period-2 orbits for 6 = —1 will be the reverse of the stability for § = +1.

k =2. In this case, which really motivated the whole paper, (2.2) represents the
singly degenerate period doubling bifurcation f, , 5(x) = —(&,+1)x — &,x” + 8x°. Since the
coefficient £, of the x* term, which determines the criticality of the simple period
doubling bifurcation, is allowed to change from positive to negative, we will have both
supercritical and subcritical period doublings. All the fixed-point bifurcations have
already been identified in (2.4). For the period-2 bifurcations, we use the bifurcation
function P, s(u)=P.(u)=e,+¢&,u—8u’, so P.(u)=¢,—28u and P.(u)=-28#0.
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F1G. 2. Supercritical simple period doubling.

By (2.5), the period-2 points in Rx R* are §°={¢, = —&,x*+ 6x*, &, #26x?} and they
project to 7.(S°) ={6e,>0}U{8e,>0 and £3= —48¢,} in the e-parameter plane R>.
The nonhyperbolic period-2 points are all (nondegenerate) saddlenode bifurcations.
They are given by S'={e; =-8x* &=26x> x#0} and project to m.(S')=
{e,=(—8/4)¢e3, 8e,> 0}. The formulas for the projections to the € parameter plane are
obtained by eliminating x from the expressions for S° and S’.

Figure 3 shows sketches of the above sets for § =+1 in phase X parameter space.
The projections to parameter space are drawn on the fixed-point plane {x =0}. The
surface S3 ., of period-2 points, the plane D of fixed points, the period doubling line
D;, the saddlenode curve S} ., and its projection me(S3.+1) to the & parameter plane,
drawn in the {x = 0} plane, are all indicated in the figure. Note that all the bifurcation
points occur on the “folds” of the period-2 surface Sg,ﬂ.

Various two-dimensional bifurcation diagrams (pieces of Fig. 3) are shown in Fig.
4: 4a gives the projection of the bifurcation sets S' (saddlenodes) and D' (period
doublings) to the parameter space; the other three are representative one-parameter
cuts of Fig. 3: 4b and 4c each have a fixed value for &,, while a small circular path

X period-two surface
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, period
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saddle-nodes
Me(S3,41)
sa‘ddle-nodes
2,41

fe (X) =- (€4 +1) x - g;x3+ x5

F1G. 3. Singly degenerate period doubling.
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F1G. 4. Aspects of singly degenerate period doubling.

around the origin in the e-plane yields 4d. Arrows all indicate the “flow” of the second
iterate of f;., +,. (Compare Figs. 4b and 4c with Fig. 3.1 in [GS, p. 260]; compare Fig.
4d with Fig. 136 in [Ar, p. 283].)

As in the simple period doubling case, Fig. 3 and all Fig. 4 diagrams could be
converted from the § =+1 case to the § = —1 case by reversing the directions of the
€, axis, the &, axis, and the “flow” lines. The stability of the fixed point and all period-2
orbits is opposite for the two cases.

k 23. The program for computing the bifurcation submanifolds can obviously be
continued for the model period doublings of any codimension. Because the computa-
tions are more lengthy but not much more enlightening, we merely list the results, with
special attention to the (k, 8) = (3, +1) case.

The fixed-point bifurcation sets satisfy D{> D}>---> D} '> D} where
DJ{""\DY, is the codimension-j manifold in RxR" of period doubling points with
exactly j —2 higher-order degeneracies. Similarly, the period-2 bifurcation sets satisfy

05D 8L, - - D 8ks? > Sk, where S\ S is the codimension-j manifold in Rx R*
of period-2 saddlenodes with exactly j —2 higher-order degeneracies. The set Sks' and
its projection to parameter space have the explicit parametric representations

st ={Gelen = (-8 Cc0r(F) )

(2.6) K K K
_(3)"6’(2)"4’_<1>x2])’”&°}’
()
Tre(sllz,gl) =[(€l’ Y Ek)= ((_1)k+1 k—f eik‘z’ T,
2.7)

o(5) , =)
p ex, e |, 6e,>0]1.

k3 €k» k2
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When k =3 we obtain
S35 =1{(x, &1, €2, £3) = (x, —£2x% — £3x*+ 6x°, &5, £5), x # 0},
Sis={(x, &1, &3, £3) = (X, £3x* —26x°, —2&,x%+38x*%, &3), x # 0},
S3s=1{(x, &1, &2, £5) = (x, 8x°, —38x*, 36x2), x # 0}

(cf. (2.6)). 71-5(5(3’,“), the set of all parameter values with period-2 orbits, is described
below.

775(5113,+1) = {(51 , €2, €3) = (&3] W_(e,, 53)]2+2[ W_(e,, 53)]3, €3, £3),

2
e3<0,0<£2=-§—3}

U {(51 , €2, £3) = (&5 W (e, 53)]2+2[ W, (e, 53)]3, €2, £3),

2
5320,ez<00rs3<0,52§%},
where
—e.+ 3_3
W.(e,, &3) = EB_M;
3
ey —€3
WE(S§,+1)={(£1’62’83)=<ES—3_9 63>a83>0}
(cf. (2.7)).

Because the full phase x parameter space is now four-dimensional, the best pictures
we can draw are either “‘slices” or projections of the four-dimensional space. Figure
5 shows the slice corresponding to &;= constant <0. Note the appearance of the cusp
point on the curve of saddlenodes, so named for its location on the projection of the
saddlenode curve to the parameter plane. Such a point appears only for k=3. The
slice corresponding to £, = constant >0 we do not show, because it is qualitatively the
same as Fig. 3.

surface

fe(X)=-(e1+1)x -€5x3 -g5x5-x7
€3 = constant < 0

F1G. 5. Doubly degenerate period doubling.
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0
I
I
I

x=0
F1G. 6. Doubly degenerdte period doubling: parameter space.

Figure 6 shows the saddlenode surfaces m.(S3,+1), the cusp curve (S5 +1) (Where
the two saddlenode surfaces, one defined with W, and the other with W_, meet), and
the period doubling plane 7.(Dj}) in the three-dimensional parameter space. The set
we(Sg,H) is bounded “above” in Fig. 6 by the higher of the saddlenode surfaces
(inclusive) and the period doubling plane (not inclusive). Compare our Fig. 6 with
Fig. 6 in [Ta]. Note that the plane {x =0, &; = const < 0} appears in both Fig. 5, as the
fixed-point plane, and in Fig. 6, as the leading edge of the graph.

3. General period doubling families. In § 2 we analyzed the local topological
behavior of the special families of diffeomorphisms of R: Jers(x)=—(e;+1)x—
£2x =+ -~ g x? 7'+ 5x?**1. We now treat the more general case of a local family of
diffeomorphisms of R".

DEeFINITION 3.1. Fix k=1. Let G(x, p) =G,(x) be a representative of the germ
of a C***! function satisfying

(1) G:U->R", U is a neighborhood of (xo, po) in R” XR™,

(2) G(xo, mo) =Xo.

(3) D,G(xo, po) has a single eigenvalue of —1 and no other eigenvalues on the
unit circle.

(4) On its one-dimensional center manifold, the map G,, can be transformed by
a C***! change of coordinates to a C***! map of the form y - —y+ ey o (y*HY),
c#0.

Then G(x, p) is a local period doubling bifurcation family with k —1 higher-order
degeneracies, and G,,, is a local period doubling bifurcation map with k —1 higher-order
degeneracies. T

The main goal of this section is to establish Theorem 3.15, where we show that
on its center manifold, every k-parameter period doubling bifurcation family with
k —1 higher-order degeneracies is, at least generically, the “same” as one of the model
families f,,. 5, where & =sign (c). The main technical tools for Theorem 3.15 are the
existence of a “Z,-symmetric bifurcation function” related to the original period
doubling family (Theorem 3.3) and the universal unfolding theorem from Z,-singularity
theory (Lemma 3.21). We are then able to compare G,, to the appropriate model family
via their respective bifurcation functions.
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The Lyapunov-Schmidt reduction. Let G(x, ) be a period doubling family with
any number of higher-order degeneracies. For simplicity, we will assume (xo, po) =
(0,0). As with our special functions f,.,, in (2.2), the implicit function theorem
guarantees that G(x, ) has a unique fixed point near x=0 for each p near zero.
Having only one phase variable (along with the m parameters) on the center manifold
implies that the only other local recurrence can be in the form of period-2 points [CMY].

The period-2 points (including the fixed point) of G are characterized by the roots
of the function ®:R" xR" xR™ >R" xR" defined by

(3.2) D(x,y, ) =D,(x,y) = (y - G(x, p), x— G(y, p)).

The reason this function turns out to be more useful than G.(x)—x is twofold: @
deals only with first iterates of G,,, and it has an obvious symmetry that will be quite
useful. Specifically, ®, R =R®,, where R is the reflection that interchanges the
variables x and y in both the domain and range of ®. That is, DR, y)=D,(y,x) =
(x=G(y, n), y—G(x, n)) =R(y - G(x, n), x—G(y, p)) = RD,(x, y).

We now perform the Lyapunov-Schmidt reduction [GS, § 1.3] on ® to get the
following theorem. Although the theorem is stated for C” functions, we will be
interested mainly in the case p = 0.

THEOREM 3.3. Let G(x, n) bea C”, 2k +1= p =0, local period doubling bifurcation
family with k—1 higher-order degeneracies as in Definition 3.1, with (x,, o) = (0, 0).
Define ®(x,y, ) by (3.2). Then there exists a C° bifurcation function b:RxR™ >R
of the form b(s, p) = sB(u, n), u'= s>, such that solutions of ®(x, y, ) =0 for (x,y, p)
near (0,0,0) are in one to one correspondence with solutions of b(s,p)=0 for (s, )
near (0, 0).

Proof. The Lyapunov-Schmidt reduction to prove Theorem 3.3 is standard [GS,
§ 1.3], but we include most of the computations since we will be interested in the
specific bifurcation function we get via the reduction, as well as some of the intermediate
functions defined in the proof.

Case 1: x€R. In standard coordinates, the linearization of ®, at (0,0) is L:=
D, ,®,(0,0) =(; ;). Thus the kernel of L, ker L={((1, —1)), and range L={((1, 1)). Note
that R*=ker L®range L so that E(x, y):=((x+y)/v2, (x+y)/v?2) is the projection
onto range L, and (I —E)(x,y)=((x-y)/v2,—(x—y)/v2) is the projection onto
ker L. The equation ®(x,y, n) =0, which we wish to solve, is equivalent to the two
equations (with the v2 factor introduced for convenience):

(3.4a) V2 E®(x, y, pn) = (0, 0),
(3.4b) V2(I - E)®(x, y,pn) = (0, 0).

These two equations are more conveniently expressed in coordinates with respect
to the splitting R”=ker L@®range L. Formally, this can be defined by the change of
coordinates from (x, y) with respect to the standard basis on R? to (s, r) with respect
to the new basis which we choose as {(1, —1), (1, 1)}. The coordinates are related by
x(1,0)+y(0,1)=s(1,-1)+r(1,1), or x=s+r and y=r—s. Since the s component
of the new coordinate version of (3.4a) is automatically satisfied by definition of E,
as is the r component of the new coordinate version of (3.4b), the two vector equations
in (3.4) are equivalent to the two scalar equations

(3.5a) Q(s, r,p)=3{2r—=G(s+r,p)— G(=s+r,pn)} =0,
(3.5b) H=2s—G(s+r,n)+G(=s+r,p)}=0.

Equation (3.5a) is the r component of (3.4a); equation (3.5b) is the s component of
(3.4b).
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Since Q(0, 0,0) =0and (8Q/dr)(0, 0, 0) =2 # 0, then the implicit function theorem
implies that there exists a unique C” function R(s,p) satisfying R(0,0)=0 and
Q(s, R(s,p), p) =0 for (s, n) near (0,0). Plugging this new function R(s, p) into the
left-hand side of (3.5b), we get our reduced bifurcation function b(s, p):

b(s,p)=3~-25— G(s+R(s,p), n) + G(=s+R(s, p), )}
= —G(S + R(S, "")’ |L)+(—S + R(S, "l))~

The latter form is obtained by substituting Q(s, R(s, u), p) =0 from (3.5a) into the
first line of (3.6).

It can be verified directly that R(—s, u) = R(s, p), and therefore that b(—s, p) =
—b(s, p), but this is really a consequence of the equivariance of the original function
® with respect to the reflection R. This is because b(s, ) is really the coordinate
representation of a map from ker ® X R* to ker @, and R acts on ker ® by R(s(1, —1)) =
R(s, —s)=(—s, s)=—s(1,-1).

That b(s, p) has the form sB(s’, p) is immediate from the odd symmetry of b(s, p).
The one-to-one correspondence between solutions of b(s, p) =0 and ®(x, y, n) =0 is

(3.7) (s,m) o (s+R(s,p), s+ R(s, ), n).

Note that if s # 0, solutions s and —s correspond to the same period-2 orbit, but these
are distinct solutions for ®: ®(x, y, n) =0 and ®(y, x, p) = 0. This completes the proof
for xeR.

Case 2: xeR", n>1, and the coordinates x=(x,, - * -, X,,) have been chosen w1th
respect to the basis {e;}/-, so that matrix of D,G(0, 0) has the block form B = @
where B is an (n—1)x(n—1) matrix. The 2nx2n matrix of the linearization of

=D, ,®(0,0) with respect to the induced basis {f;, -, f}=
{(e,,0), -, (en0),(0,e),-,(0,e,)} becomes L=("7 _3). The first and (n+1)st
rows of L are identical, but using the fact that no other eigenvalues are on the unit
circle, it can be shown that the remammg rows are independent. (This would be easier
to see if {e;} were a basis putting B into Jordan canonical form.) So we still have
the dimension of kerL=1. In fact, kerL=(f;—f,.,) and rangelL=
fy+fni1, 02, o Fn, fura, - - o, £2,). We also still have R*" =ker L@®range L. The coor-
dinates with respect to this splitting are s on ker L, and (r, Xo,t * s Xny V2, "t "5 Yn) ON
range L, where x,=s+r and y,=r—s, and x=(x,," "+, X, .) and y=(y,, "+, y,) are
in coordinates with respect to {e;}{-;. Solving V2E®(x,y, p.) 0 in the new coordinates
is equivalent to Q =0, where

(3.6)

Q(S, X, "ty Xn, V2, " * " 9ym"')
:=(%(2r_GI(S+r’ X250 "5 Xny "')_Gl(_s_'_r’ Y25 s Vns "")),

3.8
( ) -GZ(S+r9x2,"',xn,"')"",yn“Gn(s+r’x25”"xrn"'),

—Gz(_S+V,Y2,'",yn,ll),'",xn_Gn(_S""',.Vz,' ”,yn,u))zo‘

This equation can be solved uniquely by the implicit function theorem for C” functions
T, Xy, "y Xn, Y2, " 5 Yn, all in terms of s and p in a neighborhood of (s, u) = (0, 0).
We shall call these solutions R(s, p), X;(s, p), and Y;(s, p). That is,

(3.9) Q(s, W(s,p), n) =0,

where W(S, ,'.') = (R(S, "’)7 X2(s’ l"'), Y Xn(s’ ”‘)’ YZ(sa "l'), Y Yn(s’ "’))' Diﬁerenti'
ation of (3.9) with respect to s and using the block form of D,G(0, 0) yields
oW

.10 ' —=0.
(3.10) as
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As for any Lyapunov-Schmidt reduction involving a symmetry, the symmetry R is
inherited as WR(s, p) = RW(s, p), interpreted as

(R(—S’ "')’ XZ(—ss "’)a T, Xn(_s, "’), YZ(—S, "’), T, Yn(—S, l‘-))
= (R(S, "’)s YZ(S’ p')a T, Yn(s’ l-l)’ XZ(sa l‘»), Y Xn(sa ll))

Thus Y(s,p)=X;(—=s,p),j=2,--,n, and R(s,p)=R(—s,pn). The bifurcation
function, analogous to (3.6), is

b(s, l") =%{—2S - GI(S+R(Sa "’)’ XZ(S, "')’ Y X,,(S, "’)’ "l‘)
+ Gl(_s + R(S, "’), XZ(_sa "l')’ Y X"(-S, "‘)a "‘)},

where G=(G,, - - -, G,). It is clear from the first line, since R(s, )= R(—s, ), that
we still have our Z,-symmetric bifurcation function: b(—s, p) = —b(s, p). So b(s, p) is
still of the form sB(s?, p). The one-to-one correspondence between roots of b(s, p)
and ®(x,y, p), analogous to (3.7), is given by (s, p) < (X(s, w), Y(s, n), n), where

X(s,p)=(s+R(s,p), Xo(s, 1), "+ -, Xu(s, p)),
Y(S, "’) = X(_S’ ll') = (_S + R(S’ "‘)’ X2(_s’ "‘)a Y X,,(—S, "’))'

Thus the theorem is true for x€ R”, with the assumed coordinate system.

Case 3: xeR", n>1. Change this general case into the special coordinate form
of Case 2 by a linear change of variable. Then follow the procedure outlined in that
case. 0

We now prove two corollaries that give some insight into the mechanics of the
Lyapunov-Schmidt reduction of Theorem 3.3.

COROLLARY 3.13. For our model families f. ks(x)——(e,+1)x—82x —ee—=
x4 sz"+1 the bifurcation function bs(s,€)=sB;(s’,€)=—f.(s)—s. Also,
B;(u, €) = P..i s5(u), where P, 5(u) is as defined in (2.3).

Proof. Because our model families f.., s are odd, it is apparent from (3.5a) by
letting G(x, €) = f..,. s(x) for any fixed values of k and & that Q(s, 0, €) =0, so R(s, e) 0
must be the unique solution to Q(s, R(s, €), €) = 0. Thus, from (3.6), b(s, s)—st(s €)
becomes —s — f,(s). But =—s —f.(s) =g;5+ &8>+ - -+ eks2k '— 852" =5P,.; 5(s%). So
B(u, €)= P, ;5(u). 0

So the seemingly ad hoc method we used in § 2 to analyze our model families
turns out to be merely a special case of the more general Lyapunov-Schmidt reduction.

COROLLARY 3.14. Let G(x,p) be a local period doubling family with k—1 higher-
order degeneracies at (x,p) =(0,0)eR" xR™. If {(x,p): x,=" - - =Xx, =0} is the center
manifold (instead of just the center eigenspace) of G(x,p), then
(A) the functions X;(s, ) and Y;(s,p), defined in (3.12), are zero forj=2,3,---,n,
(B) the bifurcation function of [G]= the bifurcation function of [G restricted to its 1+m

dimensional center manifold].

Proof. (A). We can show there exists a solution to (3.8) with x;=y;=0, j=
2, -+, n. By uniqueness of solutions, the functions X;(s, n) and Y;(s, ) must be zero
for j=2.

(B) This follows from (A) by directly computing the two bifurcation functions
using (3.8) and (3.11). 0

Corollaries 3.13 and 3.14 suggest that using the Lyapunov-Schmidt reduction to
obtain the bifurcation function bg(s, p) should be compared to the more topological
alternative of obtaining a bifurcation function —f“(s) —s from G(x, p.) by the following
steps:

(3.11)

(3.12)
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(1) Restrict G(x, p) to its 1+ m dimensional center mainfold: f(x;, p) = f.(x,) =
G,((x,, H(x;, n)), p), where the center manifold is the graph of H:RxXR" ->R"".

(2) Put the resulting function into its normal form f(s, R)= fu(s) = h,of.° h,'(s),
where h(x,, )= h,(x,) are the coordinate changes to put f,, into its normal form fu.

(3) Use the resulting odd symmetry to replace the bifurcation function f 2(s)—s
with the simpler function —fu(s) —S.

Besides being a single step, the Lyapunov-Schmidt reduction has another major
advantage over the center manifold/normal forms technique. Although the normal
forms theorem guarantees a polynomial change of coordinates to put Su(x,) into its
normal form up to any finite order, the existence of a coordinate change to eliminate
all even-order terms in X, is not guaranteed. Thus step (2) above may not even be
possible. On the other hand, if we put the function f,(x,) into its normal form only
up to some finite order, step (3) would not be possible because the resulting function
would be odd only up to that finite order. Note also that the original function G(x, p)
being C™ does not imply that its center manifold realization is C*. The Lyapunov-
Schmidt bifurcation function bg(s, u), however, is C*.

Universality of the model families. We now use Theorem 3.3 and some standard
results from singularity theory to show that the model unfoldings we considered in
Chapter 2 are “universal unfoldings.” More specifically, we prove that, when restricted
to a center manifold, any map in a local period doubling family is topologically
equivalent to one of the model family maps. If certain.nondegeneracy conditions are
satisfied, the whole family of center manifold maps will be “equivalent” to one of the
model families. Our notion of equivalence is embodied in the statement of the theorem.

We use the following notation. Let G(x, ) be any C* period doubling family
with k — 1 higher-order degeneracies at (0, 0). Let bg(s, p) = sBg(s’, p) be a bifurcation
function obtained from G as in Theorem 3.3. Assume x, is a coordinate along the
eigenspace corresponding to the —1 eigenvalue for the fixed point x =0 for p=0. Let
gu(x)) = g(x,, n) be the realization of G(x, p) on its 1+ m dimensional center manifold.
By Definition 3.1, the center manifold map in normal form up to order 2k+1 forp =0
is y > —y+ ey T+ 0(y** ). Let £o(2) = fo..5(2) be the model family —(e, + 1)z—€,2°—
=g 22* 14 52251 where 8 = —sgn (c). Recall the definitions of the bifurcation sets
Dj and S| s in (2.4) and (2.5) for the model families f,., 5. We now analogously define
the bifurcation sets for G.

DY ={(x;,n) eRxR":x, is a fixed point for gubs

D, ={(x;,p) eRXR™:x, is a fixed point for g, with eigenvalue —1 and at least
i —1 higher-order degeneracies} foriz=1,

Sy ={(x;,m) eRxR™:x, is a period-2 point for g,},

Sg={(x;,m)eRxR":x,is a period-2 point for g, with eigenvalue 1 and at least
i —1 higher-order degeneracies} fori=1.

THEOREM 3.15. Let G(x, p) be a C*™ period doubling family with k — 1 higher-order
degeneracies. Define its center manifold representation g,(x,) and the model family f(2)
as in the above paragraph. Assume the “eigenvalue crossing condition:” V.A(p) #0,
where A(p.) is the eigenvalue of the unique fixed point of g,,. Then

(a) There exists a neighborhood N of (0,0) in RxR™ and a C™ function ¥: N >
{RxR*}:(x;,n)>(z,€) of the form ¥(x,,p)= (Z,(x1), W(p)) with the following
properties:

(1) ¥:(0,0)~(0,0).

(2) For each fixed parameter value ., g,(x,) restricted to the neighborhood N and
fu(2) restricted to W(N) are topologically conjugate to each other.
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(3) W maps fixed points, period-2 points, and bifurcation manifolds of g to fixed
points, period-2 points, and corresponding bifurcation manifolds of f, respectively. (That
is, W:D,> Dj fori=0,---,k and S;~> Si s fori=0,- -+, k—1.)

(b) Let k and 6 be fixed. Any family that can replace f,., s in Theorem 3.15(a) must
have at least k parameters. ( This justifies calling the period doubling bifurcation with k — 1
higher-order degeneracies a codimension-k bifurcation.)

(¢) If peR* and

(5)

is independent, then { and W are C* diffeomorphisms.

Before beginning the proof of this theorem, we make the following comments:

(1) Recall that in the proof of Theorem 3.3, bg(s, u) and therefore Bg(s, p) were
defined using the implicit function theorem. Although this means the bifurcation
functions and their derivatives are not usually computable, their values at (s, n) = (0, 0)
are computable. (See, for example, Lemma 3.16.) Consequently, the nondegeneracy
conditions in part (c) of the theorem are computable.

(2) The nondegeneracy conditions in part (c) will generically be true. Thus, for
a generic k-parameter family of maps, ¥ will be a diffeomorphism. Since the C™
diffeomorphism W preserves the bifurcation sets, and the bifurcation sets for the models
are analytic, this is what guarantees that the bifurcation manifolds will all be C* and
that the pictures obtained from applications (see § 4) all “look like” the bifurcation
pictures obtained from the model families in § 2. In particular, the orders of tangency
of corresponding bifurcation manifolds will be the same as in the model families. In
the codimension-2 case, with only one higher-order degeneracy, the projection to the
parameter space of the bifurcation manifolds will always (generically) show a curve
of saddlenodes for the second iterate of the map being tangent to a period doubling
curve where it terminates. (Look ahead to Figs. 7-9 in comparison to the model family
bifurcation diagrams in Figs. 3 and 4.)

(3) Note that the center eigenspace coordinate x; can be replaced by any phase
space coordinate not perpendicular to x; by a one-dimensional linear change of
coordinates independent of the parameter. Consequently, any generic phase variable
coordinate can be used in place of a center eigenspace coordinate x; in drawing the
bifurcation sets. This is exactly what was done to obtain Figs. 7-9.

(4) This is a technical comment comparing our notion of “‘equivalence” implied
by the existence in the theorem of the function W to the oft-used notion of “topological
conjugacy.” Recall that g(x,,n) and f(z,&) are (locally) topologically conjugate
families if there exists a local homeomorphism ®(x,, n) = (h,(x,), d(p)) such that
8= hy'°fym©hy. If the individual topological conjugacies h,(x;) do not necessarily
vary continuously with respect to the parameter p, then the families are said to be
“mildly topologically conjugate” [NPT]. Because Theorem 3.15 guarantees that g,(x,)
and f,,.(z) will be topologically conjugate to each other for each fixed value of p,
our equivalence implies the two families g(x,,p) and f(z,€) are at least mildly
topologically conjugate (by letting ¢ =) as long as the parameter space map y(p)
is a homeomorphism.

We point out that although the conjugacies h,(x;) and the functions Z,(x,) of
the theorem are not the same, they are related. Specifically, they will agree on all the
bifurcation sets D} and S;. This includes the fixed and period-2 sets. Thus, when
restricted to the bifurcation sets, h,(x;) will not only vary continuously with respect
to the parameter w, but will also be C™.

, izO,---,k—l}

(0,0)
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Consequently, when the parameter space map P(p) is a diffeomorphism, the
existence of the function ¥ of Theorem 3.15 is a stronger property than mild topological
conjugacy but not comparable to topological conjugacy. Topological conjugacies have
the stronger property that the individual conjugacies h,(x,) should vary continuously
with the parameter; our equivalence has the stronger property that the function ¥ is
a (C®) diffeomorphism, and consequently that the individual conjugacies h,(x;)
restricted to the bifurcation surfaces are also diffecomorphisms.

The rest of this section is devoted to the proof of Theorem 3.15. We begin with
the following lemmas.

LEMMA 3.16. If xeR and c¢#0, then G(x,0)=—-x+ x4 o(x2*Y) implies
bs(s,0) = —cs®* '+ o (x*).

Proof. We differentiate the definition of b (s, ) in (3.6), using the derivatives of
R(s, p) at (0, 0), which we obtain from (3.5a) by repeated implicit differentiation. Since
R is even in s, we immediately know that (§R/3s’)(0,0) =0 for odd j. We also know
from the proof of Theorem 3.3 that R(0,0) =0. Itis relatively straightforward to show
that the implicit differentiation yields

R 19°G
3s® 0.0)=2 %% (0,0),

3R 19°G 39°G { EXE, l[azG ]2}
—(0,0)=——5(0,0)+-— (0,0 2—(0,0)+=-|— (0,0 .
8S4( ’ ) 26x4( 9 ) 4 8x2( ’ ) ax3( ’ ) 2 sz( bl )

In general,
d“R 194G
—(0,0)==——F(0,0)+- -
ask( 9 ) Zaxk( 9 ) 9

where the omitted terms all have factors of (#G/3x’)(0,0) with 2=j=k—1.
Using these derivatives, and the fact that bs(s,p) is odd in r (so that all even
derivatives of bg with respect to r vanish), we obtain

b
824 (0,0) =0,
or
°bg 3G 3{326 }2
3.17 0,0)=——=(0,0)—={— (0
( ) 8r3 ( 9 ) ax} ( ’ ) 2 axz ( ,0) 9
8°bg °G ‘G G 15 6°G (azG )2
2796 0.0)= ——=(0,0)—5— (0,0) — (0,0) —— — (0,0){ —= (0
(3 18) ars ( ’0) axs (0, ) axa( 9 )ax2( 70) 4 ax:’, (09 ) sz( 90)

14°G 39°G { 3G 1 (azG )2}]
—5|=—(0,0)+=—(0,0)12—= (0 +—-{—5 (0,0 .
[2 ax4 ( 9 ) 4 axz ( 9 ) ax} ( 90) 2 axz ( 2 )

The expressions for the seventh-order derivative are not pretty. In general, however,
we have the relation

G
'67(0,0)=—87(0,0)+'

where the omitted terms all have factors of (6°G/ax’)(0,0) with 2=j=k—1.

The lemma follows immediately. 0

Note. The sign of (3.17) determines the criticality of the nondegenerate period
doubling bifurcation. If it is negative, the bifurcation is supercritical; if it is positive,
the bifurcation is subcritical; if it equals zero, there is at least one higher-order
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degeneracy. If both (3.17) and (3.18) are zero, there are at least two higher-order
degeneracies.

LEMMA 3.19. Let the C™ period doubling family G(x, p), its center manifold realiz-
ation g,(x,), and the bifurcation function bg(s,p) be as in the paragraph preceding
Theorem 3.15. Then there exists a neighborhood N of (0,0) in RXR™ such that for
(s,p) €N, gf,(x,) —x, has the same sign as bg(s, p), where (s, p) and (x,, ) are related
by the C* diffeomorphism (x,, ) = (s+R(s,p), p) (as in (3.12)).

Furthermore, for each fixed ., the multiplicity of the corresponding zeros of gf,(xl) -Xx;
and bg(s, p) is the same.

Proof. Theorem 3.3 guarantees that roots of Gﬁ(x) —X are in one-to-one correspon-
dence with roots of bg(s, p). Since roots of Gi(x) —x must be on the center manifold
of G(x, p), the roots of gf,(xl)—x1 must also be in one-to-one correspondence with
roots of Gf,(x) —x, and therefore with roots of bg(s, p). The correspondence is indicated
by (3.12) in the proof of Theorem 3.3:

(3.20) sox=X(s,p)=(s+R(s,p), Xa(s, ), "+, Xu(s,p)) ©x,=5+ R(s, ).

For each fixed p, the multiplicities of corresponding roots of gi(x;)—x; and
be(s, p) must be the same, because if they are not, then a perturbation of G could be
made so that their roots would not correspond. (It can be shown that an arbitrarily
C* small perturbation of G(x, p) can be chosen to perturb ga(x,) — x, or bg(s, p) from
a zero of multiplicity p to a function with p distinct real roots.)

We have left only to show that the signs of the two functions are equal. Since for
fixed p we already have the zeros and their multiplicities corresponding for gﬁ(xl) - X
and bg(s, p), and since these two functions are perturbations of gs(x,) — x, and bg(s, 0),
respectively, the signs will be the same for gi(xl) —x, and bg(s, p) if and only if the
signs of the leading coefficients of gs(x,) —x, and bg(s, 0) are the same.

According to Definition 3.1, if x€R then in normal form up to order 2k+1,
G(x,0)=—x+cx* ' +o(x**"), ¢#0. This makes Gi(x)—-x=go(x)—x=
—2ex? 1 4 o(x***"). Lemma 3.16 implies bg(s, 0) = —cs? 4 o(s2%MY). If w=0, then
s =0 corresponds to x = x, =0+ R(0,0) =0, so the signs of the leading coefficients of
g2(x)—x and bg(s, 0) correspond. If x € R but G(x,0) = g(x,0) is not in normal form
up to order 2k +1, a near identity polynomial change of coordinates x = h(y) can put
g,(x) into this normal form. That is, §o(y):=h""(go(h(y))) is in normal form up to
order 2k + 1. By perturbation arguments as in the second paragraph of this proof, the
multiplicity of the zeros of ga(y) ¥, g3(x) =X, by(s,0), and by(3,0) must all be the
same. The same logic works along a whole path of coordinate changes from h,, t€[0, 1],
from the ho:=identity to h,:= h. Therefore, by continuity, the sign of the leading
coefficient of §2(y)—y and gi(x)—x must be the same, as must be the sign of the
leading coefficient of b,(s,0) and bs(5, 0). Since the sign of the leading coefficients of
g2(y)—y and bg(§,0) are equal by the previous paragraph, this forces the sign of the
leading coefficients of go(x)—x and b,(s, 0) to be the same.

If x e R” with n> 1, then the realization of G on its center manifold can also be
obtained by a near identity change of coordinates. So by a continuity argument similar
to that in the paragraph above, the leading coefficient of ga(x,) — x, will have the same
sign as the leading coefficient of bg(s,0). a

One consequence of Lemma 3.19 is that the period doubling map with k—1
higher-order degeneracies can be alternatively characterized by

aiBG(ua "’)

; =0 fori=0,---,k—1,
ou (0,0)
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but

akBG(ua “’)

#0.
qu” 0,0

Another consequence is that the sign of bg or Bg can be used to determine stability
of the fixed and period-2 orbits of G(x, n) and g(x,, p). It is usually more practical,
however, to do this by eigenvalue computations, especially because, as mentioned after
the statement of Lemma 3.19, the bifurcation functions are defined via the implicit
function theorem.

Technical note. Lemma 3.19 and Theorem 3.15 are both stated under the assump-
tion that the coordinate x, is already a coordinate on the center eigenspace for p=0.
When G(x, ) does not originally come in this form, there is some leeway in choosing
x, . Its choice, however, involves a change of coordinates from the given form of
G(x, p). If the change of coordinates is orientation preserving, a path to the identity
argument as in the last two paragraphs of the proof of Lemma 3.19 can be used to
show that the leading coefficient of ga(x;) — x, will have the same sign as the leading
coefficient of bg(s,0). The case of an orientation reversing change of coordinates is
converted to the orientation preserving case by noting that the change of variables
x, > —x, leaves b, (s, n) the same and leaves the leading coefficient of gg(x,)—x; the
same.

This note shows that even though the bifurcation function constructed in the proof
of Theorem 3.3 is not necessarily unique (there is a choice of coordinates made in
reducing Case 3 to Case 2), the zeros, including multiplicities, and signs at correspond-
ing nonzero points of any two bifurcation functions arising from the same original
function must all be equal.

We now recall the universal unfolding theorem for Z,-symmetric bifurcation
functions.

LEMMA 3.21. Define the k-parameter family of Z,-symmetric bifurcation functions
U(S,e)=e,S+e, S+ - -+ 8> '+ 85", 8§ =+1. Let V(s,n) be any family of Z-
symmetric bifurcation functions satisfying V (s, 0) = es®* 14 ... with sgn (¢) =8, and

v, (____G'Va(;: ")) e
Then in a neighborhood of (0,0), there exist C* functions M, X, and ¢ such that
(3.22) V(s,p)=M(s,p) UE(s, n), d(p))
with

M(s,p)>0, (62/3s)(s,0)>0,2(s,0)=0,
&(0)=0, M(—s,p) = M(s,p), Z(—s, p) = —2(s, p).

Furthermore, there is no family having the properties of U(S, ) with fewer than k
parameters.

Proof. Combine Proposition 2.14 [GS, p.256] and Proposition 3.4 [GS,
p.259]. O

Proof of Theorem 3.15. (a) Recall from the paragraph preceding the statement of
Theorem 3.15 that g(x,, p) is the center manifold realization of G(x, p) and f(z, &) is
the appropriate model family. We will define the function W so that the sign of
g2(x,) — x, will be the same as the sign of f2(z) —z for (z,€) = ¥(x,, n). As previously
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noted in § 2.1, this will guarantee that g, and f, will be topologically conjugate to each
other for fixed values of the parameters (and appropriately restricted neighborhoods).

Let bg(s, n) and b,(S, €) be the bifurcation functions determined from G(x, p)
and f(z, €), respectively, as in the proof of Theorem 3.3. Let R¢(s, u) and R/(S, ¢) be
the respective functions defined following (3.9), with the superscripts added to distin-
guish the R’s arising from the different functions G and f.

By Lemma 3.19, gi(xl) — x, has the same sign as bg(s, p), where (s, p) and (x;, )
are related by the diffecomorphism (x,, )= (s+ R€(s,pn), n). Also by Lemma 3.19,
fi(z)—z has the same sign as b;(S, €), where (S,€) and (z,€) are related by the
diffeomorphism (z, &) = (S+R/(S,¢e), €)= (S, €). This last equality follows from the
proof of Corollary 3.13, where we showed that R/(S, &) =0.

Also, by Corollary 3.13, b,(S, €) = £,S+£,8°+- - - + £,5°* 7'+ 65**", which equals
U(S, €) as defined in Lemma 3.21. Lemma 3.21 can therefore be used to show that
there exist functions = and ¢ such that bg(s, u) and b.(S, €) have the same sign for
(S, €)= (Z(s, ), d(p)). Note that this C™ map will be a diffeomorphism if (p) is a
diffeomorphism.

Combining the results of the two paragraphs above, we see that the signs of
gi(x1) —x;, bg(s,p), by(S,€) and f2(z)—z are all the same for x,=s+RS(s,p),
(S, €)= (Z(s, ), d(p)), and S = z. These relationships define the map ¥(x,, n) by the
composition

(323) (xlap’)_)(sa "’)_)(S’e)—)(za 8)'

Each map in the composition is C* in a neighborhood of (0, 0) and each fixes (0, 0).
Therefore the same is true of W. This establishes (a)(1) and (a)(2) of Theorem 3.15.
Part (a)(3) is true because each map in (3.23) preserves not only the zeros but also
their multiplicities. (This is true for the first and third maps by Lemma 3.19, and for
the middle map by (3.22).)

(b) If there existed a family that could replace f, in Theorem 3.15(a), then its
bifurcation function would be a ‘““universal unfolding™ in the space of Z, bifurcation
functions with fewer than k parameters. This would contradict the last sentence of the
universal unfolding theorem for Z,-symmetric bifurcation functions, Lemma 3.21.

(¢) The condition that

()

be independent is equivalent to the Jacobian determinant |9¢;/du;|,—o # 0 and therefore
is equivalent to the map € = Y(pu) being a local diffeomorphism. In this case ¥ is also
a local diffeomorphism. |

(0,0)

4. Applications. Theorem 3.15 states that any period doubling diffeomorphism
with k—1 higher-order degeneracies is equivalent, both in terms of its topological
behavior under iteration (restricted to its center manifold) and in terms of its bifurcation
sets, to one of our model families of § 2. In order to support these theoretical results,
we used a version of the continuation routine AUTO [DK] that we adapted for use
with maps to investigate two examples where we knew a period doubling with a
higher-order degeneracy to exist. Both are two-parameter families of maps generated
by flows of periodically forced planar oscillators. The stroboscopic map and its
derivatives were calculated using ODESSA [LK]. Because our applications involved
only two parameters, we would not expect to see a period doubling with more than
the single higher-order degeneracy. The bifurcation diagrams we produced from these
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applications should be compared to Figs. 3 and 4 for our model period doubling map
with a single higher-order degeneracy.

4.1. Resonance horns in forced oscillators. Consider a system of two autonomous
coupled nonlinear ODE’s

dx/dt=1(x,p), f:R°XR->R’

where p € R is a parameter. Assume that for p = p, the system above has an asymptoti-
cally attracting closed orbit with frequency w,. Consider the two-parameter family of
forced oscillators

dx/dt =1(x, po+ ag(wt)),

where a and w are the parameters (« is the amplitude of the forcing and g has period
T =1/w). A more convenient second parameter is the ratio w/w, of the forcing to the
natural frequency. Taking the time T return map of this flow (sometimes referred to
as the stroboscopic map) gives us a two-parameter family of invertible, orientation
preserving maps of the plane. The asymptotic attractivity of the limit cycle of the
unforced oscillator guarantees the existence of a normally hyperbolic attracting
invariant circle for small forcing amplitude a. According to standard circle map theory
[Ar], [Ha], we expect resonance horns (also called entrainment regions of Arnol’d
tongues) entering the first quadrant of the w/wy-a parameter plane for every rational
value of w/w,. The boundaries of the ‘“q/p resonance horn” emanating from o/w,=
q/p are saddlenode bifurcation points for the gth iterate of the map. Inside this q/p
resonance horn, the corresponding map has at least one (typically two: a stable and
unstable pair) period-g orbit. In particular, we are interested in the situation where
q =2, when the boundaries of the 2/p horns are saddlenode bifurcations for the second
iterate of the map. In continuing these saddlenode curves towards higher values of «,
we have repeatedly found them to terminate at a degenerate period doubling where
they collide with a period doubling curve. (This was a much easier and less expensive
ways of locating the degenerate period doubling points than the method suggested by
Definition 3.1 or comment 1 following the statement of Theorem 3.15. To compute the
normal form of a map on its center manifold and/or (8'Bg(u, u)/0u")|0.0), we would
need higher derivatives of the stroboscopic map generated by numerically integrating
the forced oscillator flows.)

Figures 7 and 8 show various features of the period doubling with a single
higher-order degeneracy in the context of a 2/3 resonance horn for our first system of
periodically forced ODEs:

dxl ax,
——=—(potacos(wr))x;+—x,,

dr (po (w7))x, b+x, 1

dx, (pot (0r))x,+ Zr— X1 — X, ax,
—=- a cos (wT))x X, — X;.
dr Po 2 1+z—x,—x; 2 btx, !

These ODEs model a predator-prey system (protozoa preying on bacteria in a chemos-
tat). Here x, is the dimensionless concentration of protozoa, x, is the dimensionless
concentration of bacteria, and z, is the dimensionless feed concentration of a substrate
on which the bacteria grow with Monod-type kinetics [PK]. The parameter we vary
periodically is the flow rate of the chemostat. The autonomous system for a = 0.4,
b=2.8125, z;=12.4, and p,= 0.2 has a single attracting limit cycle of period T =18.999
units of dimensionless time 7.
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F1G. 8. Predator-prey: singly degenerate period doubling.

Figure 7 shows the boundaries of the 2/3 resonance horn for this model (a, =
a/0.00265). As we follow both sides of the horn boundary towards higher values of
a we encounter degenerate period doubling points Dy, and Dy,y,,. Figure 8 is a
three-dimensional representation of the full four-dimensional phase X parameter space
of the solution surface and the codimension-1 bifurcation curves in the neighborhood
of D,.. Compare this diagram to Fig. 3.

Another example where we also observed this phenomenon is the Continuous
Stirred Tank Reactor (CSTR) in which a simple exothermic reaction A - B takes place.
This classical chemical reaction engineering system can be modeled by the following

set of dimensionless ODEs:
d
& —x,+ Da(1-x,) exp (x5),

dr

dx,

d_= —x,+ B Da (1—x,) exp (x,)+B(T, — x,),
-

where x, is a dimensionless concentration of reactant A, x, is a dimensionless tem-
perature, and Da (the Damkoehler number), B (the dimensionless heat of reaction),
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T, = T.o+ a cos (wr) (the coolant temperature), and B (the dimensionless heat transfer
coefficient between the reactor and the coolant fluid) are parameters. For B =22,
Da=0.085, B =3, and T,,=0 the autonomous system (a =0) has an attracting limit
cycle of period T,=1.094996 surrounding an unstable steady state. In a previous
publication [KAS] degenerate period doublings were observed on both 2/p horns
studied (the 2/1 and the 2/3 horns). Figure 9 is a three-dimensional representation of
the full four-dimensional phase X parameter space of the solution surface and the
codimension-1 bifurcation curves in the neighborhood of the equivalent of the Dy,
point of Fig. 7 for the 2/1 resonance horn of the periodically forced CSTR (a, =
0.063036). Compare Fig. 9 also to Fig. 3.

105

Forcing
Amplitude

F1G. 9. Forced CSTR: singly degenerate period doubling.

Recent studies by McKarnin, Schmidt, and Aris [MSA] (a periodically forced
surface reaction model), Schreiber et al. [SDCM] (a periodically forced Brusselator),
as well as by Vance and Ross [ VR] (a periodically forced CSTR) have also repeatedly
revealed degenerate period doublings on the boundaries of 2/p resonance horns. This
bifurcation appears therefore to be ubiquitous in models of periodically forced oscil-
lators arising in various disciplines.

4.2. High-amplitude closing of the resonance horns. In our example (Fig. 7), as
well as in the numerous studies of periodically forced oscillators we referred to above,
the phenomenon of high-amplitude “closing” of the 2/p, and generally of the q/p
resonance horns was observed. It has been shown that this “closing” phenomenon
implies the existence of certain codimension-2 bifurcations for the maps [AMKA],
[P1], [P2], [P3]. In most horns, the boundary consists of codimension-1 saddlenode
bifurcation curves for the qth iterate of the map along with certain codimension-2
points on these curves. For a 2/ p-horn, however, this boundary typically changes from
a saddlenode curve for the 2nd iterate of the map to a period doubling curve in order
for the horn to close. The point at which they change is the codimension-2 degenerate
period doubling point.

See the references above for details and [Ga] for a related analytical study.

5. Discussion.

5.1. The Hopf bifurcation with higher-order degeneracies. As we mentioned in the
introduction, certain higher-order degeneracies in the Hopf bifurcation for flows
generate bifurcation diagrams almost identical to those for the period doubling bifurca-
tion with higher-order degeneracies. This is not surprising if we look at the model
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flows of Table 1:
F=gr+er+- - +ey_ 1+ 87K
0 =w+r

Circular limit cycles exist whenever r satisfies r(e,+ e,r°++ + + + g5, r>* 2+ 8r°%) =0.
That is, the roots of this function determine the topological phase portraits of the
corresponding flows. But this function is precisely rP.., s(r*), the bifurcation function
we defined in (2.3) and used for our model period doublings in § 2. In both cases, the
root at r =0 corresponds to a ‘““‘center’’ fixed point; other roots correspond to limit
cycles for the Hopf flow and period-2 orbits for the period doubling map. Roots of
higher multiplicity determine higher codimension bifurcation manifolds in both cases.

To prove that the general Hopf bifurcations are all like the above models,
Golubitsky and Schaeffer ([GS] and references therein) define a function, analogous
to @ in § 3, whose roots determine the limit cycles for a given flow. Among several
factors complicating the Hopf analysis are the facts that ® is defined on an infinite-
dimensional function space and that its kernel is two-dimensional. After performing
a Lyapunov-Schmidt reduction on this function, however, they obtain the same
“reduced” bifurcation function as we obtained in Theorem 3.3. That is, both problems
can be reduced to finding roots of the same bifurcation function.

We illustrate a more geometric connection between the Hopf bifurcation for flows
and the period doubling bifurcation for some fixed parameter value in Fig. 10. The
flow in R” induces a map in R' by taking a return map of the flow along a line (not
a ray) through the origin. (Let the origin be a fixed point of the map.) Limit cycles of
the flow correspond to period-2 orbits of the induced map.

5.2. Other ““finite sequence spaces.” We characterized period-2 points of G(x) in
this paper as roots of the function ®(x,y)=(y—G(x),x—G(y)) and then used the
Lyapunov-Schmidt procedure to reduce ® =0 to a simpler system. Brown and Roberts
[BR] and Vanderbauwhede [Va] have recently used Lyapunov-Schmidt reduction for
functions on similar “finite sequence spaces’ whose roots characterize periodic points
of periods other than 2. In general, a period-k orbit {x,- - -, x*} of G:R">R" is
characterized as a root of the function ®@:(R")* - (R")* defined by ®(x', - - - ,x*)=
(x*=G(x"), x>~ G(x?), - - -, x' — G(x*)). The Lyapunov-Schmidt reduction starts from
this function.
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F1G. 10. Period doubling and Hopf bifurcations.
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