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ABSTRACT. A rudimentary predator-prey model is considered that is stoichometric, in that the
nutrient content of the producer species affects the ability of the consumer to produce biomass. We
show that the model supports biologically important dynamical properties that differ from the corre-
sponding non-stoichiometric model. Specifically, under the assumption of Holling II-type functional
response, for all sufficiently high system nutrient levels energy enrichment of the producer induces
the loss of stability for the consumer-free (producer “monoculture”) system and the transcritical
creation of a non-trivial coexistence equilibrium. Under further energy enrichment, this equilibrium
undergoes a loss of stability (generically via Hopf bifurcation.) The model then supports a non-
trivial periodic coexistence solution. In contrast to the non-stoichiometric case, here further energy
enrichment induces restabilization of the monoculture equilibrium. Moreover, under sufficiently high
energy enrichment, the system supports no nontrivial periodic solutions. The details of the bifur-
cation structure are computed for a simple case. Our results suggest that the energy-induced loss
of periodic coexistence state can be attributed to the dilution of a consumer-limiting nutrient when
the producer population is large, resulting in a carbon-rich / nutrient-poor food source that cannot
sustain the consumer’s nutrient needs.

AMS (MOS) Subject Classification. 92D25, 37J45.

1. INTRODUCTION

In 1971, Rosenzweig [24] pointed out that energy/carbon enrichment in predator-

prey systems [25] can destabilize a system’s coexistence equilibrium state, inducing

the creation of an oscillatory coexistence state. In the modification of the classical
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Lotka-Volterra model that assumes Holling II-like saturation of the consumer foraging

rate [4], the amplitude of oscillation increases with enrichment, and the periodic

solution persists for all large energy levels. In such non-stoichiometric models (which

only track the flow of carbon in the system) enrichment is modeled as an increase in

producer carrying capacity.

More recently, the impact of energy enrichment has been considered in stoi-

chiometric producer consumer models. Stoichiometric models differ from their non-

stoichiometric analogues in that in such models producer and consumer biomass pro-

duction depend both on the carbon:nutrient properties of the producer, as well as

the carbon:nutrient requirements of the consumer species. For example, Droop [6]

considered the effects of nutrients on producer primary productivity. Methods for

modeling the dependence of consumer biomass conversion efficiency on the nutrient

content of the producer population were first considered in the work of Andersen [2]

and Hessen & Bjerkeng [11], and subsequently in [3], [14], [23] and [26].

The effects of enrichment in stoichiometric producer-consumer systems began

with the paper of Loladze, Kuang & Elser [20]. In stoichiometric models, enrichment

must be modeled more mechanistically in order to distinguish between (say) increasing

ambient light and increasing total system nutrient levels. The LKE model introduced

stoichiometric effects to the usual realization of the Rosenzweig-MacArthur model [25]

that assumes Holling II-type predation. They take the system to be nutrient-closed

(that is, it possesses a fixed total nutrient budget) for a single nutrient that is parti-

tioned between the producer and consumer populations. The nutrient concentration

of the producer population is variable, with higher nutrient levels affecting both pro-

ducer primary productivity and consumer biomass conversion efficiency. Numerical

simulations of the LKE model (parameterized for algae–Daphnia system with phos-

phorous viewed to be the limiting nutrient) suggested that with increasing energy

enrichment, a stable, producer monoculture gives way to a stable coexistence equi-

librium state. Like the Rosenzweig model, with further enrichment this coexistence

equilibrium can lose stability, resulting in a stable, attracting, periodic, co-existence

state. However, in contrast to the non-stoichiometric case, the periodic state per-

sists until energy enrichment has attained a critical level, at which point the periodic

state is apparently lost. Under further enrichment, all (in a generic sense) solutions

of the system eventually approach the carrying-capacity equilibrium associated with

the monoculture (consumer-free) system.

Subsequent to the LKE study, a number of authors have proposed alternate

stoichiometric producer-consumer models ([3], [5], [8] [15], [16], [17], [19], [21], [28],

[29], [30].) These models typically support many of the energy-enrichment induced

behaviors seen in the LKE model. A general class of producer-consumer models is

presented in [26]. The goal of that work has been to construct a general model that
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is justified on the basis of the underlying biological processes, but one that is also

amenable to rigorous analysis [27].

However, one can argue that the very generality of recent models tends to ob-

scure the underlying causes of the dynamic changes observed in numerical and analytic

studies of energy enrichment. For example, in [26] nutrient limitation is allowed to

affect (through a flexible producer nutrient reserve pool which supports growth) both

producer primary productivity and consumer biomass conversion. Moreover, the sizes

of both the producer and consumer populations indirectly affect the producer nutri-

ent reserve in that both populations sequester nutrients, leaving only the remainder

available for producer uptake. The model also allows a variety of ways to describe

the producer’s uptake of environmental nutrients.

Our goal here is to gain insight into the root causes of the energy-induced dy-

namical changes observed in stoichiometric producer-consumer models, rather than

pursue a model that is biologically fully accurate. We therefore consider a model that

is intentionally simple in construction. The model can be viewed as an approxima-

tion of those considered in the literature, but includes only a single stoichiometric

effect, the influence of producer nutrient:carbon ratio on the consumer’s efficiency in

converting producer biomass to consumer biomass. We will rigorously show that this

single stoichiometric mechanism leads to many of the enrichment-induced effects ob-

served in previous studies, including the loss of periodic solutions under high energy

enrichment.

We present the model in the next section, with a discussion of the assumptions

made of the constituent functions. The dynamical properties of the model are exam-

ined in Section 3, including an analysis of system nullclines, the stability properties

of equilibria, and the existence (and non-existence) of periodic solutions. Section 4

focuses on a numerical treatment of a specific realization of the model, using param-

eters associated with algae-Daphnia systems. We conclude in the final section with

a summary of our findings and their ecological implications.

2. MODEL DERIVATION

As in [26], [27], we consider a system consisting of a producer population, P (t),

and consumer population, C(t) as described in terms of their spatial carbon densities.

In contrast to the highly mechanistic model in those references, we here consider the

simple system

P ′ = [g(P, e) − f(P )C]P (2.1)

C ′ = [δµ(n/P )f(P )P − d]C (2.2)

where functions g, f and µ are smooth and satisfy assumptions described below. The

function g(P, e) represents the per capita (specific) net growth rate of the producer
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population, which is assumed affected by ambient energy levels, denoted by e ≥ 0. Per

capita (specific) predation by the consumer population is assumed to be a saturating

function f(P )P of producer population size, as typified by Holling-II predation. The

parameter δ > 0 denotes the maximal biomass conversion efficiency for the consumer,

while d > 0 is the specific death rate for the consumer population.

The parameter n ≥ 0 represents the spatial density of the total nutrient level

in the system, which is assumed to be constant. Producer growth is here assumed

independent of n, and all system nutrient is assumed immediately sequestered by

the producer, resulting in a producer nutrient:carbon ratio of n/P. This fraction

describes the “food quality” that the producer presents to the consumer. This is

an approximation to the more realistic case considered in [26], [27], but is justified

when the producer primary productivity is not nutrient-limited, and the amounts of

nutrient sequestered by the consumer is a small fraction of the total system nutrient

pool.

The function 0 ≤ µ(n/P ) ≤ 1 describes a stoichiometry-induced constraint on

the consumer’s ability to convert producer biomass to consumer biomass. We remark

that a possible generalization might seemingly involve taking an efficiency factor of

the form µ(P, n). However, this factor should be independent of the spatial units used

to measure producer carbon density, P , and system nutrient concentration, n. That

is, µ(P, n) = µ(sP, sn) for any scaling factor s > 0. Selecting s = 1/P , we arrive

(heuristically) at µ(P, n) = µ(1, n/P ), which is the form we have assumed in (2.2).

Replacing µ ≡ 1 recovers the non-stoichiometric model of Rosenzweig and MacArthur

[24], [25].

Conditions on g, f and µ are given below. Throughout, we use primes to denote

differentiation with respect to P.

Hg: For all e > 0, g(P, e) is assumed to be non-increasing in P . We assume that for

e > 0 there exists a value Pm = Pm(e) > 0 with g(Pm, e) = 0, g′(Pm, e) < 0 and

g(P, e) > 0 on the interval 0 ≤ P < Pm. Without loss of generality, we assume

that lim
e→0+

Pm(e) = 0.

The value Pm(e) < ∞ designates the e-dependent carrying capacity (“monocul-

ture” equilibrium) for the system in the absence of the consumer population. By

construction, this equilibrium is globally attracting of all positive solutions to the

monoculture system.

The assumptions on the predation term are motivated by the classic Holling II

response function f(P )P = αP/(h + P ).

Hf : For all P ≥ 0, f(P )P is assumed to be increasing in P and f ′(P ) < 0. Moreover,

lim
P→∞

f(P )P < +∞ and lim
P→∞

f(P ) = 0.
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The assumptions on µ are motivated by [26]. In particular, that reference includes

a derivation of the properties expected of µ based on a generalization of the consumer

biomass “synthesizing unit” of Kooijman [14].

Hµ: The biomass conversion efficiency function µ(Q) is a non-decreasing function of

Q > 0, with µ(0) = 0 and normalized with µ(+∞) = 1. Moreover, we assume

that there exists a constant q > 0 independent of e and n such that µ(Q) ≤ Q/q.

The inequality imposed on µ(Q) reflects a stoichiometric constraint on consumer

biomass conversion. The efficiency of consumer biomass conversion cannot be greater

than the ratio of the producer nutrient:carbon ratio, Q = n/P , to the consumer

population nutrient:carbon ratio, q (assumed fixed.) Specifically, one unit of con-

sumed producer will contain n/P units of nutrient, which will generate at most n/Pq

units of consumer biomass. That is, µ(Q) ≤ Q/q. Hypothesis Hµ is satisfied, for

example, by the Monod function µ(Q) = 1/(1 + q/Q), the “Poisson Arrival Time”

model µ(Q) = 1/(1 + q/Q − (1 + Q/q)−1) of [14], [23], as well as by the Liebig form

µ(Q) = min[1, Q/q] used in [20].

Based on hypothesis Hµ we see that biomass conversion efficiency will increase

as total system nutrient increases: For each P > 0, lim
n→∞

µ(n/P ) = 1. The effect of

energy enrichment is modeled through the dependence of g on e. We assume:

He: For each P ≥ 0, g(P, e) is assumed to be increasing in e, with lim
e→∞

g′(P, e)/g(P, e) =

0 and lim
e→∞

Pm(e) = +∞.

The first limit of He can be interpreted to mean that energy enrichment eventu-

ally has a diminishing return in its impact on the producer specific growth rate. It can

be satisfied in two enrichment scenarios. First, the limit follows if lim
e→∞

g′(P, e) = 0,

which corresponds to a saturation of the net producer growth rate under high-energy

enrichment. Second, the limit holds if g′(P, e) is bounded as e → ∞ (energy enrich-

ment does not significantly impact the sensitivity of self-limitation on net producer

growth) and lim
e→∞

g(P, e) = ∞ (energy enrichment increases producer productivity

without bound.) Hypotheses Hg and He are satisfied by the classic logistic growth

function g(P, e) = r(b − P/K) for either e = b or e = K. The more mechanistic

growth model of Huisman and Weissing [12], [13], [31] has the form

g(P, e) =
r

z

∫ z

0

I0e−(κP+κb)s

a + I0e−(κP+κb)s
ds − dp,

where in pelagic settings z denotes the depth of the water column and I0 measures

light intensity at surface level, [5]. Hypothesis He is satisfied for either e = 1/z or

e = I0 since for each P ≥ 0 lim
z→0

g(P, 1/z) = r I0
a+I0

− dp and lim
I0→∞

g(P, I0) = r − dp,

both implying that lim
e→∞

g′(P, e) = 0.



6 HARLAN STECH, BRUCE PECKHAM, AND JOHN PASTOR

3. MODEL PROPERTIES

In this section we analyze the dynamic properties of the model, focusing on the

effects that the increases of nutrient and energy levels have on the existence of system

equilibria and periodic states. It is not difficult to show that system (2.1, 2.2) is well-

posed for biologically reasonable initial conditions, and that all solutions eventually

enter the region P ≤ Pm. Moreover, solutions will also be (ultimately uniformly)

bounded in C, with a bound that is independent of e and n. This can be verified

by showing that an orbit that is bounded in P but unbounded in C, must have

unbounded dC
dP . This can be ruled out (arguing by contradiction) since along any

solution trajectory with C large

dC

dP
=

δµ(n/P )f(P )P − d

g(P, e)P/C − f(P )P
.

The producer nullcline is given by C = g(P, e)/f(P ), which by Hg and Hf is

positive on 0 ≤ P < Pm and intersects the P axis at P = Pm with dC
dP

∣∣
P ′=0

< 0.

Observe that the producer nullcline is independent of n.

As a clear necessary condition for consumer persistence, we proceed under the as-

sumption that lim
P→∞

δf(P )P > d. When they exist, the consumer nullclines are verti-

cal, and satisfy δµ(n/P )f(P )P = d. By Hf and Hµ the function δµ(n/P )f(P )P van-

ishes at P = 0+ and at P = +∞. Moreover, for all n sufficiently small δµ(n/P )f(P )P <

d holds for all P , and (2.2) gives that C(t) → 0 as t → ∞. It follows that under all

sufficiently low nutrient levels the producer monoculture equilibrium is globally at-

tracting to all nonzero solutions.

Conversely, for all sufficiently large n there will exist nullclines P = Ph(n) and

P = Pl(n) (Ph < Pl) with the property that δµ(n/P )f(P )P < d when P < Ph or P >

Pl. In contrast to the producer nullclines, the consumer nullclines are independent

of e. With increasing n, Ph(n) decreases and approaches the unique solution of

δf(P )P = d, while Pl(n) increases and approaches P = +∞. It follows that for

all n sufficiently large (µ(n/P )f(P )P ))′|P=Ph
> 0. We proceed under the generic

expectation that (µ(n/P )f(P )P ))′|P=Pl
< 0.

Regarding the stability of equilibria, we compute the Jacobian for (2.1, 2.2) as

J =

(
g(P, e) − f(P )C + (g′(P, e) − f ′(P )C)P −Pf(P )

δ(µ(n/P )f(P )P ))′C δµ(n/P )f(P )P − d

)
. (3.1)

For e > 0 the “no life” equilibrium (P, C) = (0, 0) is an unstable saddle since the

associated Jacobian has eigenvalues g(0, e) > 0 and −d < 0. At the monoculture equi-

librium (P, C) = (Pm, 0) the associated Jacobian has eigenvalues g′(Pm, e)Pm < 0 and

δµ(n/Pm)f(Pm)Pm−d. By our previous discussion, Pm will be locally asymptotically

stable if either Pm < Ph or Pm > Pl. By He, with increasing energy the producer
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monoculture equilibrium loses stability when Pm(e) increases past P = Ph, resulting

in a transcritical bifurcation of (“high food quality”) coexistence equilibrium (Ph, Ch).

With further energy enrichment the producer monoculture equilibrium re-stabilizes

when Pm(e) increases past Pl, and remains locally asymptotically stable for all higher

energy levels. This final change in stability corresponds to the transcritical creation

of a second (“low food quality”) coexistence equilibrium (Pl, Cl).

At coexistence equilibria the characteristic polynomial of the associated Jacobian

matrix reads λ2 − (g′(P, e) − f ′(P )C)Pλ + δ(µ(n/P )f(P )P ))′CPf(P ). It follows

that the coexistence equilibrium (Pl, Cl) will generically be an unstable saddle. The

coefficient of λ can be written as

−(g′(P, e)/g(P, e)− f ′(P )/f(P ))g(P, e)P = −f(P )P
dC

dP

∣∣∣∣
P ′=0

. (3.2)

Thus, the stability of the equilibrium (Ph, Ch) will be determined by the slope

of the producer nullcline at P = Ph. At its transcritical creation, this equilibrium is

locally stable since −(g′(Ph, e)−f ′(Ph)Ch)Ph = −g′(Ph, e)Ph > 0. However, under our

energy enrichment hypothesis He, −(g′(Ph, e)/g(Ph, e) − f ′(Ph)/f(Ph))g(Ph, e)Ph →
f ′(Ph)/f(Ph)g(Ph, e)Ph < 0 as e → +∞.

Thus coexistence equilibrium (Ph, Ch) will generically lose stability at a Hopf

bifurcation. The direction (stability) of this bifurcation can be computed with the

algorithm of [10], but since it is known [32] that in the non-stoichiometric case µ ≡
1 system (2.1, 2.2) supports (depending on g and f) both sub- and super-critical

bifurcations, we anticipate that this will also be the case here, as well.

The theory of global Hopf bifurcation [1] implies that the one-parameter family

of periodic orbits associated with this generic Hopf bifurcation will either terminate

at a second point of Hopf bifurcation, or become unbounded in at least one of am-

plitude, bifurcation parameter, e, or period. The uniform bound on solutions to (2.1,

2.2) eliminates the first alternative. The following proposition rules out the second

possibility by showing that there is a finite energy level beyond which system (2.1,

2.2) cannot support non-constant periodic orbits.

Proposition 3.1. If the producer nullcline is monotone on the interval 0 ≤ P ≤ Pl,

then system (2.1, 2.2) admits no non-constant periodic orbit.

Proof. Assume that (2.1, 2.2) has a non-constant periodic orbit. By considering the

configuration of the system nullclines, one can show that any periodic orbit must lie

within the region 0 < P < min[Pl, Pm]. We apply Dulac’s criterion, using multiplier

1/f(P )PC. One computes that

∂

∂P
(

1

f(P )PC
[g(P, e)−f(P )C]P )+

∂

∂C
(

1

f(P )PC
[δµ(n/P )f(P )P−d]C) =

1

C

d

dP
(
g(P, e)

f(P )
),
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which (when of constant sign) contradicts the existence of periodic orbits.

By He and (3.2), the hypothesis of this proposition will hold for all sufficiently

large e. We conclude that the one-parameter family of periodic solutions that (generi-

cally) is created at the change of stability of (Ph, Ch) will either terminate in a second

Hopf bifurcation or in a homoclinic bifurcation. Without further technical conditions,

both possibilities can hold. In fact, for the closely related (and more realistic) stoichio-

metric producer consumer model of [26], [27] both Hopf and homoclinic terminations

have been observed, dependent on total system nutrient level, n.

In the simple case where the function µ(n/P )f(P )P is unimodal in P (as in the

example of the next section), there are only two coexistence equilibria, (Pl, Cl) and

(Ph, Ch), and for all e sufficiently large both are unstable. Thus, a subsequent Hopf

bifurcation (which by our eigenvalue analysis must occur at (Ph, Ch)), is ruled out.

We conclude that (2.1, 2.2) must admit a homoclinic bifurcation involving (Pl, Cl).

Any such homoclinic bifurcation will be locally stable, as determined by the trace of

the Jacobian matrix at (Pl, Cl), which is given byf(Pl)Pl
dC
dP

∣∣
P ′=0

< 0. See [10], [18].

4. A NUMERICAL EXAMPLE

To illustrate the results of the previous section, we provide the details for a partic-

ular realization of the stoichiometric producer consumer model (2.1, 2.2). Specifically,

we select g(P, e) = r(e − P/K) (logistic producer growth), f(P )P = αP/(h + P )

(Holling II predation term) and µ(n/P ) = 1/(1 + qP/n) = n/(n + qP ) (Monod

consumer biomass nutrient conversion factor.) System (2.1, 2.2) becomes

P ′ = r(e − P/K)P − αCP/(h + P ) (4.1)

C ′ = [δ(n/(n + qP ))αP/(h + P ) − d]C. (4.2)

The hypotheses of Section 2 hold. Under these selections, model (2.1, 2.2) is

remarkably tractable. Our results are summarized in the figures that follow. The

producer transcritical bifurcation occurs at e = 0. The producer nullcline takes the

classic “parabolic” form

C =
r

α
(e − P/K)(h + P ), (4.3)

with horizontal intercept at producer monoculture carrying capacity Pm = eK.

The existence of consumer nullclines is determined by the function δµ(n/P )f(P )P ,

which is unimodal, and with maximum occurring at P =
√

qh/n. The necessary con-

dition for consumer persistence lim
P→∞

δf(P )P > d of the previous section becomes

ρ ≡ αδ/d > 1. The quantity ρ is often referred to as the consumer reproductive

number.
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Using the algebraic forms of f and µ, it is easily shown that the consumer null-

clines satisfy

(1 + qP/n)(h + P ) = ρP. (4.4)

This quadratic equation has two, distinct, real solutions 0 < Ph(n) < Pl(n) for

all n > qh/(
√
ρ− 1)2. With decreasing n these two roots coalesce, causing a saddle-

node bifurcation of equilibria at n = qh/(
√
ρ − 1)2. As pointed out in Section 3 for

the general model, the effects of nutrient and energy enrichment on consumer and

producer nullclines (respectively) are uncoupled.

Consumer transcritical bifurcations occur when n > qh/(
√
ρ− 1)2 and when the

producer carrying capacity Pm = eK satisfies (4.4). Thus, at consumer transcritical

bifurcations n can be computed in terms of e as

n =
q(eK + h)

ρ− 1 − h/eK
(4.5)

for e > h
K(ρ−1) .

Coexistence steady state (Ph, Ch) is destabilized in a Hopf bifurcation when the

producer nullcline peak (which occurs at P = (eK − h)/2) crosses the consumer

nullcline P = Ph. Thus, using (4.4), at Hopf bifurcations n can be computed in terms

of e as

n =
q/2

ρ/(h + eK) + 1/(h − eK)
(4.6)

for h(ρ + 1)/K(ρ − 1) < e < h(
√
ρ + 1)/K(

√
ρ − 1). As e approaches the upper

limit of this interval the value of n from (4.4) approaches n = qh
/
(1 −√

ρ)2, the

value at which Pl and Ph coincide at a saddle-node bifurcation. When viewed in

the e, n parameter plane, at e = h/K(
√
ρ− 1) this saddle-node curve intersects the

consumer transcritical curve at a “transcritical saddle-node” point. The intersection

of the saddle-node curve and Hopf curve defines a Takens-Bogdanov point, explicitly

computable as TB = (h(
√
ρ + 1)

/
(K(

√
ρ− 1)), qh

/
(
√
ρ− 1)2).

Finally, we note that the segment of the curve (4.6) with h(
√
ρ+1)/K(

√
ρ−1) < e

(dashed in Figure 1) corresponds to values where the peak of the producer nullcline

occurs at P = Pl. By Proposition 3.1, for n > qh/(
√
ρ− 1)2, equation (4.6) implicitly

defines an upper bound on the energy levels for which (4.1, 4.2) can support periodic

solutions. A representative two-parameter (e, n) bifurcation diagram for (4.1, 4.2)

is given in Figure 1. Model parameters are based on the algae/Daphnia system

considered in [26], with r = .88 day−1, K = 1.25 mg producer carbon/liter, α = .8

mg producer /mg consumer/day, h = .2 mg producer carbon/liter, d = .24 day−1, and

δ = .8 (unitless.) The consumer reproductive number is computed to be ρ = αδ/d =

3.333. In this context, n refers to system phosphorous, measured in units of mg/liter.

We assume a consumer population with biologically reasonable phosphorous/carbon

ratio of q = .0375. See [2].
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Figure 1. Two-parameter bifurcation diagram for (4.1, 4.2). Trans-

critical bifurcations of the monoculture producer and co-existence equi-

libria are denoted by TCP and TCC , respectively. With increasing n,

pairs of co-existence equilibria are created via saddle-node bifurcations

along the curve SN . Hopf bifurcation (H) and homoclinic bifurcation

curves (HC) meet along the saddle-node curve at a Takens-Bogdanov

point, TB [9]. The dashed segment is not a bifurcation curve, but

corresponds to (for fixed n) the energy upper bound beyond which

Proposition 3.1 proves the system to not have periodic orbits. In Fig-

ure 3, phase planes are shown for the six points distinguished points,

where n = .015, and e = .09, .40, .32, .51, .56, and .60.

With the exception of the homoclinic bifurcation curve, all elements of Figure

1 are computed using the formulae derived in this section. As a global bifurcation

phenomenon, there is no simple algebraic description of the curve of homoclinic bifur-

cations. The curve in Figure 1 was computed with AUTO [7], which also confirmed

the other bifurcation curves. Figure 2 shows the one-parameter bifurcation dia-

grams for (4.1, 4.2) obtained when nutrient levels are held at n = .015 and energy

levels vary. These diagrams illustrate the general behavior of (2.1, 2.2) when nu-

trient levels are high enough to support (with increasing energy levels) the creation

of coexistence equilibria. Specifically, the monoculture equilibrium Pm = eK loses,

then regains, its stability at e = .100667 and e = .48, respectively, as computed from
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Figure 2. Energy enrichment bifurcation diagram for (4.1, 4.2) with

n = .015. Upper panel shows e vs. P ; Lower panel shows e vs. C.

Green curves refer to the monoculture equilibrium; red curves refer

to the coexistence equilibria (Ph, Ch) (emerging at e = .100667) and

(Pl, Cl) (emerging at e = .48.) The max/min values along the family of

periodic orbits are shown in blue, with the average values across cycles

shown in cyan. Solid curves indicate stable objects; dashed curves indi-

cate unstable. Figure 3 shows the phase planes for the six distinguished

energy levels on the horizontal axis.

(4.5). The coexistence equilibria are found by solving (4.4) for P , then using these

in (4.3) to evaluate C. The Hopf bifurcation for the system occurs at e = .37333, as

computed from (4.6). The parametric family of periodic orbits was computed using

AUTO, and was observed to terminate in a homoclinic bifurcation near e = .5758.

For .48 < e < .5758 the system supports bistability.
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Figure 3. Representative phase planes for system (4.1, 4.2) with

n = .015 and the energy levels indicated by * in Figure 1. Left and

right red vertical lines correspond to producer nullclines P = Ph and

P = Pl, respectively. The consumer nullcline is shown in green. Its in-

tersection with the horizontal axis defines the monoculture equilibrium

(Pm, 0), while its intersections with the producer nullclines defining the

high food quality equilibrium (Ph, Ch) and low food quality equilibrium

(Pl, Cl), respectively. Periodic cycles are shown in blue.

The global dynamics for (4.1, 4.2) are best understood in terms of the system’s

phase planes. These are shown in Figure 3 for n = .015, and the energy levels

distinguished in Figure 1. All plots were computed using Mathematica [22]. As
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observed in [20], [26] and [27], the homoclinic bifurcation signals an abrupt change in

the asymptotic behavior of system trajectories initiated near the equilibrium (Ph, Ch).

The loss of periodic orbit is coincident to a loss of the system’s bistability.

5. CONCLUSIONS

The model considered here supports many of the main effects that the inclusion

of variable producer stoichiometry has been observed to have on models of nutrient-

constrained, energy enriched systems. Beyond a minimal critical system nutrient

level, energy enrichment induces the creation of a monoculture (producer only) equi-

librium state. Under all sufficiently high nutrient levels, energy enrichment causes this

monoculture equilibrium to lose stability, simultaneous to the emergence of a locally

attracting high food quality coexistence equilibrium, (Ph, Ch). With further energy

enrichment, this coexistence equilibrium looses stability, and the system can support a

periodic coexistence state. Energy enrichment also induces the re-stabilization of the

monoculture equilibrium at the creation of a subsequent (unstable) low food quality

coexistence equilibrium state, (Pl, Cl).

We remark that the re-stabilization of the producer monoculture equilibrium can

occur either before or after the creation of a periodic coexistence state. Figure 3

points out that the re-stabilized monoculture equilibrium always attracts not only all

solutions with sufficiently small C (an Allee-like effect), but also all solutions initiated

with large consumer or small producer populations. This corresponds to the following

ecological scenario: Predation by an initially large consumer population drives the

producer population to near-extinction. Due to low producer levels the consumer

population consequently falls to near-extinction. With the resulting reduction of

predation, the producer population then rebounds and approaches levels near the

carrying capacity of the consumer-free system. Under high energy levels (relative

to the fixed system nutrient pool), the producer population presents a nutrient-poor

food source to the consumer population. Despite the high abundance of its producer

resource, the consumer population is eventually driven to extinction due to the poor

quality of its food source and its corresponding low biomass conversion efficiency.

Ultimately, the producer population then approaches the carrying capacity of the

consumer-free system.

We have rigorously shown that for all sufficiently high energy levels the system

cannot support any periodic solution. Generically, all solutions to the system are then

attracted to the monoculture equilibrium (the producer approaching the consumer-

free carrying capacity.) The methods used here are motivated by the results of [32].

In fact, (2.1, 2.2) is similar to that of non-stoichiometric predator-prey systems where

the prey population exhibits a “group defense” strategy. However, in contrast to our

assumptions, in [32] the predator’s functional response f(P )P is no longer assumed
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monotone in prey population size and the predator-specific biomass production rate

is taken to be proportionate to the specific predation rate.

The work of Rosenzweig [24] pointed out the potential perils of enrichment in

producer-consumer systems. For the non-stoichiometric models considered there,

energy enrichment induces a loss of stability of the system’s (unique) coexistence

steady-state, and causes the creation of a corresponding periodic coexistence state.

This oscillatory state is considered to make the system more prone to extinction due

to possible random losses at times of low producer or consumer population levels. The

possibility that energy enrichment might actually imperil the system is often referred

to as the “paradox of enrichment.”

In contrast, the enrichment-induced route to consumer extinction described here

does not rely on any such exogenous stochastic effect, but rather it is a deterministic

consequence of the stoichiometry of the system. In its (intentional) omission of certain

stoichiometric processes in producer-consumer systems, our model suggests that the

energy enrichment-induced collapse of consumer population in closed stoichiometric

predator-prey systems can be attributed to the dilution of total system nutrient across

the producer population, and does not rely on other nutrient-related processes.
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