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Abstract. This paper presents the derivation and partial analysis of a general
producer-consumer model. The model is stoichometric in that it includes the growth
constraints imposed by species-specific biomass carbon to nutrient ratios. The model
unifies the approaches of other studies in recent years, and is calibrated from an
extensive review of the algae-Daphnia literature. Numerical simulations and
bifurcation analysis are used to examine the impact of energy enrichment under
nutrient and stoichiometric constraints. Our results suggest that the variety of
system responses previously cited for related models can be attributed to the size of
the total system nutrient pool, which is here assumed fixed. New, more complicated
bifurcation sequences, such as multiple homoclinic bifurcations, are demonstrated as
well. The mechanistic basis of the model permits us to show the robustness of the
system’s dynamics subject to alternate approaches to modeling producer and
consumer biomass production.

1. Introduction. Over the last decade, significant progress has been made in the
study of stoichiometric producer-consumer population models. Such models
recognize that biomass creation and conversion processes depend simultaneously on
both the carbon and nutrient requirements of the species involved. Early work
focused on producer-consumer competition for a limited nutrient resource and the
impact of nutrient levels on producer growth. See, for example, [36], [37], [18], [16].
However, these studies did not consider systems in which consumer biomass
production depends on the variable nutrient levels of the producer population. This
latter point was explicitly addressed in the work of Andersen [2] and Hessen &
Bjerkeng [20]. Subsequent studies have modeled open or closed systems, systems
with multiple nutrient constraints, alternate methods for modeling the many sub-
processes affecting consumer and producer growth, respiration and mortality, as well
as the dynamic properties of systems with multiple producer or consumer
populations.

There is a much smaller literature regarding the effects of energy enrichment on
producer-consumer systems. For non-stoichiometric models (which only track the
flow of carbon in the system), system enrichment is often assumed synonymous to an



increase in the carrying capacity of the bottom-level species. For example, see [1].
However, in stoichiometric models enrichment must be modeled more
mechanistically in order to distinguish between (say) increasing ambient light and
increasing total system nutrient levels. While both such increases affect the primary
productivity and the resulting consumer-free carrying capacity of the base-level
producer community, their impact on higher trophic levels is more complex.
Specifically, energy enrichment results in additional carbon resources for the
consumer population, but in closed-nutrient systems may reduce the nutrient
richness of the consumer’s food source, hence consumer productivity. In contrast,
nutrient enrichment increases a resource that producer and consumer populations
sequester to different degrees, based on their different stoichiometric ratios.

The theoretical work of Rosenzweig [40] pointed out that enriching available
energy/carbon for the producer can destabilize a system’s coexistence state. He
considers the variation of the classical Lotka-Volterra model that assumes Holling II-
like saturation of the consumer’s foraging rate. In such non-stoichiometric models,
once the coexistence state is destabilized, the system typically supports a unique,
attracting, periodic coexistence state, whose amplitude of oscillation increases with
energy enrichment.

Loladze, Kuang & Elser [31] introduced stoichiometric effects to the usual realization
of the Rosenzweig-MacArthur model [41]. They assumed that the system is closed
(ie., possesses a fixed total nutrient budget) for a single nutrient that is partitioned
between the producer and consumer populations. The nutrient concentration of the
producer population is assumed flexible, with higher nutrient levels increasing both
producer productivity and consumer biomass conversion efficiency. Their model is
parameterized for a generic algae-Daphnia system with phosphorous the limiting
nutrient. Numerical simulations of this (“LKE”) model indicated that with increasing
energy enrichment, a stable, producer monoculture gives way to a stable coexistence
equilibrium state. With further enrichment this coexistence equilibrium can lose
stability, resulting in a stable, attracting, periodic coexistence state. However, in
contrast to the Rosenzweig-MacArthur model, the periodic state grows until energy
enrichment has attained a critical level, at which point the periodic state is lost. This
loss is coincident with the creation of a pair of new steady coexistence states - one
stable and one unstable. With further energy enrichment, the consumer level for the
attracting coexistence state declines ultimately to extinction, leaving only a stable
producer monoculture for high energy levels. Consumer extinction apparently
results if energy enrichment raises the producer carbon levels and thereby dilutes the
nutrient pool to the point that the food quality (N: C) that the producer offers is too
low for the consumer to sustain itself. Similar behavior is observed in an alternate,
more process-based producer-consumer model [26], in close variants of the LKE
model [12], and extensions to two-producer [30] and two-consumer [32] systems.

Subsequent to the LKE study, Diehl [8] presented a more mechanistic model of a
similar algae-Daphnia system. While this model shares many of the same
assumptions of the previous models, its form differs in that producer productivity,



nutrient uptake, and biomass creation are founded on process-based sub-models. In
fact, producer light interception is modeled to sufficient precision to allow the
distinction between energy enrichment via increases in ambient light levels,
decreases in water turbidity, and a reduction of water column depth. System
parameterizations are similar to that of LKE, with the exception of the total nutrient
levels, which are in Diehl’s work reduced to levels that are more realistic of pelagic
systems.

Numerical simulations of the Diehl model indicate that with increasing energy
enrichment the system sustains a producer monoculture, then a steady coexistence
equilibrium state which destabilizes to a stable periodic coexistence state. However,
in contrast to the LKE model, further light enrichment eventually reduces the
amplitude of coexistence oscillations. Under sufficiently high light enrichment these
oscillations further decline and the coexistence steady state regains stability. Thus,
the LKE and Diehl models differ significantly in their responses to energy enrichment,
a point that Diehl attributed to his more mechanistic approach to modeling producer
light uptake and productivity. A highly complex, biochemically-based, producer-
consumer model of Kuijper, et al [28] also supports a Diehl-like response to both
energy and nutrient enrichment. A goal of our study is to clarify the underlying cause
of these different enrichment-induced behaviors.

In this paper we present a general stoichiometric producer-consumer model. The
model can be viewed as including the essential biological processes of previous
models in the literature. The defining equations rely on general but mechanistically-
based submodels of producer and consumer processes and interactions. The basic
model is three-dimensional, with dynamic state variables consisting of producer and
consumer population sizes, and a measure of producer nutrient content. Although
general in nature, the model permits a number of conclusions regarding system
dynamics. Through a combination of simulations and numerical bifurcation analysis
of a special case parameterized for algae-Daphnia systems, we illustrate the
complexity of the dynamics supported by the system. We will demonstrate that the
model exhibits the energy enrichment-related bifurcation sequences of Diehl, LKE,
and other models, as well as new bifurcation sequences dependent on the total
nutrient in the ecosystem. An important contribution of this study is an examination
of the sensitivity of our conclusions to alternate approaches to modeling the
stoichiometrically-constrained producer primary productivity, as well as the
conversion of producer biomass to consumer biomass. This is accomplished by
developing a generalized “synthesizing unit” model of biomass production that
unifies alternate the approaches used in the LKE, Diehl and other studies.

The general model is presented in Section 2, with a self-contained discussion of the
biomass production assumptions given in an appendix. Basic dynamic properties of
the general system and the associated monoculture (producer-only) models are
examined in Section 3, were it is demonstrated that the results are robust with
respect to alternate producer biomass production models. Section 4 reports on a
thorough numerical examination of the model in the context of algae-Daphnia



systems. Model parameterization, summarized in Table 4.1, is based on an extensive
review of related models from the literature. In Section 5 we examine the affects of
alternate approaches to modeling stoichiometrically-constrained consumer
productivity. Model generalizations and limitations are discussed, as well. A
summary of our findings and their ecological implications are found in Section 6.

2. Model Derivation. We consider a system consisting of a producer population,
P(t), and consumer population, C(t) as described in terms of their spatial carbon
densities. Both populations compete for a nutrient, with total amount, N7, assumed to
be constant. The amount of nutrient sequestered by the consumer is taken to be
proportionate to C(t) with g. >0 denoting the (assumed) constant nutrient: carbon

ratio for the consumer class. See [3] for a discussion of the constancy of consumer
stoichiometry. The amount, Np(t), of nutrient sequestered by the producer class is
assumed dynamic and consisting of a structural component g,P(t), g, 20 and a

flexible nutrient reserve, R(t)P(t) needed for the production of new producer
biomass. Thus, R(z)= (N ,(¢)/P(t))— g, represents the concentration of nutrients in

the flexible nutrient reserves of the producer. Our use of a flexible nutrient reserve is
similar in spirit to that of many authors, including [9], [15], [19], [24], and [26].

The model is described by the system

C'=8u ()f(P)PC- d.C (2.1)
——
consumer productivity mortality
P'=8 1, )g(P)P— d P — f(P)PC (2.2)
producer productivity mortality ~ predation losses
nutrient uptake mortality W

where NI', is the rate of change of the nutrient pool of the producer.

+R
The terms [, = gf’%q and [, = £:(q, %q define, respectively, producer and
pEp clc

consumer growth limitation indices, where 0 < 5,,, €, 0., € <1 are

assimilation/respiration-related reduction factors described in Appendix A.1. While
many of these constants could be absorbed into the definitions of the functions u,

and U, we have elected to retain them for parameterization purposes later.

Because the system is assumed closed, the amount of nutrient not sequestered in
producer or consumer biomass (the “mineralized nutrient,” N, ) is given by

N,=N;,-qC-N,=N;,—q.C—-q,P—RP and is assumed available for producer
uptake. Here, N, denotes the total nutrient pool of the entire system and is a free

parameter in our study. Biologically meaningful initial conditions must satisfy
N, 20. Our goal is to investigate model dynamic behavior, especially the type and

sequence of energy enrichment-induced bifurcations as N, varies.



In order to maximize generality, we do not specify the undefined functions on the
right of (2.1-2.2-2.3), but rather assume that they obey certain qualitative properties:

Consumer Productivity. The first term in (2.1) represents the consumer’s biomass
production rate. The combination &, f(P)PC represents the consumer’s predation

rate reduced by a factor . <1 to account for carbon losses due to egestion, digestive

processes and respiration. The consumer biomass production rate is further
modulated by a conversion efficiency factor u (/) thatis dependent on the

stoichiometric qualities of the consumer’s processed food stream in relation to the
consumer’s stoichiometric needs. The precise form of u_is a subject of moderate

debate. In Appendix A.1 we show that the standard choices used in the literature can
all be derived from a generalized version of the “parallel binding” synthesizing unit
construction of Kooijman [25]. Moreover, based on this extended synthesizing unit
model of biomass production, we deduce that u_ (/) is continuous, is non-decreasing

and satisfies 1/(1+1) < u (1) < min(l, ).

Consumer Predation. The specific rate of predation, f(P)P is typified by the classic
Holling-1I functional response, f(P)P = (f.. +(@P)")" = f. P/(f +P),where f.
represents the specific handling time, o the effective attackrate,and f, =f,, /«

defines the predation half-saturation rate. See [34]. In the absence of a handling
time, f.| — 0, and one recovers the standard Lotka-Volterra, specific mass-action
rate of predation f(P)P =P asusedin [17]. Consistent with [31], we assume that
f(P)P isincreasing and concave downward in P, and that f = Ilgxl f(P)P < oo,

Moreover, f(P) is assumed to be non-increasing in P. While our numerical

experiments will be restricted to the Holling-II form, our analytic results allow
inclusion of alternate forms assumed in [2] and [23].

Producer Productivity. For the purpose of studying the impact of light enrichment on
model dynamics, we choose to include possible density-dependent reductions in
producer growth due to light competition. The factor g(P) in (2.2) represents the

maximal (nutrient-unrestricted) specific growth rate for the producer. We assume
g(P) to be a non-negative and a decreasing function of P whenever it is positive.

Moreover, we assume that for high producer populations, the maximal (nutrient
unlimited) specific growth rate is less than its specific natural mortality rate:
lim6,g(P)<d,. Inthe numerical experiments described in Section 4, we take
P—oo

gP)=r(b—P/K)".

Based on the generalized SU for producer primary production, the factor u,(l) is
assumed to satisfy the same qualitative properties as u_ (/). Details are found in
Appendix A.2. See [18] for similar qualitative assumptions made on the factor p, (1),



and [45] for an alternate application of the SU to the modeling of producer growth.
The case where producer biomass is independent of nutrient can be handled by
formally allowing g, — 0, and setting 1,(/)=1 in (2.2). If one selects

u,(=1/(1+ I""), which in Appendix A.2 is shown to be the lower extreme for the

producer biomass reduction factor, one obtains w,(/,)=1/(1+ i"—qu) =R/ (62i +R),

which is a Michaelis-Menten (Monod) function of producer nutrient reserve density.

See, for examples, the models of [6] and [16]. The special case of equal carbon and
nutrient efficiencies (6, = €,) recovers the Droop [9] biomass factor

u,(l)=1/(+gq, /R) =1-g,/(R+q,) often selected in the literature ([2], [7], [8], [17],
[20], [26], [35], among others.)

Producer Nutrient Dynamics. Producer mortality (whether due to predation or not)
induces a proportionate reduction in producer nutrient pool, N,. We assume that

any producer nutrient lost due to natural death, or lost due to predation but in excess
of the biomass production needs of the consumer, immediately joins the pool of
mineralized nutrient, N, = N, —q.C — (R +q,)P. The nutrient uptake rate is

assumed proportionate to the producer maximal specific growth rate, with
proportionality constant 4= h(N, ) a smooth, non-negative, increasing function of

non-sequestered nutrient. Additionally, we make the mild technical assumption that
h(n) < h'(0)n = Bn for some B >0.For the purposes of numerical simulation we will

use the Michaelis—Menten form h(n) = (h;;x +(Bn)™")", and explicitly allow the

unsaturated case h(n) = fn correspondingto h_. — 0.

The assumed dependence of nutrient uptake on producer productivity is common to
the models of [22] and [4]. By mass-balance arguments this dependence is required
of models where the producer stoichiometry is fixed, as in [18] and [6]. However, a
common, alternate approach is to assume that producer nutrient uptake is
proportionate to P, with proportionality constant taken to be both a saturating
function of mineralized nutrient density, N, , and a decreasing function of producer

internal stores, R. See, for examples, [2], [7] and [48]. In contrast, the models of
[36],[20], [47] and [49] assume that nutrient uptake is proportionate to P, with a
proportionality constant that is a saturating function of N, , butindependent of

internal stores. Our assumption provides certain technical advantages, as will be seen
in Section 4 and in the mathematical analysis of [43, 44]. Moreover, Diehl [8
(Appendix A)] cites evidence that the details of nutrient uptake may not be a
significant influence on system dynamics.

It is helpful to the analysis of this system to replace (2.3) with an equivalent
differential equation for producer nutrient reserve concentration, R. Differentiating
the relation R+q, =N, /P and using (2.2) and (2.3) results in



R'=g(P)Ih(N; = q,C~q,P~RP)= 8,1, E)(R+q,).  (24)

3. Model Properties In Appendix B.1 we show that regardless of the selection of
constituent functions and model parameters, the general model is well-posed in the
sense that solutions with non-negative initial conditions remain non-negative and
bounded for all time. Specifically, Proposition B.1 implies that when g, >0 solutions

of (2.1, 2.2, 2.3) are uniformly bounded within the “biologically feasible” region
0<¢.C+q,P<N,. Forthe case g, =0, uniform boundedness can be shown using

elementary methods.

While our primary goal is to understand the effects of enrichment on the dynamics of
(2.1, 2.2, 2.3), we first show that under low energy and/or nutrient levels the system
cannot sustain a producer population. It immediately follows from (2.1) that the
consumer population cannot be sustained, as well.

Theorem 3.1 If either 5pg(0) <d, or h(N;)g(0)<d,q,,then P(t)—>0as t — oo,

Proof: Under the first inequality the conclusion follows from (2.2) using the
properties that ¢, <1 and that g(0) > g(P). For the second case we use (2.3) and the

monotonicity of /4 to find N'p <h(N,)g0)P—d, (R+q,)P <[h(N;)g(0)-d,g,)IP.
From N, =(R+¢q,)P 2 q,P itfollows that N ,(f)—> 0 as 1 — e and therefore

P(1)—>0. []

In this theorem, the first case can be interpreted to mean that producer persistence
requires sufficiently high biomass production relative to its specific mortality rate.
The second case states that if the producer is nutrient-limited, then producer
persistence requires that the nutrient uptake must potentially be larger than the
producer’s loss of structural nutrient due to natural mortality. Since A(N,)— 0 as

N, — 0, this can also be interpreted to say that system persistence requires a

sufficiently large total system nutrient pool. The following theorem complements the
previous, showing that for sufficiently high energy levels, there is a positive
monoculture equilibrium that (in the absence of consumer) is globally attracting.

Theorem 3.2 If g, =0 (u, =1),and J,¢(0) > d, then there is a unique monoculture

equilibrium (0, P",R™) to system (2.1, 2.2, 2.4) and this equilibrium is globally
attracting to all solutions with C(0)=0. If g, >0, then the same conclusion holds if

o,u, (Z—’p’%“)g(O) >d, where R, isimplicitly defined as the unique solution of the

R‘ﬂ(l

(R, +4,) = h(N).

equation 6,4, (

The proof, which relies on a nullcline analysis for the reduced system (2.2, 2.4) with
C =0, is found in Appendix B.2. A transcritical bifurcation for the producer class
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corresponds to the situation when system nullclines intersect at P = 0. Such
bifurcations can be computed in terms of the producer nutrient content, as illustrated
in Figure 3.1. Specifically, the figure shows the producer transcritical bifurcation
curves based on the Liebig, Poisson Arrival Time (PAT) and Michaelis-Menten
(Monod) cases. The horizontal axis, the maximal, nutrient-unlimited specific
producer primary production rate, can be a viewed as a measure of energy
enrichment of the system. The vertical axis describes the nutrient level of the system
as perceived by the producer’s maximum possible level of nutrient uptake,

h, = h(N,). The producer transcritical bifurcation curves are seen to be qualitatively

similar, regardless of the selection of u,. Note that for a given level of energy
enrichment r = g(0), as the biomass conversion factor u, decreases from the Liebig

to the Michaelis-Menten (Monod) case (see Figure A.1), persistence of the producer
monoculture system requires higher producer nutrient uptake, 4, .

e
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Figure 3.1: Curves bounding the transcritical bifurcation to a globally attracting
monoculture steady-state, along with the transcritical curve (blue) for the Poisson
Arrival Time (PAT) case p,(I)=(1+1" = (1+1)")"'. Transcritical curves are

computed parametrically in terms of the producer nutrient reserve concentration, R,



from r=g(0)=d, /8,1, (L) and h, = h(N,)=8,1,(s2-)(R+q,) Leftand right
bounds are generated using Liebig upper bound (/) = min[/, 1] and Michaelis-

Menten (Monod) lower bound p, (1) = (1+ I, respectively. In the case q,=0,
f, =1 the transcritical curve reduces to the vertical line r=d, /5p . The two

conditions for global stability of the “no-life” equilibrium (Theorem 3.1) are
represented, respectively, by the region to the left of the vertical line, and by the

shaded region. In all cases [ = ;—‘qﬁ with parameters dp = 05, 5p =8, €, = 9,

g, =045, and 25g, < R<5g, . See Section 4 for parameter selections and units.

In contrast to the general results of this section, here we next present numerical tests
for a specific realization of (2.1, 2.2, 2.4). Using simple differential inequalities it is
easy to show that the consumer population cannot persist if its maximal (nutrient
unlimited) biomass production rate is less than its mortality rate. Thus, we will
proceed under the assumption that that }1)1_1)2 O.f(P)P>d,.

4. Numerical Studies for Algae-Daphnia Systems

In this section we demonstrate that for biologically reasonable selections of model
functions parameters, the model (2.1, 2.2, 2.4) supports a wide variety of enrichment-
induced changes in system dynamics, including the distinct bifurcation sequences for
the models of [8] and [31]. We observe new bifurcation sequences, as well. Function
and parameter selections are motivated by pelagic studies. For such systems one
normally considers phosphorous as the limiting nutrient [11]. In this context, P and
C will be described in terms of mg carbon per liter, while R is in terms of mg
phosphorous/mg carbon.

While nutrient enrichment corresponds to a simple increase in total system nutrient,
N, , light enrichment is described in terms of its effect on g(P). Our numerical

experiments employ the simple empirical choice g(P)=max[r(b— P /K),0]. Here
rb >0 defines the maximal intrinsic rate of producer growth, b denotes the

enrichment parameter (b = 1 corresponding to the default level), and K plays a role
similar to the producer carrying capacity.

Our selection of g(P) is motivated by that of [6], [7], [8], and [48], who apply the

spatially-aggregated light gradient model of Huisman & Weissing ([21], [22], [50]) to
aquatic systems. With a slight variation in notation, these authors take

g(P)= %jw(loe‘(’”’*””)“')ds, where z denotes the depth of the water column, w (1),
0

defines the rate of producer productivity at light level ], and (based on the Beer-
Lambert Law) I = I,e”*""”* models the light level at depth s, 0 < s < z. The
parameters K and k, account for light absorption by the producer and ambient



“background” particulate matter, respectively, while /, denotes the light intensity at
water surface level. Light enrichment can be accomplished by increasing I, or
decreasing z or k. In the aforementioned references, the function y is taken of

Michaelis—-Menten type, but more generally can be simply assumed increasing in I,
with y(0)=0.

1
Changing variables in the integral, one has g(P)= Jw(loe‘("P””)z“ )du . By simple
0

differentiation one can see that for P >0, g(P) is decreasing in P. Moreover, for each
fixed P >0, g(P) is strictly increasing under enrichment, regardless of the specific
(1,=1)
producer growth rate provides an operational definition of energy enrichment in our
investigation.

enrichment mechanism. In fact, an increase in the nutrient-saturated

Additionally, we select u (I)= ("' +1)" =1/(1+1) (Michaelis-Menten producer
biomass conversion), f(P)P = (fI;;X+ (aP)™") ' = fonP/(f. + P) (Holling Il predator

functional response) h(n)=(h_. +(Bn)™")" = hmaxn/(hl +n) (Michaelis-Menten -based

max

producer nutrient uptake) and  (/)=("'+1-(1+1)")" (Poisson Arrival Time type
consumer biomass synthesizing unit). Enrichment results in a proportionate increase
in maximal specific producer growth rate, g(0) =rb, as well as an increase in

producer monoculture carrying capacity, P".

Table 4.1 gives the values for each of the 16 model parameters used in our model
simulations. The work of Andersen [2] provides the source of many of these
selections. In particular, we refer to that reference’s thorough discussion of algal
maximum specific growth rate r, structural nutrient concentration g, (there called

the “subsistence quota”) and nutrient uptake affinity, from which our parameter 3 is

estimated. In many cases the parameter values from cited the references require
conversion to the units used here

Table 4.1: Model Parameters.

Parameter Units Default and Range | References

Maximal producer specific day_' 1.1, (1.0, 3.0) [31], [47], [35], [48], [8], [3]
growth rate, r

Maximal producer carrying mg P carbon/1 1.25, (.25, 3.0) [31], [45]

capacity, K

Producer specific natural day_' .05, (.01, .1) [31], [45], [35], [48], [8], [3]
mortality rate (no

respiration), d,

10




-1

Consumer specific mortality day 24,(.02,.3) [31],[47], [35], [48], [8], [3]
rate (no respiration), d,

Maximal producer carbon unitless .8, (.5,1.0) [17]

assimilation/ respiration

efficiency, 6,

Maximal producer nutrient unitless 9, (.5,1.0) [17]

assimilation efficiency, €,

Maximal consumer carbon unitless .8, (.5,1.0) [16],[17], [20], [5]
assimilation /respiration

efficiency, 0,

Maximal consumer nutrient unitless 9, (.5,1.0) [16],[17], [20], [5]
assimilation efficiency, €,

Maximal consumer specific day_l 1. (.75, 1.0) [31], [47], [35], [48], [8], [3]
predation rate, f,

Consumer predation half- mg P carbon/1 2,(.12,.25) [31],[47], [35], [48], [8], [3]

saturation constant, f,
2

Producer minimal
(“structural”) nutrient: carbon

ratio, g,

mg nutrient /mg
carbon

.0045, [0,.0085)

[31], [47], [35], [48], [8], [3]

Consumer nutrient: carbon
ratio, g,

mg nutrient /mg
carbon

0375, (0.01,.04)

[31], [47], [35], [48], [8], [3]

Producer growth-specific 1/mg nutrient 6.0, (0.1, 25.) [46], [48], [2]
nutrient uptake affinity, 3
Producer maximal growth- mg nutrient /mg | .1, (0.05, 1.) [47]

specific nutrient uptake, £,

carbon

Total system nutrient, N,

mg nutrient/1

.02, (0.0031,.031)

[31], [47], [35], [48], [8], [3]

Energy enrichment factor, b

Unitless

1, (0, 2)

Numerical simulations of systems (2.1, 2.2, 2.4) were performed with Mathematica
7.0 [33], while numerical bifurcation computations were performed with AUTO [10].
AUTO computations confirmed simulation observations, and provided a full picture of
enrichment-induced bifurcations (total system nutrient, N, , fixed), as well as a two-

parameter bifurcation summary where enrichment level, 5, and total system nutrient

varied simultaneously.
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Figure 4.1 shows the two-dimensional bifurcation structure for the system (2.1, 2.2,
2.4) using the default parameter values of Table 4.1. The energy enrichment factor
varies over 0 <b <2 and total system nutrient level ranges over 0 <N, <.03.

0.030

00251 - ---

0020 |- -

0.015

0010

0.005 |- - -

0.000
0

Figure 4.1: The two-parameter bifurcation diagram for model (2.1, 2.2, 2.4), using
default parameters of Table 4.1. Shown are the transcritical bifurcation curves
associated with the creation of monoculture equilibria (7C ) and coexistence

equilibria (7C,). Hopf bifurcations from coexistence equilibria are located along blue

curve H . Saddle-node creation/loss of coexistence equilibria are on grey curves SN,
with standard cusp point €. With increasing enrichment, &, periodic solutions can be
lost as homoclinic bifurcations (along black curve HC ) or as homoclinic bifurcations
simultaneous to saddle node bifurcations. These latter type bifurcations (dashed
curve SNHC ), are referred to as “saddle-node Homoclinic ” bifurcations [10].
Numerical computations indicate a Takens-Bogdanov point located at 7B, which
serves as a terminal point of both the Hopf bifurcation and homoclinic bifurcation
curves. A “noncentral saddle-node homoclinic” bifurcation point [29], denoted by
NCSNHC, locates the joining of the curve of homoclinics and the saddle node curve.
See [44] and [45] for similar diagrams computed for specific two- dimensional,
producer-consumer models derived under different producer growth and nutrient
uptake assumptions. Dashed horizontal lines locate nutrient levels associated with
six specific energy enrichment scenarios described in the text.

To elucidate Figure 4.1, six one-parameter bifurcation diagrams for selected fixed
nutrient levels, N, are shown in Figure 4.2. These diagrams demonstrate the effects

of total system nutrient levels on energy-enrichment induced changes in system
dynamics. Observe that for each fixed nutrient level, high energy enrichment always
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results in the ultimate re-stabilization of the producer monoculture equilibrium,
similar to the behavior of the LKE [31] model.
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Figure 4.2: One-parameter bifurcation diagrams based on default parameter values
from Table 4.1. Solid lines denote stable equilibria/periodic orbits; dashed curves are
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unstable. For enrichment intervals where the model supports periodic orbits,
solution maxima, and minima (blue) and average values (cyan) are plotted. Black
diamonds locate transcritical bifurcation points for equilibria, while filled circles
locate points of Hopf and open circles denote homoclinic bifurcations. For the sake of
clarity, saddle-node bifurcations (turning points on the red curves) are not labeled.
(See Figure 4.3, below, for full annotation.) The computed maximum concentrations
for the producer flexible nutrient pool (center column) are consistent with the
phosphorous storage capacity values cited in Andersen [2].

For low nutrient levels (N, = .005 ) energy enrichment results in the creation of a

producer monoculture equilibrium, which by Section 3 is globally attracting. With
further energy enrichment, the increase in monoculture equilibrium causes (by
dilution) a reduction in the nutrient concentration of the producer flexible nutrient
pool.

At N, = 0Ol1there is an intermediate interval of energy enrichment for which the

system supports a non- trivial coexistence equilibrium. Numerical simulations
indicate that the coexistence equilibrium is globally stable. Under high energy
enrichment, the co-existence equilibrium is lost in a second transcritical bifurcation,
signaling the return of a globally stable producer monoculture equilibrium.

For N, =016, increasing energy enrichment causes a transcritical creation of a

locally stable, high food quality (large R ) coexistence equilibrium. Further
enrichment induces a saddle-node creation of a pair of coexistence equilibria with
larger producer levels and lower food quality. The larger of the pair (as measured in
terms of producer size) is locally attracting, while the smaller is an unstable saddle.
With further increase in energy enrichment the unstable saddle combines with the
high food-quality coexistence equilibrium and both are lost in a saddle-node
bifurcation. Subsequent to this bifurcation, the sole remaining coexistence
equilibrium is locally attracting, but (with increasing enrichment) is lost in a
transcritical bifurcation that leaves only a producer monoculture equilibrium, which
globally attracting.

Increasing total system nutrient to N, = .018 complicates the previous case in that

energy enrichment destabilizes the high-food quality equilibrium to a (supercritical)
stable Hopf bifurcation. For the periodic state, mean food quality is observed to be
slightly less than that of the (unstable) high-food quality equilibrium, both of which
decline under increased enrichment. With further energy enrichment, this periodic
orbit is lost in a Hopf bifurcation, signaling the re-stabilizing of the high food-quality
equilibrium state. As indicated by Figure 4.1, through variation of total system
nutrient, this loss of periodic coexistence can occur either after (as pictured) or
before a saddle-node creation of low food quality coexistence equilibria.
Qualitatively, this loss of periodic state is the same as that observed in the 2D
producer-consumer model of Diehl [8].
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For N, = 020, the b vs. P one-parameter diagram from Figure 4.2 is annotated and

enlarged in Figure 4.3 below. We again observe an enrichment-induced Hopf
bifurcation from the high food quality coexistence equilibrium. This periodic state is
lost in a homoclinic bifurcation near » =1.07. Further energy enrichment induces the
creation of a stable periodic solution via a subsequent homoclinic bifurcation. This
periodic solution is lost in a Hopf bifurcation (re-stabilization of the high food quality
coexistence equilibrium.) With a small additional increase in energy enrichment this
equilibrium state is lost in a saddle-node bifurcation. Observe that for the range

9 <b<1.3 (corresponding to a 10% energy reduction to a 30% increase) the number
of stable coexistence states varies abruptly.

051

0.0

Figure 4.3: Annotated view of the one-parameter bifurcation diagram for N, =.020

(producer coordinate). Bifurcation points are labeled as in Figure 4.1. The stable
periodic solution is lost in a homoclinic bifurcation nearb =1.07. However, with
further energy enrichment there is a subsequent homoclinic creation of stable
periodic solution near » =1.15. This periodic family then terminates in a Hopf
bifurcation just prior to the saddle-node loss of the high food quality equilibrium near
b=1.19.

To better understand the interpretation of this figure, it is useful to consider solution
trajectories in relation to the nullclines associated with a two-dimensional “quasi-
equilibrium” system. For this, (2.1) and (2.2) are coupled with the algebraic equation

R
W, = q,P~ RP)= 0,7 R+ q,) (41)
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obtained under the assumption that R'=0. For our selections for # and u, the

solution of (4.1) can be computed as the root of a cubic polynomial, solvable with the
technical assistance of Mathematica. Figure 4.4 shows “hybrid” phase plots for the
case N, = .02, in which the PC projections of periodic solutions to (2.1, 2.2, 2.4) are

viewed along with the computed flow lines and nullclines for the quasi-equilibrium
system (2.1, 2.2, 4.1).
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Figure 4.4: Representative quasi-equilibrium “hybrid” phase plane diagrams for

N, =.02. All horizontal axes = P ; vertical axes =C. Red denotes the consumer
nullcline; green denotes the producer nullcline, both computed under the “quasi-
equilibrium” assumption that R'=0. Blue curves are PC projections of the periodic
orbits for the full system (2.1, 2.2, 2.4). Other pictured solution flow lines are based
on the quasi-equilibrium approximation. The initial Hopf bifurcation is seen to occur
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at a value of b slightly less than .5. A saddle-node creation of a pair of low food
quality coexistence equilibria occurs for » near 1.03, prior to the homoclinic loss of
the attracting periodic solution near » =1.07. Further energy enrichment induces the
homoclinic re-creation of an attracting periodic state near » =1.15. This periodic
state terminates in a Hopf bifurcation near » =1.18. For the enrichment interval
between the two homoclinic bifurcations, the coexistence equilibrium with lowest
food quality is essentially attracting of all interior solutions. The pair of high food
quality equilibria is lost via a saddle-node bifurcation near » =1.20, and the final
transcritical bifurcation occurs near » =1.29.

For high system nutrient (here represented by case N, =.025), the general one-

parameter bifurcation structure is similar to that reported for the LKE model [31].
This case differs from N, =.020 in that the stable periodic orbit created via the

destabilization of the high food quality coexistence equilibrium is lost in a homoclinic
periodic orbit simultaneous to the saddle-node creation of low food quality
coexistence equilibrium (SNHC). A representative “hybrid” phase diagram for
enrichment values slightly lower than this homoclinic/saddlenode bifurcation is
shown in Figure 4.5.

C

| -
|| 7 - ,

~

03}

—

0.1+ —— ——
A /
- 4
__,_,———V/
/_"_’_,_’—'
|, —

~— - <

N > ———> P
001 5 i

L L L L L L L L L L L L L L L L L L L L L

0.0 0.5 1.0 15 2.0

17



Figure 4.5: “Hybrid” Phase plane diagrams for N, =.025 and b =1.22. With

increased enrichment, the periodic orbit (shown in blue) is lost in a homoclinic
bifurcation simultaneous to the saddle-node creation of two low-food quality
equilibria born when the (green) producer nullcline intersects the (red) consumer
nullcline at approximately (P,C) = (.8,.3). The larger of the two low food quality

coexistence equilibria becomes attracting of essentially all positive solution
trajectories, as depicted in Figure 4.4 with » =1.10. The discrepancy between the
periodic orbit and the flow lines is due to the “quasi-equilibrium” approximation used
in computing the latter. However, there seems to be a general consistency between
the two systems. A rigorous comparison of system (2.1, 2.2, 2.4) and this two-
dimensional approximation is given in [44].

In summary, based on these calculations it appears that the bifurcation curves shown
in Figure 4.1 partition the (b, N, ) plane into distinct regions of system dynamics. In

region O energy/nutrient levels are insufficient to sustain the producer monoculture.
In region I the producer monoculture exists, while in region II the producer and
consumer can coexist in a stable equilibrium. In region III there is an unique
coexistence equilibrium (unstable) and an attracting periodic coexistence state. In
region IV effectively all solutions approach a low food quality coexistence
equilibrium. Regions V and VI are regions of bistability, with the system supporting a
locally attracting low food quality equilibrium state simultaneous to a locally
attracting high food quality equilibrium (V) or attracting periodic coexistence state
(VI). Itis not known to what extent to this partition of the (b, N, ) plane is affected by

changes in the constituent functions and other auxiliary parameter selections.

5. Discussion

The model considered here demonstrates the effects that variable producer
stoichiometry can have on models of nutrient-constrained, energy enriched systems.
Our findings are summarized in Figure 4.3. Beyond a minimal critical system nutrient
level, energy enrichment induces the creation of a monoculture equilibrium state
consisting of the producer only. Under higher nutrient levels, energy enrichment can
cause this state to lose stability, signaling that the system can support a coexistent
consumer population and a locally-attracting coexistence equilibrium. With sufficient
additional nutrient, the system can support a periodic coexistence state, but only for
an intermediate level of energy enrichment levels. Under very high nutrient levels
energy enrichment induces a loss of periodic solutions in an infinite-period
(homoclinic) bifurcation. The numerical experiments of Section 4 illustrate the
diversity of dynamic changes that can occur at intermediate energy levels. A number
of possible scenarios is observed, including the homoclinic creation of attracting high-
period coexistence solutions and/or the creation of new attracting coexistence
equilibria.
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Our results unify the results of LKE [31], [27] and Diehl [8], in that under energy
enrichment periodic coexistence here is lost through a variety of bifurcation
sequences dependent on the total system nutrient level (Figure 4.2). At low-
intermediate nutrient levels the model resembles the Diehl model, while at high
nutrient levels it resembles the LKE model. Moreover, at intermediate nutrient levels,
we observe more complicated bifurcation sequences that simultaneously share the
characteristics of both the LKE and Diehl models. As is the case for those models,
under high energy levels the system supports a globally attracting equilibrium state.
The results presented here provide useful motivation for a rigorous analysis of the
quasi-equilibrium approximation (2.1, 2.2, 4.1) and an examination of its similarities
and differences to the general model of this paper [44].

Regarding the Diehl study, we note that the impact of altering enrichment by way of
varying water column depth is strictly speaking not covered by our analysis. In the
Diehl model, producer and consumer populations are assumed homogeneously
spatially distributed and (as pointed out in Section 4), the model of producer primary
productivity used there satisfies the assumptions of our model. However, the Diehl
model is not closed in nutrient, with algae (but not its consumer) allowed to leave the
system due to sedimentation. Therefore, changing water column depth not only
affects energy levels, but also influences algae sinking losses from the system -- hence
the nutrient pool. However, the general characteristics of the producer and consumer
nullclines shown for the simplified model in [8], as well as their dependence on
system nutrient levels and decreased water column depth, are consistent with our
results.

Model Robustness: Altering the Consumer Biomass Conversion Submodel

As a multi-parameter class of models with qualitatively defined constitutive
functions, it is difficult to draw general conclusions about the extent that the
observed enrichment-induced bifurcations hold for the general model. We do not
attempt a methodical examination of how different model parameterizations might
affect the numerical observations of section 4. However, as noted in Section 2, the
method of modeling consumer biomass conversion has been a point of considerable
discussion in the literature, so is deserving of special attention. To this end, we have
computed the analogous two-parameter bifurcation diagram Figure 4.1, replacing the
default biomass conversion factor with the alternatives pictured in Figure A.1.

Short of presenting the full details, we simply report that our observations indicate
that the qualitative characteristics of energy enrichment-induced bifurcation
structure are not significantly impacted by the selection of u (/). Figure 5.1

illustrates this point with a simultaneous plot of the two-parameter (b vs. N, )
diagrams for the Michaelis—-Menten lower bound and Liebig upper bound for u_,
along with the default selection u (/)= (1+ I"' = (1+1)™")". For the sake of clarity,

transcritical bifurcation curves and the Hopf, homoclinic, saddlenode bifurcation
curves are pictured separately. While the algebraic form of u_can impact the
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quantitative details of the diagrams, all choices share the same qualitative
characteristics. The intermediate loss of periodic coexistence state via homoclinic
bifurcations (see Figure 4.3) is most pronounced in the Liebig case, and is least
evident in the Michaelis-Menten case. Examination of the lower panel with N, = .021

shows that the Liebig case supports a SNHC loss of periodic state, followed by a
homoclinic re-creation of a period state, which is then lost in a Hopf bifurcation. In
this case the model shares the essential bifurcation characteristics of both the LKE
and Diehl models.
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Figure 5.1: Simultaneous (b vs. N, ) bifurcation diagrams for smoothed Liebig
u.(l)=min[1,/] (black), “Poisson Arrival Time” (PAT) default
uOH=1+1"=1+D")" (blue), and Michaelis-Menten (Monod) u, (/) =1/(1+1)

(grey) consumer biomass conversion functions. For the purpose of using the AUTO
[10] software, the Liebig case was smoothed using the aggregate fi_(/) with a =.001;

see Appendix A.1 for details. The top figure shows the producer transcritical
bifurcation curve (equal in all three cases, and comparable to that of Figure 3.1) in
green, and the coexistence transcritical bifurcation curves. The bottom figure shows
the Hopf bifurcation, homoclinic bifurcation and saddlenode bifurcation curves. As
usual, all parameters are the defaults of Table 4.1.

These numerical results demonstrate that the selection of consumer biomass factor
U.(1)can have a significant quantitative impact on the model’s response to energy

enrichment. For example, the “Poisson Arrival Time” (PAT) selection supports the
same basic bifurcation structure as the Liebig case, but at (roughly) double the
system nutrient and light enrichment levels. This quantitative difference provides a
possible explanation of the different enrichment-induced bifurcation behaviors
reported in [31] and [8]. The LKE study assumes the Liebig case and high system
nutrient levels, both properties promoting the loss of periodic coexistence state in a
Saddle-Node Homoclinic bifurcation. In contrast, the Diehl study employs the PAT
consumer biomass conversion factor along with lower total system nutrient levels.
These selections are more likely to cause the periodic coexistence solution to be lost
in a Hopf bifurcation, with a corresponding re-stabilization of the high food quality
coexistence steady state.

Model Generalizations

The general, process-based, construction of model (2.1, 2.2, 2.3) is useful in that it
helps to identify assumptions sometimes made implicitly in specific, more
empirically-based, models. Modular mechanistic models also serve as stepping-
stones towards articulating various model generalizations. For example, nutrient
released through producer and/or consumer mortality are here assumed to be
immediately available for producer uptake. More realistically, one can introduce an
intermediate nutrient sediment class that accepts producer/consumer detritus and
releases mineralized nutrients suitable for producer use. See a producer
monoculture system with sediment class in Diehl [7], and [8] for the analogous
producer-consumer model. Alternately, the mineralized nutrient pool (here
computed as nutrient not sequestered by the producer and consumer classes) could
be opened, allowing a nutrient input flux and output loss. See [2], [19] and the
references therein for related open systems, where system dynamics is often studied
as a function of nutrient input concentration and system dilution (removal) rate.

The model of consumer functional response is here assumed to be independent of the

stoichiometric characteristics of the producer population. However, in [34], [42] it
has been observed that the nutrient status of the producer class can affect their rate
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of capture, as well as the associated consumer handling time and assimilation
respiration. No attempts have been made here to consider such effects.

Regarding consumer use of producer nutrients, it has been assumed here that both
producer structural and reserve nutrients are equally useful to consumer biomass
creation, with common nutrient use efficiency €,. More realistically, the efficiencies

for structural and reserve producer nutrients are likely to be different. Generalizing
the derivation of the Appendix A.1, one could introduce distinct structural and

reserve efficiencies, ef, and ef, respectively. The nutrient flux to the consumer
synthesizing unit becomes r, = (€,g, + £,R) f(P)P, the consumer growth limitation

indexreads [, = (g,q, + 8§R)/(5cqc)and the consumer biomass conversion coefficient

in equation (2.1) becomes 6cuc(M). See the related “simplified DEB” model of

0.4,

[46] for an instance where 8; >0, but 85 =0.

Considering the overall derivation of (2.1-2.3), a more careful treatment of producer
and consumer maintenance respiration would be of use. In the current model,
maintenance respiration is combined with assimilation processes, and simplistically
manifests itself in the model through the carbon use efficiency coefficients, ,and 6, .

More realistically, maintenance respirations could be modeled as a function of

producer and consumer biomass. A producer respiration carbon loss term similar to
the current mortality term could be added to (2.1), although maintenance respiration
is not likely to affect the producer nutrient pool, N,. Given our modeling assumption

of constant nutrient: carbon stoichiometry, ¢g_, adding a similar “mortality-like”

respiration term to (2.1) leads to issues regarding the fate of the associated consumer
nutrient. See [2], [19], [3], [26] and the references therein for related approaches to
modeling maintenance respiration.

6. Conclusions

In recent years a number of authors have contributed to the understanding of
producer consumer systems in which the producer’s nutrient content is assumed to
be variable. We have presented here a general model whose construction is based on
general, qualitative assumptions, rather than relying on specific algebraic forms for
model components. In particular, the dependence of producer primary productivity
and consumer biomass conversion on producer nutrient content here is motivated by
a generalized use of the synthesizing unit concept. This approach forces one to focus
on system characteristics that are independent of the algebraic details of how
nutrient constraints are described in the model. Despite the generality of our model,
we have shown that the associated monoculture (producer only) system is tractable.
Numerical experiments indicate that the details of how producer nutrient stores
affect its primary productivity have little effect on the associated consumer-free
system.
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We have parameterized (Table 4.1) the general model to the context of algae-Daphnia
systems, and for this realization numerical simulations demonstrate the diversity of
energy enrichment-induced dynamic changes that can be observed at different
system nutrient levels. Under modest nutrient levels, energy enrichment can result
in a locally attracting (sometimes periodic) coexistence state simultaneous to a locally
attracting low food quality equilibrium state. Further enrichment may induce a loss
of periodic state in a variety of different bifurcation scenarios. In particular, large-
amplitude periodic coexistence solutions may intermittently re-appear under
additional energy enrichment. Our model shares many of the essential modeling
assumptions of both the LKE [31] and Diehl [8] stoichiometric producer-consumer
models. Our results reconcile these two studies in that our model exhibits for high
system nutrient levels the energy enrichment responses of LKE, while for low
nutrient levels it supports the responses of the Diehl model. Furthermore, our
numerical bifurcation computations indicate that the algebraic form assumed of the
consumer biomass conversion submodel has little qualitative effect on the overall
bifurcation structure of the model. However, the specifics of consumer biomass
conversion can cause observable quantitative differences on the model’s bifurcation
structure.

Acknowledgments: The authors thank the referees for their suggestions.
Appendix A: Stoichiometrically-Constrained Biomass Production

A.1 Consumer Biomass Production. The conceptual basis of the biomass Synthesizing
Unit [25] is that of a hypothetical production site that accepts simultaneous fluxes of
substrates, and generates stoichiometrically-constrained biomass. We assume that
the consumer SU receives per capita fluxes of carbon with mean rate r. =9, f(P)P

and nutrient with mean rate r, =€,(q, + R)f(P)P, both proportionate to the per

capita predation rate. The parameters 6, <1and €, <1 represent respective

reductions of ingested carbon and nutrients due to egestion, digestive processes and
respiration.

Following [25], one hypothesizes substrate arrival probabilities 2,, 2, for the

arriving carbon and nutrient streams. If the probabilities are normalized to have
mean arrival times one, the mean effective substrate arrival time is given by

.[1 -2,(ru)?, (;ic u)du . Assuming that there is a negligible production period in
0

assembling arrived substrates, the specific (per capita) consumer biomass growth
rate is given by

1/ Jl - 2,(ru)?, (%u)du = rC/J.l -P,02,(v)ydv=45.u.,)f(P)P
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with 1.(1)=1/ [1-2,()2,(v)dv and I, = (¢.(q, + R)/8,)/ q,. Based on this
0

derivation, /, represents the ratio of the nutrient and carbon fluxes arriving at the SU,

in relation to the stoichiometric requirements of consumer biomass. One can view
[. <1 to be an indication of nutrient-poor food, while /. >1 corresponds to food

containing sufficient nutrient content to permit carbon-limited biomass creation. The
reciprocal of /. corresponds to the “limiting coefficient” defined in [35]. The function

U (1) can be thought of as a reduction factor due to the stoichiometric differences

between the processed food stream and consumer biomass. Our technical
assumptions on u_(/) are based on this construction.

Proposition A.1. If 2, and 2, are functions each satisfying 0 <2(v)< I, lim P(v)=1,

? non-decreasing, and _[1 —P2(w)dv=1,then u(l)=1/ jl - 2,(v)2,(Ilv)dv is increasing
0 0

d
in 7, with I/(1+1) < p () <min(l, I). Moreover, for />0, both u()/! and d_/}l are

non-increasing in /.

Proof: Because 2,([,v) is increasingin [/, it follows easily that 1/ u(/) is decreasing in
[. Under our assumptions on 2,(v) and 2,(v), we have 1 <(1-2,(v))(1-2,(lv)).
Expanding and rearranging this inequality, one gets

1/ u(ly= [1- 2,2, ()dv < [1-B,(v)dv+ [1-8,(v)dv = 1+1/ I and the stated lower
0 0 0
bound on u(/). The upper bound on p(Z) follows from the observation that since

2,(v), 2,(v)<1,both 1/ u(l) = Jl —P,(v)dv (which equals 1) and
0

1/ u)= jl —2,(lv)dv (which equals 1/1.) Thus, 1/ u(l) 2 max(1,1/1) (which equals
0
1/min(1,/).) By change of variables in the integral, one gets
[/ ul)= Jl —2,()P,(s)ds . Thus [/ u(l)is non-decreasing in / since 2, is non-
0
decreasing. In fact, if we express 2,(u) = Jﬁé (s)ds, then
0

%(Z /u) = lizj.ﬁe(s /)2, (s)sds = 0. Finally, if we further express 2,(u) = '[;é%(s)ds,
0 0

then differentiation of u™'(/) results in pu~ % = J‘Pg(u);é% (Iu)udu . It follows that
0
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r d
e _ (@)21%@ I D), (s)sds 20, from which d_‘lll is seen to be non-increasing in /
0

because 2, and [/ u(l) are non-decreasing. |:|

If the arrival rates for the carbon and nutrient fluxes are both assumed constant then
2,0v)=2,(v)=0if v<l,and 2,(v)=2,(v)=1if v>1. One obtains u (/)= min[l, /],
the Liebig “Law of the Minimum.” In this case, .4, (/.) = min[6,,€.(q, + R)/q.], as
discussed in [20]. This further reduces tod, min[L,(g, + R)/g,.] under the assumption
of equal assimilation efficiencies for carbon and nutrient. See [31], [27] and [46].

However, many authors have observed that nutrient assimilation efficiency is often
higher than carbon assimilation efficiency. See [17], [36], and [5].

The Liebig Law has been criticized for the lack of smoothness it introduces into the
consumer biomass production term in (2.1) ([39], [35], [26], [28]). The resulting
discontinuity in the associated linearized system introduces difficulties for numerical
bifurcation software [10]. Hessen and Bjerkeng [20] discuss an empirical smoothing
of the Liebig case. As shown above, the Liebig case may be viewed as the (perhaps
atypical) upper extreme for SU-based biomass conversion factors, with more
mechanically realistic alternatives producing lower biomass conversion rates.

Many different biomass conversion efficiency functions can be obtained by taking
different forms for 2, and 2,. For example, Kooijman’s original work considers the

case where 2, and 2, are defined in terms of Poisson and Erlangian distributions.
However, for these the algebraic form of u_(/) becomes prohibitive in all but the
Poisson case Z,(v)=2,(v)=1-¢"", where u (I)=(1+ I”"'—=(1+D)™")". This case was

originally derived in [39], where it (there called the “Poisson Arrival Time” model)
was shown to compare favorably to other nutrient limitation models in its ability to
model nutrient-limited growth in both chemostat and terrestrial data sets.
Intermediate to this and the Liebig case, one could consider the situation where

nutrients are assumed to arrive to the SU as a Poisson process2,(v)=1-¢" but
carbon arrives at a constant rate, as in the Liebig case. The resulting biomass
conversion factor then is easily computed to be u (I)=1/(e”" +1). For constant
carbon arrival rate, but with nutrient arrival described in terms of the gamma
distributions 2,(v)=1-(1+2v)e>’and 2,(v)=1-(1+3v+31(3v)’)e™ one gets
w(=1/(A+Dhe™ +1) and p (I)=1/((1+21+21*)e™ +1), respectively. One can
show that the Michaelis-Menten //(1+/) lower bound on u_ (/) is sharp in the sense
that there exist arrival probabilities for which the resulting u (/) approximates

[/ (1+1) arbitrarily closely. Specifically, for 2,(v)=1-¢" and the family
P;’(v) ={l-7ifv<l/7,1ifv>1/7} defined for parameter 0 <7 <1, one can

compute that u”()=1/(1+1+7l(e""" =1)) > 1/(1+l)as 1 —0.
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The primary advantage of this generalized SU-based construction lies in its process-
motivated framework for describing nutrient-regulated biomass conversion. The
Liebig “Law of the Minimum” is conceptually simple, but attributes to the whole
consumer population an identical, simultaneous response to the nutrient content of
its food source. More realistically, nutrient quality will vary among members of the
producer population, resulting in an aggregated version of the Liebig term. This can
be made analytically rigorous using the “transmutation” concept discussed in [38].
Specifically, if one assumes that the consumer limitation index is distributed about its
mean with probability distributionn (which we take to have support on the interval

[-a, a], a <1), then the expected biomass conversion efficiency for a population of
“Liebig-type” individuals is given by fi (/) = Jmin[l + u,11n(u)du . One can show that

regardless of the choice of distribution function, i (/)=1{ for [<1-a, i1 (I)=1 for
[ =21+ a, and that f1,(/) is continuously differentiable in /. In the simplest case, where
n(u) = )5, on its support, one calculates thatfor 1-a</<1+a,

fg.()=1-(1-1+a)/4a.

Figure A.1 provides a comparison of some of the biomass conversion factors that we
have discussed, including ,uim(l) and the aggregate (1 (/) for a=);.

He()
1O}k

0.8+

0.6+

04+

0.2+

0.5 1.0 1.5 2.0

Figure A.1: Alternate consumer biomass conversion factors u (/). From top to
bottom: min[1, /], i (1) witha= ), 1/ (1+20+21*)e™ +1), 1/ (1+De™ +1),
L' +D, A+ =1+, 1/A+1++(e™" -1)) and greatest lower bound
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L/A+1).

A.2 Producer Biomass Production. We assume that producer SU receives a carbon
flux r. = 5pg(P)P, and a nutrient flux r, = € ,Rg(P)P whose density is determined by

the concentration of producer nutrient reserves, R. Parameters 0 < 5p,8p <1

represent reductions of carbon and nutrient fluxes due to maintenance and growth
respiration. Here interpreting 2,, 2, to be the substrate arrival probabilities for the

producer SUs, one computes the expected substrate arrival rate as

.[1 - 2,(r.u)?, (;ic u)du . Analogous to the consumer case, the specific producer
0

biomass growth rate is given by 5pup(lp )8(P)P with u ()=1/ J.l -2,(»)2,(lv)dv and
0

l,=rylq.=¢€,R/0,q,.

Appendix B: Model Analysis

B.1 Well-Posedness of the Model. By standard estimates, solutions of (2.1-2.3) with
non-negative initial conditions will remain so for 7 > 0. Using the properties of 1,

for small values of R the termin (2.4) 6,u,(l,) (R+q,)=0,1,q,, which equals &,R if
q,>0.1f g,=0 then u,=1and 6,u,(,)(R+q,)=06,R. In either case, (2.4) shows
that the nutrient reserve concentration R(¢) also remains non-negative for ¢ > 0. The

following result verifies that the total amount of nutrient sequestered by the
producer and consumer remains less than the total system nutrient pool.

Proposition B.1 If N,(0)+¢.C(0)<N,, then N, (#)+¢.C(t) <N, forall t 20.
Using N, =(R+q,)P, this inequality results in the bound on the producer’s nutrient

reserve concentration R <(N, —¢q.C—q,P)/P.
Proof: Let t denote the smallest value for which N ,(¢)+¢,C(t)= N, . Then atsuch 7,

N, +q,C =h(N,)g(P)P—d,(R+q,)P—(R+q,)f(P)PC +q.[8 1. (3 -2) f(P)P - d,1C

4
=h(N; =N, —q,C)g(P)P+[~(R+q,)+q,8,11,(5-—)IPf(P)C —d,(R+q,)P — q,d,C
< 1(0)g(P)P +[~(R+q,)+&,(R+q,)Pf(P)C —d,(R+q,)P-q,d.C

since p.(/)<I. Using h(0)=0 and €, <1, one gets

N, +q.C <-min[d,,d (N, +q,C)=—min[d,,d,|N, <0. This is a contradiction.

]

B.2 Persistence in the Monoculture System. The monoculture case (C =0) is
described by the equations
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R
P~:[5pup(8p%q )g(P)—d, 1P (B.1)

R
R'= g(P)h(N; - q,P~ RP)=8,11,(*" % o JR+q,)] (B:2)

For the case where the producer productivity is not nutrient-dependent
(¢, =0, u, =1) this system simplifies to the uncoupled pair P'= [5pg(P) -d, P,

R'=g(P)[h(N, — RP)~- 5[,R]. Under the assumptions of g there is a unique nontrivial
monoculture equilibrium P = P" >0 to the first equation for when 5pg(0) 2d,.

Under our assumptions on 4, the expression A(N, — RP™)— 6PR is strictly decreasing

in R, and has a unique zero R = R" on the interval 0 < R < N%m . Itis easily shown

that (P",R™) is globally attracting to all solutions with P >0, R>0.

For the case g, >0 we first describe the P'=0 nullcline for (B.1). Define P >0 tobe
the unique solution of 5pg(15) =d,. Foreach 0<P< P, one has 6,8(P)>d,. By the

conditions on , there is a unique value R= R, (P)>0 satisfying

o,u, (8PRP (I%q )= d/g(},). As a function of P, nullcline R, (P)is continuous and is
pitp

increasing in P, with ,u,,(g”R”(}%q y—>las P— P. When P=0, R= R,(0)
pip
satisfies g(0)=d, /5, u, (8"%%).

The R'=Onullcline for (B.2) satisfies
h(N, —q,P— RP)= 6pup(8p% o SR+, (B.3)
pip
For fixed P, 0 < P <N, /q, the left side of (B.3) defines a non-increasing function of
R on the interval 0 < R<(N, —¢q,P)/P thatis positive at R=0 and vanishes at
R=(N, —q,P)/P. By our assumptions on [, the right side of (B.3) defines an
increasing function of R that vanishes at R =0, and is positive at R= (N, —¢q,P)/P.

Therefore, there is a unique solution R = R,(P)>0 of (B.3). As a function of P, the
nullcline R = R,(P) is continuous and non-increasing in P. When P=0, R,(0)=R__

is implicitly defined as the unique solution to A(N,)=6,u, (8”Rmalx 5,4, YR, +4,)-

By the monotonicities of R,(P) and R,(P), there will exist an equilibrium

(P,R)=(P" ,RR(F"’ )) (which is unique) with P >0 and R >0 if and only if
R,(0) < R,(0). This is equivalent to the assumptions of the theorem.

28



0.01

0.00 L1 | | | |
0.0 0.5 1.0 1.5 2.0

Figure B.1. A typical phase plane for the monoculture system, illustrating system
nullclines and the equilibrium (P,R) = (P™,R™). The case shown assumes

g(P)=max(r[b—-P/k],0), u,()=1/(1+1), Z:Z—"qi, h(n) = Bn, and parameters
r=11,b=1,k=125,6,=9,6,=28, q,=.0045, =6.0,and N, = .02. See Section

4 for a discussion of parameter selections and units.

To prove that equilibrium is globally attracting, we multiply the right sides of (B.1,
B.2) by the Dulac function (Pg(P))"', and compute

d e, d € R
a—P(5,,.U,,(g£)—dp /g(P))+a—R(h(Nr —q,P—RP)/ P-6,u,( ”Aq[,)(R+qp)/P)S0-

Dulac’s Criterion rules out the existence of closed cycles, and global stability follows
from a standard application of Poincare-Bendixson theory.
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