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The study of resonances in systems such as periodically forced

oscillators has traditionally focused on understanding the re-

gions in the parameter plane where these resonances occur.

Resonance regions can also be viewed as projections to the

parameter plane of resonance surfaces in the four-dimensional

Cartesian product of the state space with the parameter space.

This paper reports on a computer study of resonance surfaces

for a particular family and illustrates some advantages of view-

ing resonance regions in this light.

INTRODUCTIONThe study of resonance regions comprises a sub-stantial part of the recent literature on bifurcationtheory. A resonance region is usually studied inthe context of a two-parameter family of dynami-cal systems and is de�ned to be that set of param-eter values for which the corresponding dynamicalsystem has a certain type of periodic orbit.Traditionally, the study of resonance has focusedon understanding the regions in parameter spacewhere certain resonances occur. These regions areusually bounded by curves that represent criticalphenomena such as saddle-node bifurcations, andthe computational goal has been to �nd ways totrace out these curves in parameter space.On the other hand, proofs of general theoremshave often used either explicitly or implicitly thefact that the resonance regions in the parameterspace are projections of surfaces in the Cartesianproduct of the state space and the parameter space.In fact, typical continuation methods used to com-pute parameter space curves such as saddle-nodecurves actually �nd the curves in this larger space,then project them to the parameter plane. Thecurves are typically smooth along a smooth two-dimensional (resonance) surface in the bigger space,
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but when projected to the parameter plane are onlypiecewise smooth.This paper reports on a computer study of theseresonance surfaces for a particular family of mapsof the plane and attempts to illustrate the ad-vantages of viewing resonance regions as projec-tions from the bigger space. Although this pointof view has already inspired many mathematicians,it has been di�cult to actually visualize the sur-faces. Modern technology has played a signi�cantrole in our work by allowing us to visualize ournumerical experiments and the surfaces to whichthe experiments led us. While we think the illus-trations in this paper are more illuminating thantraditional parameter space bifurcation diagrams,we note that it is vastly more enlightening to watchthe surfaces as they are interactively rotated in thefour-dimensional space and projected to the screenof a computer graphics workstation.Surface visualization has led us to a deeper un-derstanding of certain bifurcation phenomena andtheir interrelations. For example, the classi�cationof the classical local bifurcations presented in Sec-tion 3 was inspired by the computer visualization.The surface emphasis may also a�ect future com-putational goals for numerical bifurcation studies.The resonance surfaces in this paper were mucheasier to compute than were the bifurcation curvesalong the surfaces. Being able to project the sur-faces to the parameter space makes it less impera-tive to compute the bifurcation curves, which oftenjust project to the edges of the resonance regions.We hope our work will provide deeper understand-ing of bifurcation theory and inspiration for futurework.
1. PERIODICALLY FORCED OSCILLATORS

1.1. The Differential Equation ModelDi�erential equations that can be classi�ed as peri-odically forced planar oscillators abound in scienceand engineering. A standard model is_x = V (x) + �W (x; !t); (1.1)

where the dependent variable x is a point in theEuclidean plane R 2 and where the dot representsthe derivative with respect to the independent vari-able t. The real parameters � and ! are the forcingamplitude and the forcing frequency. The functionW is periodic in its second variable with periodone. Both V and W are assumed to be C1.The solutions of (1.1) of interest in this paper arethe resonant or entrained solutions, namely thosethat are periodic with period an integer multipleof the forcing period. The forcing period for (1.1)is !�1, so we say that a solution of (1.1) is in res-onance if it has period q=!, where q is a positiveinteger.The basic problem addressed in this paper isthat of describing the resonance regions, that is,the set of parameter values for which resonanceoccurs. The literature containing pictures of reso-nance regions is extensive. Representative picturesappear, for example, in the following very incom-plete list: [Kai and Tomita 1979; Kevrekidis et al.1986; Schrieber et al. 1988; Vance and Ross 1989;Frouzakis et al. 1991]. Figure 1 shows computer-generated pictures of some of these resonance re-gions for a system described below as a caricatureof a forced oscillator.

� = !�1

�
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FIGURE 1. Resonance regions in parameter spacefor the family H� of Section 2.3. The leftmostregion has q = 1. For the remaining regions, q isthe denominator of the rational number at whichthe region is rooted. The boundary of the regionq = 2 is composed of two qualitatively di�erentpieces; see table at bottom of page 232.
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When � = 0, (1.1) reduces to the planar vector�eld _x = V (x): (1.2)We assume this equation to have an equilibriumpoint c0 inside a periodic orbit C0 that has fre-quency !0 > 0, and hence period !�10 . We alsoassume the equilibrium point to be repelling, andthe periodic orbit to have characteristic multiplierstrictly less than one: that is, C0 is a normally hy-perbolic attracting periodic orbit. We call C0 theunforced oscillator of the system, and !0 the nat-ural frequency. For simplicity we assume that theunforced ow travels counterclockwise around C0and that C0 is globally attracting, that is, everysolution except the unstable equilibrium point c0asymptotically approaches C0 as t!1, as shownin Figure 2.

x1

x2
c0

C0

FIGURE 2. Qualitative behavior assumed of theunforced oscillator.
1.2. The Stroboscopic FamilyIt is convenient to introduce the ratio of the naturalfrequency and the forcing frequency,� := !0=!;and to use it as the �rst parameter instead of !.This allows consideration of cases where the natu-ral frequency !0 is zero or negative and eliminatesonly the case when ! is zero, which corresponds totime-independent forcing; from now on we excludethis case, assuming ! to be positive.

It is also convenient to assume that � is non-negative and to combine the two parameters intoa single symbol� := (�; �) 2 P := R � [0;1):The stroboscopic family is obtained from (1.1)by following solutions for one period of the forcingterm. More precisely, let '(�;�)(�; t) be the solutionof (1.1) with initial value x = � at t = 0. Thestroboscopic maps of the plane are de�ned byf(�;�)(�) := '(�;�)(�; !�1):For each � 2 P , the map f� is a di�eomorphism ofthe plane and is as smooth as the original equation(1.1), which, in this paper, is assumed to be C1.
Remark. The stroboscopic maps carry all the essen-tial dynamical information about (1.1). In partic-ular, � is a �xed point of f� if and only if '�(�; t)is a periodic solution of (1.1) with period 1=!, and� is a periodic point of f� with period q if and onlyif '�(�; t) is a periodic solution of (1.1) with pe-riod q=!. The stability properties of invariant setsof solutions of (1.1) are reected by the stabilityproperties of the corresponding invariant sets forthe map f�.When � = 0, each stroboscopic map reduces to thetime 1=! map of the autonomous equation (1.2).The equilibrium point c0 becomes a repelling �xedpoint for the map, while the periodic orbit C0 be-comes a normally hyperbolic attracting invariantcircle on which the map is conjugate to a rigid ro-tation. This invariant circle is globally attractingin the sense that it is asymptotically approachedby the iterates of every point except c0.The rotation number of the unforced oscillatorplays a key role in the analysis. Recall that the ro-tation number of an orientation-preserving home-omorphism of the circle is de�ned (modulo 1) asthe asymptotic average angular increase, in unitsof 2� radians; in particular, for a rigid rotation of acircle through 2�� radians, the rotation number is�. For the unforced oscillator, the rotation number
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of the map f(�;0) restricted to the invariant circleC0 is �.In this paper we use the term \generic" loosely;roughly speaking, a property is \generic" if it oc-curs for a topologically large set of maps or vector�elds for some appropriate topology on the spaceof maps or vector �elds. For � > 0, the familyf� is assumed to be generic in the space of C1two-parameter families of di�eomorphisms of theplane. It is important to note that the family f� isfar from generic if � = 0 is included in the param-eter space. In particular, when restricted to theinvariant circle C0, the map f(�;0) is conjugate toa rigid rotation through an angle of 2�� radians.For example, if � equals the rational number p=q,every point on the circle C0 is periodic with periodq. Thus the family of stroboscopic maps of a \ge-neric" family of forced oscillators will necessarilycontain \nongeneric" maps corresponding to zeroforcing amplitude.
1.3. A CaricatureThis paper is a computer study of a particular fam-ily of maps. Instead of picking a di�erential equa-tion of the form (1.1) and numerically integratingthe equation to arrive at the stroboscopic maps, wechose instead to pick an easily computable familyof di�eomorphisms having the features of the fam-ily of stroboscopic maps generated by a family offorced oscillators. This choice avoided the numeri-cal problems introduced by an integration methodand allowed us to achieve computations of great ac-curacy and detail without relying on massive com-puter resources.The family of maps H(�;�) is de�ned as the com-position H(�;�) := g� � h�;where g� and h� are de�ned as follows.For � 2 R , the map h� is taken to be the time-one map of the following planar vector �eld, writ-ten here in polar coordinates:_r = r(1� r2)1 + r2 ; _� = 2�� + 1� r21 + r2 : (1.3)

It is easy to check that this vector �eld satis�esthe hypotheses stated above for (1.2). Indeed, theorigin is a repelling equilibrium point surroundedby a hyperbolic attracting periodic orbit on theunit circle. The ow restricted to the unit circleis rigid rotation through the angle 2��t. Thus, forthe time-one map h�, the unit circle is an attract-ing invariant circle on which the map has rotationnumber �.For � 2 [0; 1), the map g� is de�ned byg�(z) = (1� �)(z � 1) + 1;where z is a complex number used as a coordinateon R 2 . Thus g0 is the identity map, while, for0 < � < 1, the map g� is a linear contractioncentered at z = 1.For � = 0, the map H(�;�) is just the time-onemap of the vector �eld (1.3). Thus the unit circleis an invariant circle on which the map is a rigidrotation with rotation number �. For small butpositive �, the circle distorts but remains invari-ant. For � close to 1, the circle, and indeed all pe-riodic orbits, have disappeared and there remainsonly an attracting �xed point near z = 1. Thislast property is typical of many forced oscillatorsystems: for large forcing amplitude, the systemassumes a globally attracting periodic orbit withthe same frequency as the forcing term.
2. RESONANCEIt is clear from the remark in Section 1.2 that apoint in the state space of the system (1.1) is inresonance if and only if it is a periodic point ofthe stroboscopic map f�. It will be important todistinguish periodic points according to their leastperiod, that is, the minimum number of iterationsof the map needed for the point to return.The order of a resonance is the least period ofthe periodic point. The q-th order resonance re-gion, denoted R(q), is the set of all parameter val-ues � for which f� has a periodic point of leastperiod q. In general, R(q) will have many di�erent
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components, at least as many as there are distinctrational rotation numbers with denominator q.
2.1. Resonance SurfacesThe main purpose of this paper is to present thecase that a good way to understand the resonanceregions is to think in terms of resonance surfaces,two-dimensional submanifolds of the four-dimen-sional Cartesian product of the state space R 2 withthe parameter space P . More precisely, de�ne theperiod-q variety �(q) as�(q) := f(x; �) 2 R 2 � P : f q�(x) = xg;and the least-period-q surface �(q) by

�(q) := �(q) n q�1[k=1�(k):Thus �(q) is the set of all points (x; �) such thatx is a periodic point of f� with period q. Someof the points in �(q) might be �xed points or pe-riodic points of periods that divide q. However,these points are removed from �(q) when we passto �(q), as this latter set consists only of periodicpoints of least period q. The resonance region R(q)is the projection of �(q) onto the parameter space.The implicit function theorem can be used toshow that, for each �xed q � 1, and for an opendense subset of the space of C1 two-parameterfamilies of forced oscillators, �(q) is a C1 two-dimensional orientable submanifold of R 2�P . Sim-ilar arguments have been given previously [Peck-ham 1990]. This result justi�es the statement that�(q) is \generically" a smooth surface, and, for theremainder of this paper, it will be assumed that f�satis�es this property. We do not know whetherthe caricature family H� has this generic property,but, so far, all the resonance surfaces we have ex-plored with the computer appear to be smooth.Recall that for � = 0 the invariant circle C0 isconjugate to a rigid rotation with rotation number�. If � = p=q is rational and reduced, then C0

consists entirely of periodic points of least periodq, which implies thatC0 � f(p=q; 0)g � �(q):Since the forcing amplitude is taken to be nonneg-ative, C0 � f(p=q; 0)g forms part of the boundaryof �(q).Note that, for any given period q, this gives sev-eral boundary components, one for each rotationnumber p=q. Indeed, �(q) decomposes into con-nected components characterized by a generaliza-tion of the notion of rotation number [Peckham1988; 1990]. For the purposes of this paper, it willsu�ce to consider only components that can be la-beled by their boundary at � = 0. More precisely,we de�ne �p=q as the connected component of �(q)containing C0 � f(p=q; 0)g, where, as elsewhere inthis paper, the rational number is assumed to bewritten in lowest terms. It can be shown that, fordistinct rational numbers � and �0, the surfaces ��and ��0 are disjoint [Peckham 1988; 1990].
2.2. Small Forcing AmplitudeFor small forcing amplitude �0, the part of the sur-face �p=q extending from C0 � f(p=q; 0)g and re-stricted to � 2 [0; �0] is simply an annulus. Thiscan be seen as follows.Since the invariant circle C0 is normally hyper-bolic for � = 0, it perturbs to a nearby invariantcircle C(�;�) for su�ciently small �. Under a suit-able choice of coordinates (r; �) on the state spaceR 2 , this perturbed invariant circle can be writtenas the graph of a function from � to r. Indeed,the entire family of invariant circles can be writtenas the graph of a function from (�; �; �) to r. Inthis way, the problem of �nding periodic orbits forthe stroboscopic family can be reduced to the cor-responding problem for a family of circle maps, aproblem that is well-studied.When � = 0 the map on the invariant circle C0 isconjugate to a rigid rotation with rotation number�. Therefore the angular variable � can be chosen
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so that the stroboscopic map f(�;�) restricted toC(�;�) can be written (�;�)(�) = � + 2�� + �(�;�)(�):Now let � = p=q + ", where " is a small parame-ter. The q-th iterate of the map restricted to theinvariant circle can then be written q(�;�)(�) = � + 2�p+ 2�q"+ �(�) +O2("; �);where O2("; �) denotes terms of at least secondorder in " and �, and where
(�) = q�1Xk=0 (p=q;0)(� + 2�kp=q):

Now the condition that the point � on the invariantcircle is periodic with rotation number p=q can bewritten  q(�;�)(�) = � + 2�p;and therefore as2�q"+ �(�) +O2("; �) = 0:Using the implicit function theorem, one can solvethis last expresson for " as a function of � and �.Since r was already written as a function of �, �,and �, the resonance surface �p=q has been writtenas the graph of a function from the variables � and� to the variables r and �. Thus �p=q is an annulusfor small enough �. It turns out that, even thoughthe invariant circles typically lose smoothness asthe forcing amplitude � is increased, this annulusof periodic points, being part a C1 surface, is itselfC1 [McGehee and Peckham 1995].Figure 3 illustrates this fact, and also the genericproperty that the projection of the resonance sur-face �p=q to the parameter plane is a wedge-shapedregion with nonempty interior [Hall 1984]. Thispart of the resonance region R(q) is often calledan \Arnold tongue" or \Arnold horn". One suchtongue emerges from every rational point on the�-axis.

�

�

�
FIGURE 3. Portion of a resonance surface �p=qnear � = 0, and its projection to the (�; �)-plane.The r-coordinate is omitted, that is, the surface isrendered as a physical object in the three-dimen-sional space (�; �; �).

2.3. Global PropertiesAs seen above, the surfaces �p=q are genericallytwo-dimensionalC1 orientable submanifolds of theproduct R 2 �P . We also mentioned that, in manyforced oscillator systems, large forcing amplitudeproduces a globally attracting periodic orbit withthe same period as the forcing term, that is, aglobally attracting �xed point for the stroboscopicmap. It is therefore reasonable to add as a hypoth-esis that, for q 6= 1, each �p=q is a bounded subsetof R 2 � P .Although �p=q is bounded, it is, in general, notclosed. Indeed, the boundary of �p=q contains someof the standard bifurcation points. It is useful toadd these bifurcation points to the surface. Wetherefore consider the topological closure of the res-onance surface �p=q, and denote it by ��p=q.A generalization of the rotation number was usedpreviously [Peckham 1990] to show that, since pand q are relatively prime, the only possible closurepoints are �xed points, that is,��p=q n �p=q � �(1):



McGehee and Peckham: Resonance Surfaces for Forced Oscillators 227

For q = 1, the surface �p=q is closed, so this state-ment is vacuous. For q � 2, the closure points cor-respond to a �xed point bifurcating to a period-qorbit.For q = 2, this bifurcation is referred to as aperiod-doubling bifurcation, and for q � 3 as aHopf bifurcation. Generically, a Hopf bifurcationwith a speci�ed rotation number is a codimension-two phenomenon, which means that it occurs atan isolated point in the two-dimensional parame-ter space. For q � 3, therefore, ��p=q n �p=q con-sists of isolated points; it is exactly one point formost examples we have seen. Adding this pointcompacti�es the surface, but the new surface is nolonger C1. An analysis of the normal form at apoint of Hopf bifurcation shows that the surface��p=q is generically only Cq�3.Generically, a period-doubling bifurcation is acodimension-one phenomenon, which, in the caseof two-parameter families, means that the bifurca-tion points occur along a curve in the parameterspace. In most known examples, this appears tobe a single circle. The open surface �p=2 is joinedto itself along this circle to form a nonorientablesurface ��p=2. Although orientatibility is lost afterthe closure operation, smoothness is generically re-tained.This discussion is summarized by the followingpreviously proved theorem [McGehee and Peckham1995; Peckham 1990]:
Theorem. The following properties are generic fortwo-parameter families of forced oscillators.
1. If q � 2, then ��p=q is a C1 submanifold of R 2�P .
2. If q � 3, then ��p=q is a Cq�3 submanifold ofR 2 � P .
3. If q 6= 2, then ��p=q is orientable.We conjecture that assuming �p=2 bounded impliesthat ��p=2 is generically nonorientable. It does seemthat ��p=2 is nonorientable for the examples we haveinvestigated. These surfaces are described and il-lustrated in Section 4 for the caricature family.

The numerics for that family provide strong evi-dence that �p=q is a M�obius band for q = 2, and adisk for q = 3; 4; 5.
2.4. An Example of Closure Causing NonorientabilityIt is interesting to digress momentarily to an eas-ily describable example that illustrates how closurecan turn an orientable surface into a nonorientableone. The topology and geometry of this exampleclosely parallel that of the period-two variety �(2),which we illustrate for the caricature family laterin the paper. The digression also serves to illus-trate techniques used to visualize all the resonancesurfaces.Identify R 4 with C 2 , and consider the real two-dimensional variety� := f(z; w) 2 C 2 : z = �zwg:Write � = �1 [ �2, where �1 is the real plane(complex line) z = 0, and �2 is the complement.Both �1 and �2 are orientable real surfaces; �1 istopologically a plane, while �2 is homeomorphic toan open annulus, parametrized by the puncturedz-plane. However, the closure of �2 can be written��2 = f(rei�; ei2�) 2 C 2 : � 2 [0; 2�); r 2 [0;1)g;

(2.1)which can be recognized as a M�obius band andhence is nonorientable. Note that �1\ ��2 = ��2n�2is the circleS := f(z; w) 2 C 2 : z = 0, jwj = 1g;which corresponds to r = 0 in the parametrizationof ��2 just given; S is also the subset of points ��2covered twice by that parametrization.In comparing the variety � of this example withthe variety �(2) of the caricature family, or moregenerally with the stroboscopic forced oscillatormaps, we see that �1 is analogous to the �xed-point surface �(1), while ��2 is analogous to one ofthe period-two resonance surfaces ��p=2.
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Now consider only the bounded portion of ��2 forwhich jzj � 12 :��02 = f(rei�; ei2�) 2 C 2 : � 2 [0; 2�); r 2 [0; 12 ]g:Figure 4 shows the projection of ��02 to the z-plane.This projection is, of course, just the disk fz 2 C :jzj � 12g. Note, however, that the disk has vari-ations in shading, so it appears to be somethingother than simply a at disk in the plane. Thisappearance results from the way we are visualizingthe surface ��02 as a subset of R 4 . The surface is�rst projected into R 3 along the imaginary w-axis,yielding a two-dimensional surface in R 3 . This sur-face is then rendered using the three-dimensionalviewing software Geomview [Phillips et al. 1993].More precisely, use (Re z; Im z; Rew; Imw) ascoordinates on R 4 , and use (x1; x2; x3) as coordi-nates on R 3 . The surface ��2 is projected from R 4to R 3 using the projection whose matrix in thesecoordinates is given by24 1 0 0 00 1 0 00 0 1 0
35 :

Once projected into R 3 , the surface is then visu-alized as though the viewer were in�nitely far outalong the positive x3-axis (looking through an in-�nitely powerful telescope) with the positive x1-axis pointing to the viewer's right and the positivex2-axis pointing up. In other words, the projectionto the printed page is given by the matrix� 1 0 00 1 0 � :We stress that the two projections, �rst from R 4to R 3 and then from R 3 to R 2 , are treated in fun-damentally di�erent ways. The surface as it sits inR 4 is treated as an abstract mathematical object,endowed with no color or other attribute. In theprojection from R 4 to R 3 one dimension's worthof information is completely lost. By contrast, theprojection from R 3 to R 2 should be thought of asa description of the way that a photograph of thesurface in R 3 is taken; color, reectivity, lights and

FIGURE 4. Portion of the surface ��2 with jzj � 12 ,projected to and rendered in the three-dimensionalspace (Re z; Im z; Rew), from the point at in�nityin the positive (Rew)-direction.shadows are all used in an attempt to display threedimension's worth of information as intelligibly aspossible in two dimensions.As an illustration of this, consider Figure 5. Thesame projection from R 4 to R 3 is used there as inFigure 4. In Figure 5, however, the object has beenrotated in R 3 in such a way so the projection fromR 3 to R 2 is no longer along a coordinate axis; ithappens to be given by� 0:609 �0:622 0:493�0:750 �0:250 0:612 � :Now the black dot in the center of the disc in Fig-ure 4 can be seen to be a line. This line is the pro-jection of the circle S described above along which

FIGURE 5. Another view of the object of Figure 4,with the same projection onto three dimensions.
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the annulus �2 is glued to form the M�obius band��2. This circle is given by the conditions z = 0and jwj = 1, and thus projects to the line segmentin R 3 given by Re z = Im z = 0, jRewj � 1.S can be seen clearly as a circle in Figure 6,where it is again shown in black. There we havechosen a di�erent projection from R 4 to R 3 , givenby the matrix24 0:707 0 0 �0:7070 0:707 �0:707 00:5 0:5 0:5 0:5
35 :

One can also think in terms of rotating ��02 in R 4before projecting.

FIGURE 6. Another view of the surface ��02 of Fig-ure 4, with a di�erent projection onto three dimen-sions. Here it is clear that ��02 is a M�obius band;this fact was obscured in Figures 4 and 5, mainlybecause the projection R 4 ! R 3 used there takes��02 to a nonembedded surface in R 3 .
3. CLASSICAL LOCAL BIFURCATIONSThe description and characterization of local bifur-cations typically includes dynamical information,but it turns out that the local bifurcations of codi-mension one and two that occur in generic two-parameter families of maps of R 2 can all be char-acterized using only singularities of the period-qvarieties �(q) de�ned above and the projection ofthese varieties to the parameter plane. This geo-metric viewpoint leads to the following three nat-ural categories of bifurcations:

1. those that can be locally characterized solelyby singularities of one or more of the period-qvarieties;
2. those that have no nontrivial topology (no near-by variety singularities) but can be character-ized by the preferred projection of a variety toparameter space; and
3. those that can be locally characterized only byconsidering both variety singularities and theprojection of the varieties to parameter space.We proceed to describe the classical local bifurca-tions of codimension one and two that occur in twoparameter families of maps of R 2 , classifying theminto these categories.
3.1. Variety SingularitiesA singular point on the variety �(q) is by de�ni-tion a point in R 2 � P where the 2 � 4 Jacobianmatrix of the de�ning implicit equation f q�(x) = xhas rank less than two. As discussed in Section 2.3,the closed resonance surface ��p=q has singularitiesgenerically only at the closure points ��p=q n �p=q,which can occur only on the �xed-point surface�(1). It follows also that these �xed points aresingular points on the variety �(q). Since ei2�p=qmust be an eigenvalue of Df�(x) at these �xedpoints [Peckham 1990], such a bifurcation will ge-nerically be a Hopf bifurcation if q � 3, and aperiod-doubling bifurcation if q = 2.
Hopf Bifurcations. AHopf bifurcation point is a point(x; �) on �(1) at which Df�(x) has eigenvaluese�i2��, where 0 < � < 12 , and for which certain non-degeneracy conditions hold. An important specialcase is a p=q-resonant Hopf bifurcation, at which� = p=q, this rational number being expressed inlowest terms. In this case, (x; �) is a point on�(q) for which Df q�(x) is the identity. This sin-gular point on the variety �(q) lies both on theC1 surface �(1) and on the Cq�3 surface ��p=q.All Hopf bifurcation points occur along a curvein the surface �(1), characterized by the eigenvaluecondition given above. For a generic family, thepoints along the curve where the eigenvalues are
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roots of unity form a dense set in the Hopf bifur-cation curve; clearly, the same can be said of thepoints of intersection of ��p=q and �(1). So the en-tire curve of Hopf bifurcations can be distinguishedtopologically, without regard to the projection tothe parameter space of any of the resonance sur-faces or varieties. Look ahead to Figure 17.When viewed as a point on the surface �(1), aHopf bifurcation point is ordinary (nonsingular).When viewed as a point on the period-q surface��p=q, however, a resonant Hopf bifurcation point isa point where the C1 smoothness of the surfacebreaks down; it is generically only Cq�3. This canbe seen from the normal form of a p=q-resonantHopf bifurcation point. A standard approach is toapproximate the q-th iterate of the family of mapswith the ow of a family of di�erential equationsthat is equivariant with respect to rotations by p=q[Arnol'd 1982; Takens 1974]. The normal form ofthe ow is _z = "z + Az2�z +B�zq�1;where z is a complex state space variable, " isa complex parameter, and A and B are complexconstants. Fixed points of the original maps allcorrespond to z = 0, so period-q surface pointsare the nonzero solutions to _z = 0. The closureof the period-q surface adds back the Hopf point:(z; ") = (0; 0). In polar coordinates z = rei�, theclosure of the period-q surface becomes" = �Ar2 �Brq�2e�qi�: (3.1)With some recollection from multivariable calcu-lus, the second term on the right can be shown tocause the surface to be Cq�3 but not Cq�2 at theorigin. Look ahead to Figure 14, where an exampleof a period-3 surface is shown near a 13 -resonantHopf point. The surface does indeed appear tohave a singularity where it is C0 but not C1 (lasttwo views on bottom row).
Period Doubling. A period-doubling point is a point(x; �) on �(1) for which �1 is an eigenvalue of

Df�(x) and for which certain nondeneracy condi-tions hold. Thus (x; �) is a point on �(2) for which1 is an eigenvalue of Df 2�(x) and hence is, as be-fore, a singular point of the variety �(2). However,in this case, the singular points occur along a curveof intersection between the two C1 surfaces �(1)and ��p=2 that make up �(q). This curve of sin-gular points topologically characterizes a period-doubling point.Note that the loss of smoothness that occurs on��p=q for q � 3 is replaced instead by a loss of ori-entability of the surface ��p=2, as discussed in Sec-tion 2.4.
Double Negative-One Points. For a generic family, aHopf bifurcation curve can terminate only whenthe eigenvalues of the linearization are both 1 or areboth �1. An alternate characterization of the dou-ble negative-one point is that, on the �xed-pointsurface, a Hopf bifurcation curve terminates on aperiod-doubling curve [Arnol'd 1982; Takens 1974].Since both period-doubling curves and Hopf curvesare characterized topologically, so is this intersec-tion point of the two curves.
Takens–Bogdanov Points (see [Takens 1974; Bogdanov1976]). The other possible termination point of aHopf bifurcation curve is characterized by a doubleeigenvalue of 1. An alternate interpretation is that,on the �xed-point surface �(1), the Hopf bifurca-tion curve terminates on a curve of saddle-nodes.The Hopf curve can be located topologically. Al-though the saddle-node curve can be \seen" onlythrough the geometric projection to the parameterspace, a Takens{Bogdanov point can be describedas a Hopf curve that terminates and has no othernearby variety singularities. The absence of othervariety singuarities is what distinguishes this bifur-cation from the double negative-one bifurcation.
3.2. Projection SingularitiesAll points near a nonsingular point on �(q) havethe same period, so it su�ces to restrict attentionto the resonance surfaces �p=q. Projection singu-larities occur at points where the projection of �p=q
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to the parameter space is singular but for which,unlike the variety singularities above, the surfaceis otherwise topologically uninteresting. As is truefor variety singularities, projection singularities oc-cur at points (x; �) on the surface �p=q where thesurface fails to be locally the graph of a functionfrom the parameter space to the state space, whichimplies that the linear map Df q�(x)� id is singular.This last condition is equivalent to the conditionthat 1 occurs as an eigenvalue of Df q�(x).
Folds (Saddle-nodes). The most common projectionsingularity is the fold, or saddle-node, which oc-curs on �p=q at points (x; �) where 1 is a simpleeigenvalue of Df q�(x) and where certain higher-order nondegeneracies hold. Geometrically, �p=qfolds back on itself in R 4 , so that its projectionto the parameter space changes from locally hav-ing two inverse images to, at the singular point,locally having one inverse image, and �nally none.The edges of the surface with respect to this distin-guished projection form curves of period-q saddle-nodes. Note that the curves of saddle-node bifurca-tions are generically smooth curves on the smoothsurface �p=q, and hence have no intrinsic charac-terization in terms of the varieties �(q). From thedynamical viewpoint, the two inverse images corre-spond to two period-q points, one a saddle and oneeither a sink or a source, which come together ata single degenerate period-q point (a saddle-node),and then disappear.
Cusps. The only other purely projection singularitythat can occur generically for two-parameter fam-ilies of di�eomorphisms on R 2 is the cusp, whichoccurs on �p=q at points (x; �) where 1 is a simpleeigenvalue of Df q�(x) and where a certain higher-order degeneracy occurs but where certain othernondegeneracies hold. Geometrically, two folds on�p=q come together and disappear. The two foldsproject to two curves in the parameter space thatcome together at a cusp point, providing the namefor the singularity. Locally, within the cusped re-gion determined by the curves, the projection maphas three inverse images, while outside this region

it has one. This change between one and three in-verse images characterizes the cusp bifurcation forgeneric families.
3.3. Combinations

Transcritical Hopf Bifurcation. Along the Hopf bifurca-tion curve, one sometimes �nds a point separatingthe so-called \subcritical" and \supercritical" bi-furcations [Chenciner 1985]. Topologically this isa point on a Hopf curve; it is distinguished geo-metrically from other Hopf points because the sideof the Hopf curve to which the resonance regionsproject as they emanate from the resonant Hopfpoints changes at the transcritical Hopf point. Al-though such points occur for the caricature familydescribed above, they will not be discussed furtherin this paper.
Transcritical Period Doubling. As one goes along theperiod-doubling curve, one may �nd, in addition tothe double negative-one points mentioned above,also points where a degeneracy occurs in the higherorder terms of the map [Peckham and Kevrekidis1991]. Such a higher-order degeneracy point ischaracterized topologically by living on a period-doubling curve and is distinguished geometricallyfrom other period-doubling points in that the localprojection of the period-two surface �(2) changesat these points from projecting to only one sideof the period-doubling curve to projecting to bothsides of the curve.Dynamically, these points separate two types ofstability characteristics of the period-two orbit bi-furcating from the �xed point: on one side the bi-furcating period-two orbit is a saddle, and on theother it is either a sink or a source.
4. RESONANCE SURFACES FOR THE CARICATURERecall that the the caricature family of Section 1.3is written H(�;�)(x1; x2), where (x1; x2) is a pointin the state space R 2 and (�; �) is a point in theparameter space P = R � [0; 1). The parameter� 2 [0; 1) is the forcing amplitude, and the param-eter � 2 R is the rotation number for zero forcing
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REMARKS ON THE FIGURESFigure 1, and all of the �gures in Section 4, represent objects that naturally live in the four-dimensional productR 2�P of the phase space and the parameter space P . The latter extends for � 2 [0; 1] and � 2 (�1;1). Fixedpoints exist for all of these parameter values, but we have restricted our �xed-point surface �gures to � 2 [0; :75]and � 2 [�:15; 1:3]. For � > :75 the only periodic point is a globally attracting �xed point, while � only appearsmodulo 1 in the de�nition of our family (1.3). Our �gures thus contain all the interesting topology of periodicpoints in slightly more than a fundamental �-interval (see Figures 8, 9, and 17, top).To generate the data for these surfaces, we used variations of Newton's method and standard continuationtechniques. Typically, we computed enough cross sections on each surface so that we could be relatively certainof its topology and hence be able to decide on a reasonable parametrization. We were then able to model thesurface in R 4 , project it from R 4 to R 3 , and use the program Geomview [Phillips et al. 1993] to view the resultingsurface in three dimensions. The positioning in R 3 is represented by a \viewing projection" from R 3 to R 2 . Asexplained in Section 2, because most of the �gures are intended to be seen as three-dimensional, the two separateprojections are of interest rather than just their composition as a projection from R 4 to R 2 .To describe the projections from four to three dimensions, let the coordinates in R 4 be ordered (�; �; x1; x2).In each case we start by scaling � and � by 10. Next we sometimes rotate or shear the (�; x2)-plane, leavingthe other two coordinates �xed; �nally, we drop the last coordinate. In one exceptional case we instead rotatethe (�; x1)-plane and drop the third coordinate. Explicitly, each projection is one of:
A() = 24 10 cos� 0 0 sin�0 10 0 00 0 1 0

35 ; B = 24 10 0 0 0:20 10 0 00 0 1 0
35 ; C = 24 10 0 0 00 7:07 �0:707 00 0 0 1

35 :
The projections from three to two dimensions can be described in terms of modi�ed Euler angles. We rotateby an angle � around the �rst coordinate axis, then by an angle  around the second coordinate axis, and thendrop the third coordinate. The result is of the form P (�;  ) = � cos sin � sin cos � sin 0 cos � � sin � � :Here are the projections used. An asterisk � indicates the projection R 3 ! R 2 is further followed by a �90�rotation in the plane of the paper.Figure(s) R 4 ! R 3 R 3 ! R 2 Figure(s) R 4 ! R 3 R 3 ! R 21, 7, 10, 13, A(0) P ( 0�; 0�) 12 (right) C P (�45�; 30�)14 (top right), 15, (i.e., projection to 14 (top left) B P (�40�; 30�)16 (top right) the parameter plane) 14 (middle right) A(0) P (�70�; 40�)8, 9 B P (�20�;�20�) 14 (bottom left) A(:5) P (�40�; 30�)11 (top left) B P (�40�; 30�) 14 (bottom middle) A(:5) P ( 50�; 0�)11 (top/bottom right), A(:5) P (�90�; 0�) 16 (top left) B P (�30�; 30�)14 (bottom right), (i.e., projection to 16 (middle right) A(0) P (�60�; 10�)�16 (bottom right) the phase plane) 16 (bottom left) A(:05) P (�60�; 40�)�11 (bottom left) A(0) P (�30�; 53�) 16 (bottom middle) A(:2) P (�60�; 40�)�11 (bottom middle) A(0) P (�30�;�45�) 17 (top) B P (�20�; 5�)12 (left) A(0) P ( 0�;�40�) 17 (bottom) B P (�20�; 20�)The curves are drawn according to the following conventions:Curve of Appearance Characterizing propertySaddle-node bifurcations White �p=q projects nontransversely to the parameter space;equivalently, DHq�(x) has 1 as an eigenvalueHopf bifurcations Thin black DH�(x) has complex conjugate eigenvalues on the unit circlePeriod-doubling bifurcations Thick black DH�(x) has �1 as an eigenvalue
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amplitude of the invariant circle C0, which, in thiscase, is the unit circle in the (x1; x2)-plane.The remainder of this paper is devoted to a de-scription of computer-generated pictures of vari-ous resonance surfaces for this family. We empha-size that we have not attempted to prove that thecaricature family is a generic example. However,the computations and resulting pictures are con-sistent with the properties expected of a generictwo-parameter family as described in the sectionsabove.For reference, the explicit projections used forthe �gures are given on the facing page. It is help-ful, when viewing each �gure, to keep in mind whatprojection is being used: for this reason we havesometimes repeated this information in the �gurecaptions.
4.1. The Fixed-Point SurfaceFigure 7 shows the local �xed-point bifurcations forthe caricature family, projected to the parameterplane. The curves can be identi�ed by reference tothe bottom table on the facing page; these conven-tions for their appearance will be used consistently.We now discuss each type of curve.The white curves represent �xed-point saddle-node bifurcations, that is, points (�; �) where theJacobian matrix for a �xed point of H(�;�) has aneigenvalue of 1. Each encloses a triangular-shaped

�

�

FIGURE 7. Local �xed-point bifurcations for thecaricature family H�, projected to the parameterplane. The curves of �xed-point saddle-node bifur-cations are white, the curves of Hopf bifurcationsare black and thin, and the period-doubling curveis black and thick.

region with one vertex on the �-axis. For parame-ter points in the interior of these regions the maphas three �xed points, and for parameter pointsoutside there is only one �xed point. This meansthe �xed-point resonance region is the entire pa-rameter space; the triangular regions denote pa-rameter values whose corresponding maps havingadditional �xed points. The two top vertices ofeach triangular curve are cusp points, as describedin Section 3.2, but the vertex on the � axis is thetip of the small forcing amplitude resonance horn.This horn was described above in Section 2.2 andFigure 3; further description appears below.The thin black curve represents the Hopf bifur-cation curve, that is, the set of points (�; �) wherethe Jacobian matrix for a �xed point ofH(�;�) has acomplex pair of eigenvalues on the unit circle. Thethick black curve represents the period-doublingcurve, that is, the set of points (�; �) where theJacobian matrix for a �xed point of H(�;�) has aneigenvalue of �1.Each Hopf bifurcation curve abuts at one end ona saddle-node curve and at the other end on theperiod-doubling curve. The point at the end abut-ting on a saddle-node curve is a Takens{Bogdanovpoint, while the point at the other end is a doublenegative-one point (Section 3.1).The �xed-point surface �(1) for the caricaturefamilyH� is a smooth connected surface embeddedin R 2 � P . A portion of it is shown in Figure 8.All of the p=1-resonance surfaces �p=1, for p 2 Z,are the same, and all are equal to �(1), whichis di�eomorphic to the parameter space P witha countable number of open discs removed. Onecomponent of the boundary of �(1) consists of therepelling �xed point c0 = (0; 0) at zero forcing am-plitude (recall the unforced oscillator of Figure 2),that is,f((x1; x2); (�; �)) 2 R 2 � P : x1 = x2 = � = 0g:This boundary is the bottom edge in Figure 8.(The left, right and top edges in Figure 8 comefrom our having restricted the parameter space for
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FIGURE 8. Portion of the �xed-point surface �(1) for the family H�, plus the curves of local bifurcation that lieon it, all projected from R 2 �P to R 3 to the plane. The projections R 4 ! R 3 and R 3 ! R 2 di�er only slightlyfrom those of Figure 7: we have mixed a bit of x2 with � in projecting down to three dimensions, and the lineof sight for viewing the result is not far removed from the direction of the x1-axis. The slight discontinuities inshading are due to the piecewise way in which the surface is parametrized.

FIGURE 9. Same view as Figure 8, with the surface made transparent.
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the �gure. In actuality, �(1) extends to � = 1 inthe positive � direction and in�nitely both ways inthe � direction.)Each of the remaining components of the bound-ary consists of the unforced invariant circle C0 atforcing frequency equal to an integer multiple ofthe unforced frequency. In other words, the com-ponents are labeled by the integer p, and compo-nent p is given byf((x1; x2); (�; �)) 2 R 2�P : x21+x22 = 1; � = 0; � = pg:Figure 8 shows two of these components, for p = 0and p = 1. They are the elliptical curves along thebottom edge of the surface. The �gure also illus-trates the fact that, near each \elliptical" bound-ary component, the �xed-point surface is a topo-logical cylinder that projects to a horn-shaped re-gion of parameter space, as described in Section 2.2.(The elliptical boundary components of Figures 8and 9 correspond to the bottom edge of the sur-face in Figure 3.) Note that the elliptical boundarycomponents intersect the linear boundary compo-nent in this projection from R 4 to R 3 , even thoughthey are disjoint as subsets of R 4 .The saddle-node, Hopf bifurcation, and period-doubling curves all appear in Figure 8 as they lieon the �xed-point surface. They can be seen moreclearly in Figure 9, where the surface has been re-moved to show the parts of these curves that arehidden in Figure 8.
4.2. The Period-Two SurfaceFigure 10 shows the resonance region correspond-ing to ��1=2, that is, periodic points with periodtwo and rotation number 12 . As before, the thinblack curves are Hopf bifurcation curves, while thethick black curve is the curve of period-doubling.The white curves again denote saddle-nodes, in thiscase of period two. In other words, a point (�; �)on a white curve has the property that H(�;�) hasa point (x1; x2) having least period two and suchthat DH2(�;�)(x1; x2) has 1 as an eigenvalue.The union of the oval and funnel regions in Fig-ure 10 is the projection onto the parameter space

of the the period-two resonance surface ��1=2. Thissurface, which turns out to be a M�obius band, isillustrated in Figures 11 and 12. Although it is anembedded submanifold of R 2�P , all but one of theprojections from four to three dimensions shown inthese �gures introduce self-intersections.The boundary of ��1=2 consists of the unforcedinvariant circle C0 at forcing frequency equal tohalf the unforced frequency, that is,f((x1; x2); (�; �)) 2 R 2�P : x21+x22 = 1; � = 0; � = 12g:This boundary, the base of the shape in Figure 11(top left), projects to the parameter plane as a sin-gle point at the � = 0 tip of the 12 resonance regionof Figure 10. The top right panel shows the projec-tion to the phase plane; compare Figure 4, wherewe pictured the model M�obius band.

�12

�

FIGURE 10. Resonance region corresponding to��1=2 (projection of the resonance surface to the pa-rameter plane). Inside the period-doubling curve(thick black oval) there is a single period-two or-bit, and inside the funnel made by the saddle-nodecurves (white) there are two period-two orbits, eachwith two points. Elsewhere there are no period-twopoints. The Hopf bifurcation curves (thin black)abut on the oval at the double negative-one points(Section 3.3), and the saddle-node curves abut onthe oval at the points of transcritical period dou-bling.
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FIGURE 11. Several views of the resonance surface ��1=2. Top: the whole surface, in a generic projection (left)and projected onto the phase space (right). Bottom: portion of the surface with � � :38. Again the rightpanel shows the projection onto the phase space, and therefore is a zoom-in of the one immediately above it;compare also the view of the M�obius strip example in Figure 5. On the bottom left and middle we have thesame projection R 4 ! R 3 as for the top left �gure, but the projections R 3 ! R 2 di�er. Here one sees clearlythe self-intersections introduced by the projection from R 4 to R 3 . Note in particular that the boundary curve,where the surface was arbitrarily cut for the purposes of illustration, looks like a �gure eight in this projection.It is actually a topological circle in R 4 , as is clear in the right panel.
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FIGURE 12. A smaller piece of �1=2, around the period-doubling circle. The projection for the view on the leftis somewhat similar to those of Figure 11, left. The projection on the right was chosen so that the intermediatesurface in R 3 is an embedded M�obius band (compare with the model M�obius band in Figure 6).As described in Section 2.2, the portion of ��1=2restricted to � 2 [0; �0] is a topological cylinderfor �0 small enough. To get a better view of theinteresting part of the topology of ��1=2, which oc-curs near the thick black period-doubling curve, wehave sliced it o� at � = :38. The discarded partbelow � = :38 is contractible to the boundary cir-cle, so the topology of the resulting surface is thesame as for the full surface. The resulting surfaceis pictured in the bottom row of Figure 11.It is interesting to note that the saddle-nodecurves (white) intersect the period-doubling curve(thick black) transversely on the surface ��1=2, inconstrast to the parameter-plane projection of Fig-ure 10, where the saddle-node curve appears to endon the period-doubling curve. These intersectionpoints are transcritical period-doubling points, asdiscussed in Section 3.3.Figure 12 shows the surface ��1=2 very near theperiod-doubling curve. Here the surface is clearlyseen to be a M�obius band. The part of ��1=2 notshown in Figure 12 is still a topological annulus

(cylinder) whose outside boundary is the boundaryof ��1=2 (see Figure 11, top row) and whose insideboundary is identi�ed with the boundary of thesurface in Figure 12. Therefore the full surface��1=2 is also a M�obius band.The M�obius band in Figure 12 was de�ned sothat, as its boundary curve is traversed once, itsprojection to the parameter plane goes around acircle twice. This can be interpreted dynamicallyas follows. If one starts at a point on the M�obiusband boundary and follows the boundary until itsprojection wraps around the parameter space circleonce, the starting and ending points together forma period-two orbit.
4.3. The Period-Three SurfaceFigure 13 shows the resonance region correspond-ing to ��1=3, that is, periodic points with periodthree and with rotation number 13 . As usual, thethin black curve is a Hopf bifurcation curve, whilethe white curve denotes period-three saddle-nodes.
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FIGURE 13. Resonance region corresponding to ��1=3. Outside the loop bounded by the white curve there areno period-three points with rotation number 13 . Inside the loop there are six period-three points, divided intotwo orbits; one of these orbits collapses to a �xed point at the parameter value corresponding to the 13 resonantHopf point. The panel on the right is a blowup, showing how the Hopf bifurcation curve (black) passes throughthe interior of the resonance region. The 13 resonant Hopf parameter point (not shown) lies on the Hopf curveinside the 13 resonance region.The blowup on the right illustrates clearly how,as predicted by the normal form [Arnol'd 1982;Takens 1974], the Hopf bifurcation point of thirdorder projects to the interior of the resonance re-gion. We discuss this further in Section 4.4. Forhigher-order resonances, namely q � 5 and some-times q = 4, the Hopf bifurcation point projects tothe boundary.The resonance surface corresponding to this res-onance region is shown in Figure 14. As before,the ellipse forming the boundary is the invariantcircle C0, this time at the parameter point � = 13 ,� = 0. As seen in Section 2.2, the part of ��1=3 cor-responding to small forcing amplitudes is a topo-logical cylinder that projects to the horn-shapedregion emanating from � = 13 , � = 0; the wholeboundary circle projects to the point � = 13 , � = 0.The projection into three dimensions shown atthe top left in Figure 14 has self-intersections thatmight suggest some interesting topological feature,but this turns out not to be the case. This is clearlyseen in the other views, where we have thrownout a cylinder contractible to the boundary circle,keeping only a portion of ��1=3 near the Hopf bi-furcation curve (the same for all �ve views). Thus��1=3 has the same topology as this portion, whichis a topological disk.

Note that the shading in the last two views sug-gests a singular point near the center of the disk.This is the point of Hopf bifurcation; here the diskis C0 but fails to be C1 (recall the discussion ofsmoothness near Hopf points in Section 3.1). Notealso that the white saddle-node lines do not inter-sect this point. Because the saddle-nodes projectto the boundary of the 13 resonance region, as inthe top right of Figure 14, this is an illustrationof the fact that the Hopf bifurcation point generi-cally occurs in the interior of the resonance region,as mentioned above.
4.4. The Period-Four SurfaceFigure 15 shows the resonance region correspond-ing to ��1=4, that is, periodic points with periodfour and with rotation number 14 . As usual, thethin black curve is a Hopf bifurcation curve, whilethe white curve denotes period-four saddle-nodes.Recall that the Hopf bifurcation point of thirdorder generically occurs in the interior of the res-onance region of period three; the Hopf point isisolated from the saddle-node curves. By contrast,all generic Hopf bifurcation points of order �ve andabove project to the boundary of the correspondingresonance region; the Hopf point is at the commonintersection of the 2q saddle-node curves. The two



McGehee and Peckham: Resonance Surfaces for Forced Oscillators 239

FIGURE 14. Several views of the resonance surface �1=3. Top left: the whole surface, in a self-intersectingprojection to three dimensions. Right and bottom: a subset of the surface near the tip, shown in variousprojections (top right, projection to the parameter plane; bottom right, projection to the phase plane). Thecomplementary portion is an annulus contractible to the boundary, so the topology of �1=3 is preserved, and isclearly seen to be that of a disk.
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FIGURE 15. Resonance region corresponding to��1=4. Outside the white loop there are no pe-riod-three points with rotation number 14 ; insidethe loop there are eight such points, divided intotwo orbits. For this family the Hopf point is atthe common intersection of the eight saddle-nodecurves: the black curve does not go inside the loop.
di�erent cases can be seen directly from the nor-mal form in (3.1). If q = 3, the �Brq�2e�qi� termdominates the �Ar2 term (for r near zero), while ifq � 5, the �Ar2 term dominates the �Brq�2e�qi�term. By �xing r and varying � from 0 to 2�, wesee that in the q = 3 case, a circle, covered threetimes, is swept out around the origin in the " pa-rameter plane; this puts the third-order Hopf pointin the interior of the resonance region. For q � 5,the Hopf point is outside the circles; this puts the�fth- and higher-order Hopf points on the bound-ary of the corresponding resonance regions. Morespeci�cally, the Hopf points project to the tip of aresonance horn.When q = 4, both terms on the right-hand sideof (3.1) are of the same order r2. If jAj < jBj,the fourth-order resonance appears analogous tothe third-order resonance; if jAj > jBj, the fourth-order resonance appears analogous to higher-orderones.For the caricature family, the 14 resonant Hopfbifurcation point appears to project to the bound-ary of the resonance region shown in Figure 15,

analogous to the higher-order resonances. For thisreason, we do not show any surfaces with periodshigher than four in this paper.The resonance surface ��1=4 is shown in Figure 16(top left). Once again, the ellipse forming theboundary is the invariant circle C0, this time atthe parameter point � = 14 , � = 0. The surface��1=4 in R 4 is a disk bounded by this circle.The remaining panels in Figure 16 show a por-tion of ��1=4 near the Hopf bifurcation curve, againwith the same topology as the full surface. Thatis, ��1=4 is a disk. The view at the top right isthe projection of this portion of the surface to theparameter plane; note that the white saddle-nodecurves form the boundary of the region in the pa-rameter plane. The view in the middle right showsthe same projection from R 4 to R 3 but a di�er-ent projection from R 3 to R 2 ; we see that the in-termediate surface in R 3 is self-intersecting. Notealso that there are eight distinct white saddle-nodecurves, corresponding to the existence of eight dis-tinct period-four points for each parameter pointin the interior of the resonance region.The bottom row in Figure 16 shows other pro-jections R 4 ! R 3 of the same piece of ��1=4; the lastone shows most clearly that the surface is a disk.Note that the eight saddle-node curves all come to-gether at the same point on the disk. This point isthe Hopf bifurcation with eigenvalues e�i�=2. Ge-nerically, the surface should be C1 but not C2 atthis point. It does appear to be C1, but it is hardto see whether it fails to be C2.One should contrast the bottom right views inFigures 14 and 16. For ��1=4, the saddle-node curvesall intersect at the Hopf bifurcation point, illus-trating the property that the Hopf bifurcation oc-curs on the boundary of the resonance region inthe parameter space. For the period-three surface,the saddle-node curves miss the Hopf bifurcationpoint, corresponding to the property that the Hopfbifurcation occurs in the interior of the resonanceregion. The two �gures are also consistent with thegeneric expectation that the 14 surface is C1 but the13 surface is only C0.
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FIGURE 16. Several views of the resonance surface �1=4. Top left: the whole surface. Right and bottom: asubset of the surface near the tip, shown in several projections (top right, projection to the parameter plane;bottom right, projection to the phase plane).
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FIGURE 17. Ensemble of resonance surfaces. At the top we show �(1) and ��p=q for p=q = 15 ; 14 ; 13 ; 25 ; 12 . At thebottom we have omitted the �xed-point surface �(1). We have included the curves of saddle-node bifurcation,Hopf bifurcation, and period-doubling for reference (with the conventions of the table on page 232). Whenprojected to the parameter plane, these curves revert to the more traditional (and more mundane) parameterspace bifurcation diagram of Figure 1.
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4.5. An EnsembleThere is a resonance region and a correspondingresonance surface associated with every rational ro-tation number. The p=q resonance region emanatesfrom the point (�; �) = (p=q; 0) in the parameterplane and connects the �-axis to the curve of Hopfbifurcation. The corresponding resonance surface��p=q has a boundary component consisting of thecircle C0 at the point (�; �) = (p=q; 0) and inter-sects the �xed point surface �(1). For q � 3, thisintersection occurs at a point of Hopf bifurcation.Figure 17 gives an idea of the whole.
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