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Abstract 

 

This paper investigates the transition between two well known 

dynamical systems in the plane, the complex quadratic map and the 

Hénon map. Using bifurcation theory, an analysis of the dynamical 

changes the family of maps undergoes as we follow a “homotopy” from 

one map to the other is presented. Along with locating common local 

bifurcations, an additional un-familiar bifurcation at infinity is 

discussed. Results and images are given for many, but not all possible 

parameter values with the help of Mathematica v.7. Conclusions drawn 

provide insight into bifurcation phenomena for dynamical systems and 

suggest new and/or additional research opportunites. 
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Abstract 

 This paper investigates the transition between two well known 

dynamical systems in the plane, the complex quadratic map and the 

Hénon map. Using bifurcation theory, an analysis of the dynamical 

changes the family of maps undergoes as we follow a “homotopy” from 

one map to the other is presented. Along with locating common local 

bifurcations, an additional un-familiar bifurcation at infinity is 

discussed. Results and images are given for many, but not all possible 

parameter values with the help of Mathematica v.7. Conclusions drawn 

provide insight into bifurcation phenomena for dynamical systems and 

suggest new and/or additional research opportunites. 

 

 

1.Introduction 

 According to Hirsch, Smale, and Devaney, in the textbook 

Differential Equations, Dynamical Systems & An Introduction to Chaos: 

“A dynamical system is a way of describing the passage in time of all 

points of a given space  .” Given a function      , where the given 

space here is  , with an initial condition      we define orbits by 

          . This collection of orbits is a discrete dynamical system, 

and the type of dynamical systems in this paper. Importantly, Hirsch, 

Smale, and Devaney explain that dynamical systems techniques are used 

when, “higher dimensional systems may exhibit chaotic behavior, a 

property that makes knowing a particular explicit solution essentially 

worthless in the larger scheme of understanding the behavior of the 

system.” 

 Moreover, in a second book by Devaney, titled, An Introduction to 

Chaotic Dyanmical Systems, he discusses bifurcation theory in section 

1.12. Defining bifurcation as “a division in two, a splitting apart, a 

change.” He mentions that, “the object of bifurcation theory is to 

study the changes that maps undergo as parameters change. These 
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changes often involve the periodic point structure, but may also 

involve other changes as well.” 

Using dynamical system theory, including bifurcation theory, and 

analyzing graphical evidence, this project looks at the dynamics of a 

family of maps that is a homotopy from the complex quadratic map,   , 

to the Hénon map,  . Since    is a map of    and   is a map of   , it 

was necessary to apply a conjugacy between    and   , so that all maps 

were on the same space,   . This form was also easier to code and 

analyze with the software. When applied to a pair of maps, a homotopy 

generates a new family of maps that is a connection between the two 

previous maps; the idea behind this method being to provide the 

investigator with a connection between the two maps, or new 

information about similar maps.  

 The homotopy implemented for this project is of the general, 

“straight line” form:                      . Here        represents one 

map from      ,        another, different map from      , and   the 

homotopic parameter that changes the map. As   varies on the interval 

      our maps change from        to        and provide us with a one-

parameter family of maps. 

 In the following sections this paper looks sequentially (in  )  

at the homotopy and the dynamics and bifurcations of its maps. The 

study begins with bounded and unbounded orbits, computed by 

establishing escape radii. Snap shots of attractors and their 

identification are addressed next. An orbit diagram is then presented, 

as a look at attracting behavior with much smaller increments in  . 

After these first four sections, the paper continues with period one 

and period two points, and their locations, critical sets,   , and 

bifurcation classification including stability analysis. Concluding 

the prior sections are conglomerate snap shots of representative  -

values used to analyze the homotopy and an assessment of the 

transition between    and   as a whole.  
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2.Definition of the Homotopic Family of Maps 

This paper begins with a summary of two well known maps: the 

complex quadratic map’s filled Julia set (when     ) and the Hénon 

map, as well as an understanding of the conjugacy conversions and 

formation of the homotopy. Once formulated, this paper’s goal is to 

investigate the bifurcations of the family of maps produced from the 

homotopy as   varies on      . 

 

 

2.1.The Quadratic Map 

The Douady-Hubbard family of quadratic polynomials or simply the 

quadratic family,           , is one of the most recognized complex 

dynamics families. More specifically, the quadratic map,            , 

referred to in this paper as the basilica map, is a fairly common map 

to study for its chaotic behavior. Since this representation is a 

mapping from       and because its opposite end counterpart, the Hénon 

map, is a discrete-time dynamical system from      , it makes sense 

to convert the basilica map into a real map so as to keep the homotopy 

in consistent planes. Conversion was completed with the use of a 

conjugacy as such: 

Define the conjugacy:  

             
          

where          is defined by              . 

(Recall the definition of a complex number,       .) 

Apply     with the definition: 

              
            

Apply    : 
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Expand and collect terms: 

                            

Then apply  : 

                      

 Therefore the final conversion is: 

              ⇔                         

 This final form is the one used throughout the paper: 

                      .     (1) 

   

 

2.2.The Hénon Map 

 As stated previously, the Hénon map is a discrete-time dynamical 

system, as is the quadratic map, but it is set in the real plane. 

Originally established as a simplified model of the Poincaré section 

of the Lorenz model, the Hénon map,                    , is one of the 

simplest settings for complex behavior. Analyses included in this 

paper make particular use of the canonical Hénon map, which implements 

the parameter values:       and      , yielding: 

                           .    (2) 

This version of the Hénon map displays chaotic behavior on a “strange 

attractor.” 
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2.3.The Homotopy’s Full Form 

 With the maps as stated above, the homotopy studied in this paper 

is: 

                                 .   (3) 

The reason for this homotopy is to study bifurcations in the 

transition from the basilica map to the Hénon map. The organization of 

the paper takes place as follows: 

 Bounded vs unbounded orbits and escape radii 

 Attractors 

 Periodic points 

 Critical sets 

 Bifurcation Classification 

 Summary 

 

 

3.Bounded vs. Unbounded Orbits and Escape Radii 

 Identifying points whose orbits remain bounded and points whose 

orbits go off to infinity (are unbounded) helps understand the 

dynamics of a map. Notations for these regions are as follows: 

                     

       

           
  

That is,    is the subset of bounded points,    is the boundary of   , 

and    is the interior of   . 

 

Note: These names are common notation for complex maps, more 

specifically the quadratic map, but are being implemented here to the 
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family of maps and so they do not have all the same properties as they 

would for the quadratic map.  

Often times in complex dynamics orbits starting in    approach an 

attractor after subsequent iteration. For that reason, it was logical 

and critical to this project to begin with the identification of these 

sets for the homotopy as   varied on the interval      . Step one was 

whether or not they could be produced for the entire family of maps. 

If producing these were not possible, then the numerical computation 

of them could not proceed, and as such further investigation for these 

maps would be difficult. Computation of these orbits in Mathematica 

required an “escape algorithm” for each  . The escape algorithm used 

was:  

1. Determine an escape radius (as described below) 

2. For each point within a defined grid, apply the map. Test to 

see whether the distance that point is from the origin is 

beyond the escape radius. Repeat if not.  

3. Record the number of iterations necessary to escape up to some 

maximum. 

Note: If a point has not escaped by the maximum number of 

iterates, we assume it remains bounded, but there does exist 

some bias here. If the number of iterates is increased we may 

in fact get a smaller bounded region, and as such, if the 

number of iterates is decreased we may have a larger bounded 

region than the actual/theoretical one. 

4. Plot these values for each point. 

Note: Images later were created with a “DensityPlot” in  

Mathematica for a maximum of 150 “PlotPoints”. This command 

creates an image with “n” (150) initial points in each 

coordinate direction. 
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In addition to the creation of the bounded and unbounded sets of 

orbits for fixed  -values within Mathematica, the manipulation of an 

open source code [3] generating a movie of the smooth transition of 

these sets as   varied, led to an important realization. While all 

bounded vs. unbounded sets could be approximated using the escape 

algorithm, no one escape radius gave a fully accurate image of every 

  . This insight led to an investigation of escape radii.  

 

 

3.1.Nien’s Lemma 2.2 

An escape radius provides a disk that encloses the bounded 

orbits; it can also include some of the unbounded orbits, but more 

importantly guarantees that points outside it diverge to infinity. 

Making use of an article in the International Journal of Bifurcation 

and Chaos, Vol. 8, No. 1, entitled The Dynamics of Planar Quadratic 

Maps with Nonempty Bounded Critical Set by Chia-Hsing Nien, this 

escape radius,  , can be found for any planar quadratic map,       : 

                            where 

           
          

            

           
          

            

Nien’s lemma states that, ”If the origin is not in the image of the 

unit circle under the [polar] mapping G,” where G is the quadratic 

terms of  ,  

           
          

     
          

   

then there exists a positive real number   such that successive 

iterates end up twice as far from the origin. In his proof, Nien notes 

that “the assumption on the image of the unit circle under the mapping 

 , implies: 

                             .” 
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That is, there exists a point on the image of the unit circle that is 

the smallest distance from the origin,  . From the triangle 

inequality, and since    , we can choose a     such that: 

                                                            . (4) 

After the unit circle was mapped, this delta was calculated for 

those fixed   values, using the quadratic terms of the homotopy, 

       . That is, using the equation: 

                                           .   (5) 

These images showed for which values of   a positive escape radius 

existed. Figure 1 below displays the image of the unit circle under 

each mapping. 

 

Figure 1 (caption on next page) 
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Mapped Unit Circle Progression 

The first image is the un-mapped unit circle (for reference), the following 

images are for                                                                

 

Since a property of continuous functions is the intermediate 

value theorem (IVT), we know from the transition of the graphics above 

that there is a   value between     and      where the origin is in the 

image of the mapped unit circle. This indicates the corresponding   

value is infinite, and so equation (4) was solved for   so this could 

be verified. Taking the positive root of the equation, with 

coefficients depending on  , Table 1 below gives the numerical values 

of each radius calculated and shows that as   approaches the critical 

value, which turns out to be   
 

  
, successive escape radii get larger 

and larger. This event mirrors what occurs just before   reaches  , the 

Hénon map. 

 -value  -value 
0 3.0 
0.1                    
0.2                   
0.3                   
0.4                   
0.41                    
0.415                   

0.416666666666 DNE 
0.418                   
0.42                    
0.45                   
0.5                    
0.6                    
0.7                   
0.8                    
0.9                    
0.95                    
0.99                    
0.995                  
1 DNE 

Table 1 

Escape radii for different  -values. 
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As seen above, both   
 

  
 and     appear to be parameter values 

for which the escape radius, guaranteed my Nien’s Lemma is infinite.  

In Figure 1, the mapped unit circle for         (the quadratic terms of 

the Hénon map) is shown to include the origin in the bottom right 

image. In order to verify what is shown, the two points found to map 

from the unit circle to the origin by equations (1), (2), and (3)are: 

            and             . Plugging in   
 

  
, Figure 2 displays the 

mapped unit circle for    

  

     . This value, too, was verified by 

finding the points that map from the unit circle to the origin. They 

are:             and             . 

 

 

Figure 2 

Mapped unit circle for   
 

  
. 

 

Note: For the basilica map, the escape radius most commonly used 

to produce graphical images of its basin is two. However the Nien 

equation led to an escape radius of three since it required distances 

from the origin to double. It is important to note that an escape 

radius of three still guarantees that any points outside of it diverge 

to infinity. Furthermore, points in   , the interior of the basilica 

map’s bounded orbits, tend to a single period two attractor, while 
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points in the Julia set remain on the boundary. For the Hénon map a 

frequently chosen   to depict the basin is ten. However, there does 

not actually exist a positive real-valued   that is an escape radius 

for the Hénon map. This is because the Hénon map’s basin boundary 

extends to infinity. Points in this unbounded basin,    tend to a 

chaotic strange attractor. (For the images of the Hénon map within 

this paper the escape radius used was 900.) 

 

 

3.2.Bounded Orbit Visualization  

With the help of a lab assignment from the University of North 

Carolina at Asheville  [5], initial development of the escape algorithm 

for the basilica map, and visualization of the bounded and unbounded 

orbits, took place in the complex plane. Once converted to the real 

plane via conjugacy, application of the escape algorithm produced 

Figure 3 below. The basilica map is so called because its filled Julia 

set resembles St. Peter’s basilica. Uniquely, it contains numerous 

“bulbs” upon bulbs. 

  

Figure 3 

The basilica map’s basin of attraction 

(See text below for coloring scheme) 
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The Hénon map’s basin of attraction is drastically different. In 

the shape of a stretched letter U, this basin extends to infinity. 

Figure 4 depicts the Hénon map’s basin. 

     

Figure 4 

The Hénon map’s basin of attraction. 

 

Note: The different colors depicted in the basin images 

represented the different count values. That is, they represent points 

that remain bounded or alternatively how long points take to escape. 

The white/cream color illustrates points that remain bounded, the 

shades of blue/purple represent points that are unbounded and head off 

to infinity, with lighter shades taking a longer time to escape. 

Quite interesting is how each set of initial conditions 

corresponding to bounded orbits change as the parameter,   changes. 

From a bulbous basilica map basin, to an unbounded U shaped Hénon 

basin, the intermediate bounded regions range from twisted and 

stretched versions of the basilica map to more simple diamonds and 

ovals, which then open and stretch as   approaches 1. Figure 5 on the 

following page illustrates the evolution of these regions with fifteen 
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snapshots. Each consecutive basin was produced by changing the   value 

by approximately one tenth. However, smaller h values were used near 

interesting periodic points like   
 

  
 and    . Notice that images 6 

and 7 look very similar, but image 6’s x-axis extends much farther 

than image 7’s x-axis which is bounded between     and   . This is 

because in between these two images, at   
 

  
, the bounded orbit set, 

  , extends to infinity. Also notice that for images 12 and 13,     and 

     are connected sets, but not simply connected sets as the      appear 

to be for the other images.   

 

Figure 5 

Evolution of the basins of attraction as   continues on      . The specific  -

values here are:                                                               . 
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4.Attractors 

 While theoretically possible for this homotopy to possess maps 

with multiple attractors within the bounded set,   , numerical 

investigation has not shown any. For all maps involved in this 

homotopy, there appears to be but one attractor within any map’s 

region of bounded orbits.  

This was concluded with the support of the TBC software – a 

software created by Dr. Bruce Peckham specifically used for the 

graphical investigation of maps. Able to graph a fine grid of each 

map’s bounded and unbounded orbits, TBC could then iterate all points 

within    at once. This iteration appeared to go to a single object for 

all fixed  -values tested. This numerically corroborates that for any 

individual point within the basin its resulting behavior is to end up 

at a single attractor – be it some periodic orbit, or a strange 

attractor. Therefore,    appears to be the basin of attraction for that 

map’s attractor.  

The basilica map and Hénon map are both well-studied. It is known 

that the basilica map has a period two attractor at the points        

and      , and the Hénon map has a strange attractor that is crescent 

shaped and confined within the range:        and       . Figure 6 

following, illustrates these two wholly different attractors. 

Figure 6 

The basilica map and Hénon map attractors. 
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4.1.Attractor Identification 

 The above attractors, and likewise the following orbits and 

attractors, were identified using Mathematica in the same manner. The 

process was: 

1. Beginning with the quadratic map and its known period two 

attractor, set     and iterate a fixed number of times from 

     . 

2. For following fixed  -values, iterate from the ending point of 

the orbit for the previous  -value, and make a list of the 

orbit. (For the images at the end of this section the maps 

were iterated from each initial point 1000 or more times, 

(5000 or 10000 for  -values     ,     , and  ).) 

3. Plot the orbits including transients.  

Note: the resulting behavior was checked by viewing the last 

10 points of the orbit with the “Part” command in Mathematica. 

This somewhat verified whether the resulting behavior was a 

fixed point, a period two, or some other attracting object. 

In Figure 7 the resulting behavior of one orbit within the basin 

is shown. This behavior can be seen to be either a periodic point, or 

a strange attractor. Recall that the exact behavior shown was produced 

from one selected point, and as such shows a specific orbit within the 

basin; additional points in the basin may have different beginning 

(transient) behavior, but all points within    for a single   value 

appear to have the same eventual behavior. 
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Figure 7 

Orbit Behavior as   continues on      . The above figure displays images for 

                                                             . Circled in red are fixed point 

attractors, circled in black are period two attractors, boxed in light green 

are attractors whose period is unknown if they even are periodic, and boxed 

in yellow is the strange attractor. All other points in each image are 

transient behavior. 

 

 

4.2.Orbit Diagram 

 An orbit diagram depicts the attractors for a variety of 

different parameters (in our case for a variety of different   

values). It only depicts attracting behavior; the algorithm does not 

show repelling or saddle periodic orbits. Conventionally graphed with 

the parameter on the horizontal axis and, for a two dimensional graph, 
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the  -coordinates on the vertical axis (ignoring the  -coordinate), 

the figures in the next section are as such. While graphing the 

attractors provides us a look at both coordinates in the plane (and 

transient behavior if wanted), producing an orbit diagram has the 

advantage of showcasing transitions of attractors as   changes. 

 

 

4.2.1.Orbit Diagram Production 

Orbit diagram production required steps 1 and 2 from the previous 

process for computation of attractors, mentioned in section 4.1. The 

only addition to the process was removing the transient behavior. From 

previous experimentation it appeared that up to       all the 

attractors were of period one or period two, so selecting only the 

last two values was necessary. For       selecting the last     values 

was appropriate. This final plot (Figure 8 on the following page) is 

the resulting orbit diagram. 
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Figure 8 

Multiple views of the homotopy’s orbit diagram. 

The bottom image is the complete view from     to    , and the remaining 

images are enlargements of specific parameter ranges. 

 

 

4.2.2.Orbit Diagram Comparison 

As mentioned above, the behavior for   in         is quite similar 

to the behavior witnessed for the logistic map,        , when      . 

Most like the logistic map, the homotopy’s orbit diagram has a 

sequence of period-doublings (that is, has a period-doubling route to 

chaos) with “windows” of attracting period n’s, where      . Different 

from the logistic map, though are quite a few things. First, the 

initial behavior of the graph, from     (    for the Logistic map) 
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until the first period-doubling, is of a different period. The 

logistic map begins with period ones, but for this homotopy the 

initial attractors are period twos leading into a period one. Second, 

the largest period n window is different. It appears, from numerical 

investigation, that this homotopy’s largest window begins with a 

period six. While the logistic map’s largest window begins with a 

period three. Third, and most interesting, the general shape of the 

period-doubling behavior is different on the top and bottom edges. The 

logistic map’s outermost period-doubling curve is smooth as   varies. 

This homotopy’s outermost period-doubling curve has a jump near 

       . What exactly causes this jump is unknown, but another one 

occurs near        . Perhaps transient behavior is to blame for these 

events and whether this is or is not true, further analysis would need 

to be done in order to fully understand the entire orbit diagram. The 

graphical comparison can be seen on the next page in Figure 9. 
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Figure 9 [6-8] 

Graphical comparison of three aspects (see text) for the homotopy’s and 

Logistic map’s orbit diagrams. Displayed according to how they were addressed 

within section 4.2.2, based on zooms the reader should view then sequentially 

as a, c, b. 
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5.Periodic Points 

  Explicitly solving for periodic points in terms of   gave some 

challenging output when attempted using Mathematica. One issue was, 

without eliminating one of the variables first the output was hard to 

understand and almost impossible to use to calculate fixed points in 

terms of  . The other problem was when a single variable was 

eliminated, whether it was   or     the solution to the one variable, 

one parameter equation was a large/irreducible solution. Hence it 

would not be a benefit to provide such an equation here. Providing 

Mathematica with fixed  -values though allowed the calculation of, 

period one (more frequently referred to as fixed points) and period 

two points. More numerically accurate than fixed and period two 

attractors obtained from iteration, Mathematica can also solve for 

fixed and period two points even if they are not attracting. These 

values helped offer more complete snap shots of the dynamics of the 

homotopy along with detailing interesting behavior associated with 

their movement and location in and/or around the basins of attraction. 

 

 

5.1.Fixed Points 

 With a single-variable equation, fixed points are found by 

setting the function equal to its variable, say for example,       . 

In words then, what this accomplishes is finding points that after a 

single iterate remain where they started. In this homotopy’s case, it 

is necessary to set the function equal in both coordinates. Recall the 

above mentioned homotopy given in equation (3), its expanded form is 

as follows,  

                                                          (6) 

In order to solve for fixed points, the system of equations we ask 

Mathematica to solve are: 
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                                  ,  (7) 

                     . 

 

Our two end functions, the basilica map and the Hénon map, are solved 

with some work by hand. Known to be  
    

 
   , the basilica map’s fixed 

points are found using the much simpler system of equations when    : 

              ,     (8) 

            

Notice the bottom equation yields two solutions when all variables are 

brought to one side and factored. 

                          (9)  

Only one solution provides real fixed points, when     (  
 

 
 leads to 

a complex value for  ). Input this value for   into the first equation 

and solve for  :  

              ⇔         .    (10) 

Solved just as quickly, though with less aesthetically pleasing 

and condensed solutions, the system of equations for the Hénon map is: 

                ,     (11) 

            . 

Plug the bottom equation, as an equation for   or solved for  , into 

the top and solve for the single variable: 

                                     (12) 

       
         

    
 

Plug solutions back into the bottom equation to get the full pairing. 

           
         

    
        (13) 
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Readily found, the fixed points for the Hénon map are approximately: 

                                                                                   

While fixed points for these two maps are fairly simple to find 

by hand, once the parameter   is chosen between   and   they become 

much more complicated to solve without software. With the help of 

Mathematica though, these systems of equations are quickly and 

accurately solved numerically for any fixed value of  , despite the 

fact there is not a nice explicit formula for each variable in terms 

of  . In order to show why this is the case included below are the 

polynomials used for solving for fixed points when one of the 

variables is removed: 

 In terms of x:  

                                                    

                                                         

                 

In terms of y: 

                                                                    

                                                      

Notice that I have moved all terms to one side and that both of these 

equations are by no means simple polynomials of degree four. For this 

reason, simplifying these equations or their solutions merely made 

them messier and/or harder to understand.  

 

 

5.1.1.Solutions with Mathematica for         

Utilizing the “Solve” command, solutions to equation (7) were 

computed for each parameter value,  . The real solutions were selected 

by hand and displayed using a list plot. 
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Note: It is worthwhile to mention here, the “ListPlot” command 

does not display any imaginary solutions, if one wanted to display 

them. 

The figure below, Figure 10, displays fixed points for select   

values along with the corresponding bounded and unbounded sets. Notice 

two things: how the fixed points stay in similar regions as   changes, 

but more interestingly how the outer fixed point moves from the right 

to left edge of    as   passes between 0.4 and 0.45.  

 

Figure 10 

Fixed point locations within the basins of attraction for 

                                                              . Boxed in yellow, the location 

of a fixed point (within   ) goes off to infinity as   
 

  
 is approached from 

the left, and goes off to negative infinity as   
 

  
 is approached from the 

right. This fixed point appears to be located on the boundary.  
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As we progress through the homotopy, images six and seven provide 

insight into what could be the first located bifurcation for this 

family of maps. Graphically, and with numerical support, the outermost 

fixed point goes off to infinity, and comes back in toward the basin 

from negative infinity on the opposite side (boxed in yellow above). 

Addressed in more depth in section  , this bifurcation at infinity is 

not a standard bifurcation for continuous dynamical systems maps. 

 

 

5.1.2.Identifying   
 

  
 with Mathematica 

As stated above, if it were possible to get solutions for 

periodic points, in terms of  , in an understandable and usable output 

then it would be possible to pinpoint the   value where the fixed 

point goes off to infinity. While this direct method was not possible; 

solving for just the   value by a similar method was possible, with 

the additional help of Dr. Harlan Stech. The method proceeded as 

follows: 

In a complicated output, Mathematica gave a solution to real 

fixed points ( , ) in terms of   but did so in terms of a “Root” 

expression. One of the solutions, when simplified for the single 

variable x, contained a cubic (in  ) denominator which could be 

set equal to zero and solved for  . (Appendix B). 

 

The resulting solutions provide three values,     (a double root) 

and, after rationalizing,   
 

  
. Accordingly,   

 

  
, is the other value 

(besides    ) for which Nien’s Lemma does not guarantee a finite 

escape radius and for which a fixed point on the boundary goes off to 

infinity.  
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Recall in Section 3.1, images of mapped unit circles were 

produced under the quadratic terms of    and included the origin at 

both these values.  

 

 

5.2.Period Two Points 

 Period twos, like fixed points, require solving a system of two 

equations. The system of equations, however, is taken from the second 

iterate of the homotopy rather than the original equation. That is, 

now we are asking Mathematica to solve,  

                     ,      (14) 

a pair of 4
th
 degree polynomials of two variables that is much more 

complex even for this family of maps. What we find through this 

process are points that after two iterates map back to themselves. 

This process also finds fixed points again, but this time these values 

are ignored.  

 

 

5.2.1.Solutions with Mathematica 

 With an almost identical procedure to that of finding fixed 

points, finding period twos required only the additional step of 

“nesting”; that is iterating the function twice before defining a list 

and displaying the points with a list plot. At the top of the next 

page Figure 11 illustrates period two points in relation to their 

basins of attraction. 
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Figure 11 

Period 2 points within their basins of attraction for 

                                                              . Certain period twos are 

circled simply because they are difficult to see.  

 

 

5.2.2.Period Two Observations 

 While fixed points mostly moved horizontally and portrayed an 

interesting dynamic occurrence at infinity, period two points appear 

to move much more freely (at least initially) and provide telling 

details toward this homotopy. Keeping in mind, stabilities at this 

point had not been calculated toward any periodic points, influential 

graphical evidence still leads toward important conclusions. Images 1-

2 could be indicating a saddle-node bifurcation, while images     

likely indicate that two period-doubling bifurcations occur as 

observed with the orbit diagram. Images 6 and 7 don’t appear to be 
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indicating much about the critical value at   
 

  
, however later when 

bifurcation diagrams are introduced (section 7.4), we will see that 

both period two points go off to infinity in what appears to be two 

different coordinate directions, as   approaches 
 

  
 from either side. 

Images    and    indicate additional analysis is required to determine 

what is causing period two points to move from what appears to be the 

basin boundary into the interior of the basin (addressed in section 

8). Along with determining whether or not some of these period twos 

are really on the basin boundary or whether it just appears that way. 

 

 

6.Critical Sets 

Critical sets, also called zero sets, are the values for which 

the Jacobian determinant equals zero, 

          
   

 
          

 

  
         

                
       (14) 

 
  

 
                   

 

  
   

 

 
                             

and contains a map’s critical orbits – the forward orbits of critical 

points. Critical sets help determine map dynamics. For example, for 

    , if the critical point iterates to infinity, its filled Julia set 

is a Cantor set (an infinitely disconnected set). If not, its filled 

Julia set is a simply connected set. While no theorem like this 

applies to   , the critical sets are still important and do tell us 

where foldings in the map occur. Not surprisingly, the nature of the 

critical set changes at   
 

  
 which coincides with the bifurcation at 

infinity. In a thesis titled The Investigation of Saddle-Node 

Bifurcation with a Zero Eigenvalue – Includes Example of Non-Analycity 

by Chia Hsing Nien (the same author as noted for the paper defining 

escape radii,  ), chapter   addresses zero sets and their two-
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dimensional conic images. If we are to assume the intermediate value 

theorem is correct from Section 3.1 – which it is – then from Nien’s 

thesis we should have a transition of conic sections for the 

homotopy’s zero sets. In Figure 12 select zero sets are shown, 

including this transition. Notice that as   approaches 
 

  
 the zero set 

is an ellipse and then by        the zero set is a hyperbola with two 

branches. It turns out that there is a single  -value at which this 

transition occurs; the ellipse stretches and separates into two 

parallel lines. These parallel lines occur at exactly   
 

  
, and are 

shown in the second figure, Figure 13.  

  

 

Figure 12 

Zero set transitions as   continues on the interval      . Shown are the values 

                                                       

Not pictured here, the critical set for the basilica map is a single point at 

the origin, while the critical set for the Hénon map is empty. 

 



Page | 30  
 

 

Figure 13 

The zero set for   
 

  
. Two parallel lines. 

Note: This is an image of the parallel lines displayed. They were found by 

substituting   
 

  
 into equation (14)and setting the determinant equal to 

zero: 

    
  

   
 

 

 
 

 

 
 

 
 

 
  

 

  

 

 
 

   ⇔
  

  
   

  

   
  

 

  
   

with solutions    
 

  
   

 

  
. 

 

 

7.Bifurcation Classification 

 In order to classify bifurcations we must first have an 

understanding of each one. For any two-dimensional discrete dynamical 

system, the three simplest and most common ways to encounter a 
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bifurcation are based on the birth/death of periodic points and the 

change in their stabilities. They are:  

1. A real eigenvalue of a periodic point crosses the unit 

circle at the point       . 

2. A birth and or death of a pair of orbits occurs, and an 

eigenvalue of 1 exists at the bifurcation value. 

3. Two conjugate imaginary eigenvalues simultaneously cross 

out of or into the unit circle. 

In order to know whether any certain periodic orbit’s stability 

changes requires computing its eigenvalue(s) and checking to see 

whether any of them pass through the unit circle. Once the stabilities 

are found, analysis involves verifying them with their graphical 

counterparts. Stability definitions, based on eigenvalues, for the 

three types of periodic points, attracting, saddle, and repelling are 

presented in Appendix A. Stability analysis was completed after 

eigenvalue calculations were done in Mathematica. While the 

computations are not presented here, the stabilities are presented in 

the figures for each following section by the different types of 

lines. The key is as follows: 

  solid, thin red line: attracting fixed point branch 

  dashed red line: repelling fixed point branch 

  dot-dashed red line: saddle fixed point branch 

  solid, thin blue line: attracting period two branch 

  solid, thick blue line: spiral attracting period two branch 

  dashed blue line: repelling period two branch 

  tiny, dashed blue line: spiral repelling period two branch 

  dot-dashed blue line: saddle period two branch 
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7.1.The Period-Doubling Bifurcation 

The first occurrence (1.) defines a period-doubling bifurcation 

provided that the stability of the periodic point branch changes as 

the period-doubling point is passed, and a period two orbit is born 

with the same stability as one of those periodic point branches. For 

this homotopy, numerical evidence show that four period doubling 

bifurcations occur from fixed points, one more period-doubling 

bifurcation occurs from a period two point, and a period-doubling 

sequence/period-doubling route to chaos, for multiple periods, occurs 

approximately on the interval,             . Below and on the 

following page are two figures. Figure 14 showcases the four period-

doubling bifurcations from fixed points, and Figure 15 the period-

doubling bifurcation from period two points along with the period-

doubling route to chaos.  

 

  

Figure 14 (caption on following page) 
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Fixed point bifurcations (Red Dots)  

Bifurcation 1: Period-doubling at       . Bifurcation 2: Period-doubling at 

      . Bifurcation 3: Period-doubling at       . Bifurcation 4: Period-

doubling at       . The orbit diagram and period two branches are provided to 

aid in showcasing the fixed point bifurcations. Period two bifurcations are 

addressed in the following figure. 

 

 

 

Figure 15 

Period 2 (blue dot at       ) and period n bifurcations 

Bifurcation 5: The above diagram shows the stabilities for the period two 

branch leading up to the period-doubling bifurcation. Seen only from the 

orbit diagram below, this occurrence is circled in light blue, and was not 

calculated from stabilities with Mathematica because period four calculations 

were not performed. The full period-doubling route to chaos is shown on the 

bottom and discussed in more depth in section 4. 



Page | 34  
 

7.2.The Saddle-Node Bifurcation 

 The second occurrence (2.) defines a saddle-node bifurcation. 

When we have the birth and or death of a pair of periodic orbits, we 

have this type of bifurcation. It is so named, because when this 

      sequence occurs, one branch of the fixed point curve/line is a 

node (that is attracting or repelling) while the other is a saddle; 

hence the title, saddle-node. The image below (Figure 16) depicts this 

single occurrence for the period two branch at         .  

Note: In order to see the birth of the pair of period two orbits 

it is necessary to look back at bif. 1, 2 in Figure 14. There, with 

the additional branches, it can be seen that for a very small region 

of  -values just passed this occurrence there are three period two 

orbits. 

 

 

Figure 16 

Isolated period 2 saddle-node bifurcation 
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7.3.Double Eigenvalues 

 The third occurrence (3.) for maps is a Hopf bifurcation. Defined 

when two complex-conjugate eigenvalues cross the unit circle. This 

homotopy does not appear to have a Hopf bifurcation, for fixed points 

or period two points, based on the analysis completed. Similar to the 

process for a Hopf bifurcation though, this family of maps does have 

eigevnalues that go from real to complex. In order for this occurrence 

to take place, we must have double eigenvalues. Since all of these 

double eigenvalues occurred on period two branches, we had two real 

eigenvalues become equal at a single  -value, and then separate as 

complex-conjugate eigenvalues. Analysis indicated we had five sets of 

double eigienvalues but none of them led to a Hopf bifurcation, 

because at no time did these complex-conjugate eigenvalues cross the 

unit circle; they remained in or out of the unit circle the entire 

time. Figure 17 shows where these double eigenvalues exist along the 

bifurcation diagram. Notice two sets of double eigenvalues occur just 

after a period-doubling bifurcation, and one set occurs just after the 

saddle-node bifurcation. The remaining two double eigenvalues occur 

when     and just before the period-doubling route to chaos. 
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Figure 17 

Double Eigenvalues (box colors corresponding to period two branches) 

Misleading in this figure, the double eigenvalues in the green box appear to 

be the same as the saddle-node bifurcation dots but are just too close to 

distinguish at this scale. 
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7.4 Bifurcation at Infinity 

 This map has an interesting event as   approaches 
 

  
. Graphical 

investigation strongly indicates that there is a bifurcation occurring 

at infinity. Since no known research has been done for bifurcations 

similar to this with dynamical systems, it is hard to define or 

describe exactly what is happening. However, what we know about this 

occurrence is four-fold: the escape radius, a fixed point, the period 

two orbit, and the critical set all go off to infinity as we approach 

  
 

  
 from either side. Notice in Figure 18 (on the following page), a 

fixed point appears to asymptote to infinity (in the   direction) from 

the left, and negative infinity from the right. Both points on the 

period two orbit go off to infinity, but it is a little misleading for 

both branches. The projected image of the bottom branch is actually 

asymptotic to negative infinity, and the upper branch goes off to 

negative infinity in the  -coordinate direction (which is not shown). 

See Figure 18.  

Additionally, Dr. John Pastor noticed a connection between the 

parameter,   in the Hénon map and the value   
 

  
. When   

 

  
 is 

plugged into    he noticed that    
 

  
         

 

  
       . From this, 

a question arose: if we use a Hénon map with      , but   is 

different, will we get another bifurcation at infinity where     

     ? A related observation began with noticing when   
 

  
 is plugged 

into    the    terms end up cancelling which makes the first argument 

of   

  

 solely in terms of  . One can see then, that at   
 

  
,   

  

 maps 

horizontal lines to vertical lines: 

  

  

  
  

 
   

 

  
    

 

  
      

 

 
    

 

 
   . 

For any single  -value in the above equation, the first argument is 

some value and the second argument is linear in terms of  . Hence 

horizontal lines map to vertical lines.  
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7.5.Zero Eigenvalue 

 In some instances, the dynamics around a periodic point change 

but are not defined to be bifurcations. These events can sometimes 

lead us to future behavior/bifurcations, and other times simply tell 

us more about a map. For this homotopy a zero eigenvalue was 

encountered on a fixed point branch when        . At this parameter 

value our map is not locally invertible. It is important to note that 

globally this is not the only parameter value for which the map is 

non-invertible. In fact all maps except    are non-invertible. Also, 

for nearby parameter values the fixed point is stable. This last idea 

should make sense, because fixed points with small positive or 

negative eigenvalues are both stable. A bifurcation would not 

necessarily occur at a zero eigenvalue. Figure 18 on the next page 

singles out the bifurcation at infinity and the zero eigenvalue. 

 

Figure 18 

Zero Eigenvalue (red dot – bifurcation 6) and the Bifurcation at Infinity 

(asymptotic branches – bifurcation 7) 
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8.Summary 

 Figure 19 on page 43 is a summary of the dynamics as   progresses 

from   to  . Ideally, a 3D figure connecting each object to the 

bifurcation diagram would be the best way to display and analyze the 

bifurcations. However, this is quite hard to render. So, the figure on 

the next page is a set of 2D graphs for select   values along with a 

bifurcation diagram. The bifurcation diagram at the top, has light 

grey lines inserted for the different  -values used to analyze the 

homotopy, and subsequent snap shots are the objects at those light 

grey lines.  

All objects in the snap shots have already been addressed in 

earlier sections. Now compiled into a single figure, it is important 

to reiterate some key observations. First, when        there are no 

real period two points. As seen in the bifurcation diagram, there is a 

small region where none exist. This explains the movement witnessed in 

Section 5.2.1. Recall the period two points moved from what appeared 

to be   , into   . This did not take place as a “jump” but rather the 

real period two points disappeared onto one fixed point branch and 

then reappeared on another fixed point branch in   . Secondly, it is 

quite surprising that when      , the attractor is a period two and 

yet changing   by just     toward the Hénon map, the attractor is of a 

period unknown, or possibly non-periodic. Following points within 

different    may lead to a better understanding of this event. Thirdly, 

in a more general sense, the dynamics as a whole leading up to and 

after the critical value   
 

  
 are quite different. Simply looking at 

  , leading up to   
 

  
 the bounded orbits somewhat resemble the 

basilica map and then stretch out. After   
 

  
,    condenses back in 

and then elongates vertically, resembling nothing like the fractal 

structure    began with. Yet finally, and most important, the 

occurrence at   
 

  
 was neither expected nor familiar. To have a 

bounded set of orbits go off to infinity in the middle of the family 
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of maps gave some interesting dynamics. For example, one fixed point 

and the period two orbit have gone off to infinity, the basin for the 

remaining attracting fixed point extends to infinity also, and its 

zero set is two parallel lines. Aside from its numerical and graphical 

properties though, this bifurcation at infinity is motivating. To come 

across something that really has no research or information regarding 

it is exciting. Could there be another map with similar dynamics 

near/at infinity? What would the differences be, and what could these 

differences indicate? Could a change of coordinates tell us more about 

what is happening at infinity? Answers to these could help better 

understand this bifurcation. For now though, this map and the 

information provided will have to be a starting point for possible 

dynamics and bifurcations for discrete dynamical systems. 
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Figure 19 (Previous Page) [10] 

Bifurcation Diagram and Snap Shots of Homotopy for 

                          
 

  
                                          .  

 

 

Appendix 

 

A.Stability Definitions 

In general, eigenvalues are found by setting up the function’s 

corresponding matrix and solving it, depending upon the matrix’s size, 

by the simplest procedure necessary. For two-dimensional maps, this 

requires the computation of a Jacobian matrix, comprised of partial 

derivatives for each parameter. The common form for a Jacobian matrix 

is:      

 

 

   

   
 

   

   

   
   

   
 

   

    

 . 

For this homotopy in particular though, the Jacobian matrix form used 

was:         

   

  

   

  
   

  

   

  

 .  

From here, eigenvalues are then found by a common procedure for 2x2 

matrices, calculate: 

     

(where   is the Jacobian matrix and   is the identity matrix) 

and then solve its determinant: 

                .  

Since each determinant is a polynomial of degree two, there will 

be two eigenvalues for each periodic point. The definitions given in 

An Introduction to Chaotic Dynamical Systems Second Edition by Robert 
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Devaney, categorize the stability of a periodic point by determining 

the absolute value of each real solution. That is, we check   as 

follows: 

 If   satisfies       for both eigenvalues, then the 

fixed point is attracting (a sink). 

 If has a value such that one eigenvalue satisfies 

      and one eigenvalue satisfies      , then the  

fixed point is a saddle. 

 If both solutions for   satisfy      , then the 

fixed point is repelling (a source). 

Note: For period two points, the Jacobian matrix was set up from 

the second iterate equation, as described in Section 5, and for 

certain   values had complex eigenvalues. For these, categorizing was 

the same but in the first and last case, attracting becomes spiral 

attracting (spiral sink) and repelling becomes spiral repelling 

(spiral source).  
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B.Mathematica for   
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C.Further Research 

 This project allows for numerous areas of continued and further 

research: 

1. This homotopy can be continued for more accuracy with the 

addition of: 

 period 3 and higher periodic points 

 smaller  -value increments or all functions in 

terms of   so that a complete depiction of the 

transition can be given 

 Validating periodic points on the boundary are on 

the boundary (or contradicting this) 

 3D representations 

 Applying a non-“straight line” homotopy 

2. Additional homotopies can be further studied in order to: 

 Classify/group homotopies for chaotic dynamical 

systems 

 Gather more information regarding bifurcations at 

infinity 

 Study the differences for homotopies from chaotic 

dynamical maps to non-chaotic dynamical maps. 
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