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Abstract

An important class of problems in the field of dynamical systems considers networks of

oscillators, each of which effects the others. Commonly in considering such systems the

concern is whether or not these oscillators will evolve into a state of synchrony. The

Kuramoto model consists of “limit-cycle” oscillators (meaning that each is described

only in terms of its angle of revolution on a circle), all coupled to each other through a

common, time independent function of the phase variables.

In 2002 it was discovered that systems of coupled identical oscillators can in fact exhibit

states in which a sub-population of oscillators fully clusters (attains “phase-synchrony”)

while the remainder do not. Shortly thereafter, Abrams, Strogatz, Mirollo and Wi-

ley proposed a simple, solvable variation on the Kuramoto model which contains such

“Chimera” states.

For our research we generalize the concept of a chimera state to the case that the tra-

ditionally fully clustered state is allowed to be in a constant state of partial clustering.

We characterize the conditions under which a generalized chimera exists as a persistent

state for this same variant on the Kuramoto model, finding that it is a rare phenomenon,

requiring much stricter conditions than for the traditional chimera.
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Chapter 1

Introduction

The collective synchronization or desynchronization of what may be modeled as net-

works of coupled oscillators is a phenomenon which appears in many fields of science,

from crickets chirping in unison to pacemaker cells synchronizing in the brain; from

arrays of superconducting Josephson Junctions to grandfather clocks resting on an im-

perfectly rigid surface. In many cases this synchronization takes place despite the fact

that the individual oscillators have varying natural frequencies of oscillation. While this

is what initially generated interest in examining collective synchronization, there have

since developed many interesting aspects of the coupled oscillator problem which do not

depend on any variation in natural frequency across the population. It is this case of

“identical” oscillators which we will consider in this paper.

1.1 The Kuramoto Model

In 1975 Kuramoto proposed his eponymous model of limit cycle phase coupled oscillators

which has come to be the standard model in the field. It is shown to be a limiting case

of several types of then studied models, maintaining many interesting aspects of the

behaviour of those models while being simple enough to admit analytic attacks [1].

The basic Kuramoto model is defined by a constant, universal coupling strength acting

on sines of the phase differences of the oscillators. The uniform nature of the coupling

strength coefficient earns this original version of the model the label “globally coupled”
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- a theme which has been expanded on significantly since its inception. Each oscillator

generally has an individual natural frequency ωi, with the model being defined by the

system of N equations:

θ̇i = ωi + K
N

∑N
j=1 sin(θj − θi) i = 1, 2, . . . , N (1.1)

with θi ∈ [0, 2π). For this research we will employ a common generalization of this model

in which there is included a constant, global “phase lag” term α within the argument of

the sine functions. As mentioned, we will also restrict our attention to populations of

identical oscillators - that is, populations of oscillators which share a common natural

frequency ω. We may, and do, choose to measure the phase of each oscillator relative

to an arbitrary rotating reference frame. Specifically we will measure them relative to

the frame rotating at the rate ωt, resulting in the transformation

θi → θi − ωt

which, for identical oscillators, removes the natural frequency term from the system of

equations (1.1) entirely.

Note that in the case of identical oscillators we may rescale time to absorb any non-zero

constant factor common to each of the system equations without altering the structure

of the system equations. We take advantage of this to scale out the coupling strength

coefficient K (we will find it advantageous to retain the population size scaling factor

1/N), employing the time transformation t → Kt. Note that the case K = 0 need not

generally be considered as it results in the trivial system of disconnected oscillators, in

which case they each revolve at a constant velocity. The Kuramoto model with identical

oscillators and a constant phase lag term can thus be represented in its full generality

by the system

θ̇i = 1
N

∑N
j=1 sin(θj − θi − α) i = 1, 2, . . . , N (1.2)

Note that the transformation α→ α+π simply introduces a factor of −1 to each equa-

tion, and so is equivalent to the transformation t → −t. As the model is invariant up

to time scale under these transformations, we may thus restrict our attention to the

parameter space −π
2 < α ≤ π

2 . We may in fact restrict this space further by taking ad-

vantage of the reflection symmetry of the model: the system (1.2) is invariant under the

combined transformation θi → −θi, α → −α. Thus we may, without loss of generality,
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restrict ourselves to the parameter space 0 ≤ α ≤ π
2 .

Even under the simplifying assumption that the oscillators have identical natural fre-

quencies ωi = ω the determination of all possible trajectories of this system and the

stability of those states is non trivial.

It is possible to completely solve the system for two oscillators by employing the trans-

formation ψ = θ1 − θ2, resulting in the one dimensional system

ψ̇ = − sin(ψ) cos(α)

This system has a stable equilibrium in ψ-phase space at ψ = 0 (since cos(α) > 0)

and an unstable equilibrium at ψ = π, unless α = π/2 in which case every point in

ψ-phase space is a neutrally stable equilibrium. With any non zero coupling strength,

and ψ(0) 6= π the oscillators tend toward ψ = 0, and thus become “phase-locked”, in

which θ1 = θ2, both occupying the same position on the circle. If instead ψ(0) = π the

oscillators will of course remain in this unstable equilibrium. Thus for all cases the long

term behaviour is ψ(t) = ψ0 for some constant ψ0 (not necessarily the initial value).

Since ψ - the difference in angular position of the two oscillators, θ1 − θ2 - is constant

the two oscillators are in a “frequency locked” state, meaning that θ̇1 = θ̇2.

With three oscillators the problem becomes slightly more challenging, but is still solv-

able. Utilizing the change of variables

ψ = θ1 − θ2, φ = θ1 − θ3

reduces the model to a two dimensional system of equations allowing all outcomes to

be described via a stability analysis of the equilibrium solutions. We note that these

equilibria are only constant in ψ and φ: the original phase variables θ1, θ2, and θ3 are

free to vary as long as they do so in a manner which preserves ψ and φ. For this system

the only possible outcomes are again all frequency locked, with the three oscillators: all

in phase (ψ = 0, φ = 0), with two in phase and one frequency locked elsewhere on the

circle (ψ = 0, φ = π for α = 0), or with all three distributed (evenly, for α = 0) around

the circle (ψ = 2π/3, φ = −2π/3 for α = 0). The vector field for this system in ψ, φ

space is pictured in figure 1.1 with α = 0. Changing α does not qualitatively change

the vector field, but it does change the location of the three saddles which appear, for

α = 0, at (ψ, φ) = (π, 0), (0, π), and (π, π). Note that the sink (at (0, 0)) and the sources
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(at (2π3 ,
4π
3 ) and (4π3 ,

2π
3 )) do not move with changes in α.

Beyond N = 3, a full characterization of the system becomes difficult, if not impossible.

Figure 1.1: Vector Field for Three Oscillators: 2-D Phase Space, ψ vs φ

However, in the case of N > 3 useful insight may be drawn from the definition of an

order parameter which measures the level of clustering in the system. Let the complex

order parameter z(t) = ρ(t)eiφ(t) be defined by

z(t) =
1

N

N∑
j=1

eiθj(t) (1.3)

One may then express the coupling sine function in our system equations (1.2) as a sum

of exponentials, and carry out the sum over j = 1...N and re-sum the exponentials,
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restating the system equations in terms of the “order parameter magnitude” ρ and

average phase value φ,

θ̇i = ρ sin(φ− θi − α) i = 1, 2, . . . , N

While these are not strictly decoupled as φ(t) and ρ(t) depend on each of the individ-

ual θi this expression of the model allows us characterize certain interesting classes of

behaviour, such as conditions under which the average phase value is constant despite

the oscillators being potentially in motion relative to each other.

We will find, however, that much more progress can be made in the limiting case

N → ∞, where the order parameter z(t) becomes invaluable. We note, however, that

only in the case of z = 1 does the order parameter indicate frequency and phase lock-

ing. For other values of the order parameter magnitude the oscillators are distributed

across an interval of the circle, and potentially in motion relative to each other. From

this point on our discussion will focus on the degree of clustering of the population of

oscillators - measured by the “order parameter” ρ - rather than whether or not they are

phase- or frequency- locked.

1.2 N →∞ and Dimensional Reduction

In this limiting case we can not speak of “each” oscillator - rather, we describe their

position via a distribution function f(θ, t), describing the density of oscillators at any

given phase throughout time. We may then define a velocity equation which generalizes

the system equations (1.2) to the N →∞ case,

v(θ, t) =

∫ 2π

0
sin(θ′ − θ − α)f(θ′, t)dθ′ (1.4)

and which must, together with the distribution function, satisfy the continuity condition:

∂f

∂t
= − ∂

∂θ
(fv) (1.5)

Expressing the distribution function f(θ, t) as a Fourier series in θ (as a probability

density function, it is defined to be normalized over a change of 2π in θ at all times t),

f(θ, t) =
1

2π

∞∑
n=−∞

an(t)einθ (1.6)
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and employing the orthogonality of sine and cosine functions over 2π we can complete

the integration in (1.4), yielding

v(θ, t) = − 1

2i

[
a1(t)e

i(θ+α) − a−1(t)e−i(θ+α)
]

Substituting this back into the continuity equation (1.5) and again utilizing orthogonal-

ity of sine and cosine we may equate coefficients of each exponential, resulting in the

infinity of equations

ȧn(t) =
n

2

[
an−1(t)a1(t)e

iα − an+1(t)a−1(t)e
−iα] (1.7)

where n ranges from −∞ to ∞.

In 2008 Ott and Antonsen [2] discovered a surprising dimensional reduction via a re-

striction of the distribution function to a specific invariant manifold. A Poisson Kernel

Distribution (PKD) is defined by a Fourier series in which (using the notation of (1.6))

a−n = a∗n (where ∗ denotes complex conjugation) and an = a(t)n for all n ≥ 0 and a

single coefficient a(t) which then completely defines the distribution. Ott and Antonsen

discovered that if at any time f(θ, t) takes the form of a PKD then the infinity of equa-

tions (1.7) are identical for each value of the index n (n 6= 0), and thus reduce to one

complex evolution equation for a(t). Furthermore, as long as this equation is satisfied

the distribution then remains a PKD. That is, let f(θ, t) take the specific form

f(θ, t) =
1

2π

[
1 +

∞∑
n=1

(
an(t)einθ + a∗n(t)e−inθ

)]
(1.8)

for some complex function of time a(t) expressed in polar coordinates a(t) = ρ(t)e−iφ(t).

Then the evolution of of the nth coefficient of the expansion of f , an = an = ρne−inφ, is

ȧn(t) =
∂

∂t
a(t)n

=
∂

∂t

[
ρn(t)e−inφ(t)

]
= nρn−1ρ̇e−inφ − inρne−inφφ̇

= nan
[
ρ̇

ρ
− iφ̇

]
(1.9)
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Given that for this form of distribution an = an and a−n = a∗n the evolution equations

(1.7) become (for n ≥ 1),

ȧn(t) = n
2

[
an−1a1e

iα − an+1a−1e
−iα]

= n
2

[
an−1aeiα − an+1a∗e−iα

]
= n

2

[
aneiα − ρ2ane−iα

]
= n

2a
n
[
eiα − ρ2e−iα

]
While the case n = 0 results in ȧ0(t) = 0 in both derivations. Matching these two

equations for ȧn results in the complex differential equation

ρ̇− iρφ̇ =
1

2
ρ
[
eiα − ρ2e−iα

]
or, in terms of real and imaginary parts,

ρ̇(t) =
1

2
cos(α)

[
1− ρ2

]
ρ (1.10)

φ̇(t) = −1

2
sin(α)

[
1 + ρ2

]
(1.11)

If we generalize the order parameter (1.3) to the case of N →∞ by defining

z(t) =

∫ 2π

0
eiθf(θ, t)dθ (1.12)

and express f(θ, t) as the Fourier series (1.8) we may easily integrate each exponential

term individually to find that z(t) = a(t), and thus the coefficient of the PKD is in fact

our order parameter, with ρ(t) measuring the clustering of the oscillators (ranging from

zero to one) and φ(t) measuring the average phase of the population.

The evolution equation for ρ, (1.10), shows that (for α 6= π/2) all PKD distributions

either begin with ρ = 0 and remain there or tend towards ρ = 1.

In the case ρ = 1 the oscillators are phase and frequency locked (“fully clustered”),

moving all with the same velocity and in the same position. In terms of the population

distribution, we have f as a dirac delta at a position φ which moves around the circle

with constant velocity φ̇(t) = sin(α).

In the case ρ = 0 the oscillators are uniformly distributed around the circle. This

could be either in parallel to the two (or three) oscillator case in which the oscillators

were distributed around the circle and frequency locked, or it could be realized through
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uniform random motion. This draws our attention to the fact that we must in general be

careful to distinguish between frequency locking and “clustering”, meaning a measure

of the dispersal of the population around the circle. Frequency locking, in which the

oscillators all move with the same rotational velocity, can occur at any level of clustering.

Phase locking, in which the oscillators occupy (for all times) the same position on the

circle, is equivalent to “full” clustering, and naturally implies frequency locking.

The remaining case, in which α = π
2 , results in the same behaviour as ρ = 1, but

regardless of the value of ρ.

While Ott and Antonsen subsequently showed that this manifold is globally attracting

for a large family of Kuramoto like models [3], they also have shown [4] that it is in fact

only neutrally attracting for systems of identical oscillators. That is, if the population

distribution is at any point a PKD it will remain so, however, if at any point it is not

a PKD it will not be drawn towards one (and is unlikely to become one). Thus, while

in the case of identical oscillators this manifold remains invariant, we must recall that

any conclusions we draw from subsequent analysis apply only to regions of phase space

that lie on the PKD manifold.

1.3 Chimera

Long before the discovery of the Ott and Antonsen ansatz (1.8) it was thought that

systems of coupled identical oscillators always behave in a very simple fashion. Systems

of non identical oscillators are capable - under the right conditions - of exhibiting a

complex behaviour in which part of the population synchronizes (frequency lock) while

the remainder continue to wander in a partially dispersed state. It was thought that

systems of identical oscillators were not capable of exhibiting this sort of behaviour.

In 2002, however, Kuramoto and Battogtokh discovered [5] that this conventional wis-

dom was in fact false: that by allowing the coupling coefficient to vary in phase space

there were certain initial conditions under which the oscillators did not all exhibit the

same behaviour. States in which one sub-population is internally fully clustered while

the other is not have been discovered for such systems of identical oscillators, and have

been dubbed “Chimera” States.
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By 2008 a simple variant on the Kuramoto model with constant coupling strength co-

efficients was discovered which results in chimerical behaviour [6]. All that is required

is to partition the population of oscillators into two sub-groups, each sub-group dis-

tributed individually as a PKD (1.8). With one constant coefficient ν describing the

inter-group coupling strength, and a separate constant coefficient µ describing the intra-

group coupling strength it was found that there are regions of parameter space which

admit chimerical solutions for certain subsets of phase space. Specifically, where σ = 1, 2

is one of the two sub-populations and σ
′

denotes the other, the system equations are

θ̇σi = µ
Nσ

∑Nσ
j=1 sin(θσj − θσi − α) + ν

N
σ
′

∑N
σ
′

j=1 sin(θσ
′

j − θσi − α) i = 1, 2, . . . Nσ

(1.13)

This will be the meaning of super- or sub- scripted σ and σ
′

throughout the remainder

of the paper.

In the limiting case N → ∞ each sub-population has its own velocity and continuity

equations, as in (1.4) and (1.5):

∂fσ

∂t
=

∂

∂θ
(fσvσ) (1.14)

vσ(θ, t) = µ

∫ 2π

0
sin(ξ − θ − α)fσ(ξ, t)dξ + ν

∫ 2π

0
sin(ξ − θ − α)fσ

′
(ξ, t)dξ (1.15)

We also define an order parameter as before for each population, and distribute them

each according to the ansatz (1.8). That is, for each sub-population σ,

fσ(θ, t) =
1

2π

[
1 +

∞∑
n=1

(
anσ(t)einθ + a∗nσ (t)e−inθ

)]
(1.16)

zσ(t) =

∫ 2π

0
eiθfσ(θ, t)dθ

as in (1.8) and (1.12) respectively. The continuity equations then reduce to the two

complex equations

ȧσ(t) =
1

2
µ
[
aσ(t)eiα − a∗σ(t)a2σ(t)e−iα

]
+

1

2
ν
[
aσ′ (t)eiα − a∗

σ′ (t)a2σ(t)e−iα
]

(1.17)

or in terms of real and imaginary parts the four (σ = 1, 2) real equations

ρ̇σ(t) =
1

2

[
1− ρ2σ

] [
µρσ cos(α) + νρσ′ cos(φσ′ − φσ − α)

]
(1.18)

ρσφ̇σ(t) =
1

2

[
1 + ρ2σ

] [
−µρσ sin(α) + νρσ′ sin(φσ′ − φσ − α)

]
(1.19)
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We will at this point note that the transformation ψ = φ1−φ2 will be common through-

out this paper, and that we will then be concerned with the three dimensional phase

space of ρ1, ρ2, and ψ. When we refer to equilibria in general it will be with respect to

this space, which does not constrain the original phase variables θi or velocity function

v(θ, t) to be constant.

As a fully clustered state for either sub-population σ (ρσ = 1) is an invariant state

(1.18), Strogatz et al. were able to completely characterize the chimerical behaviour

of the system by assuming (without loss of generality) that ρ1 = 1 and utilizing the

transformation ψ = φ1 − φ2 to reduce the system to two dimensions (ρ2 and ψ). The

stability diagram they found for this system, as published in their paper [6] is printed

here in figure 1.2. In their paper (we follow their notation in the discussion that follows

here) they re-parameterize µ, ν in terms of one parameter, A = µ − ν by restricting

µ + ν = 1 through a rescaling of time. Additionally, they use parameter β = π/2 − α.

Following this discussion we will not be using this re-parameterization.

Examining this stability diagram, we see that as A = µ− ν increases across the saddle

node bifurcation two chimerical equilibria are born, in addition to the omnipresent equi-

librium in which both populations are fully clustered. For small enough β = π/2 − α
(falling in the region labelled “stable chimera”) one of these chimera is stable, the other

a saddle. From this stable chimera region, as A = µ − ν increases the system goes

through a supercritical Hopf bifurcation and a stable limit cycle is born around the

previously stable chimera equilibrium. With A increasing further there is a homoclinic

bifurcation, destroying the limit cycle and leaving one unstable and one saddle equilib-

rium chimera. It is of interest to note that trajectories on the limit cycle are known

as “breathing” chimera, as the order parameter ρ of the partially dispersed population

fluctuates regularly in time.

One note which will be of particular interest is that due to the intersection of the saddle

node bifurcation with the A, β origin there is then no region of parameter space with

ν ≥ µ > 0 which admits chimera.

As mentioned above, due to symmetry considerations the parameter space µ < 0, ν < 0

must exhibit exactly the same behaviour as that described directly above, but with op-

posite stabilities, as the transformation µ→ −µ and ν → −ν is equivalent to a reversal

of time. Considering the transformation θσi → θσi +π for exactly one σ, we see from the
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Figure 1.2: Stability Diagram for Chimera. (Reprinted from [6])

governing system equations (1.13) that this is equivalent to the transformation ν → −ν.

Thus the regions of parameter space in which the inter and intra coupling coefficients

have opposite sign are identical to (up to stability reversal) the regions so far examined.

Therefore, without any loss of generality, we may continue to restrict our attention to

the parameter space 0 ≤ α ≤ π
2 and both µ, ν > 0.

Examples of traditional chimera (ρ1 = 1, ρ2 6= 1) are shown in figures 1.3 and 1.4, which

contain sub-plots of: the time evolution of ρ1, ρ2, and ψ; the distribution of the pop-

ulation 2 at t = 0 and at the termination of the simulation plotted against the initial

continuous PKD; a time series of the individual oscillator phase values for each sub-

population. To generate figure 1.3 the system parameters α = 1.4708, µ = .6, ν = .4
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and initial conditions resulting in ρ1 = 1, ρ2 = 0.7291, and ψ = −0.2094 were used,

which result in a stable chimera (both sub-populations have constant order parame-

ter magnitude). Figure 1.4 displays a breathing chimera, in which the partially dis-

persed sub-population has variable order parameter magnitude. System parameters

α = 1.4708, µ = .64, ν = .36 (µ and ν different from previous simulation) and initial

conditions resulting in ρ1 = 1, ρ2 = 0.7291, and ψ = −0.2094 (same as the previous

simulation) were used for this simulation.

1.4 New Directions

Expanding on the definition of chimera, in which one sub-population is fully clustered

(ρ = 1, phase- and frequency-locked) while the other is in a state of at least partial dis-

persal (ρ 6= 1), we will determine the conditions under which the above two-population

version of the Kuramoto model (1.13) is able to persist in a “generalized” chimerical

state, which we define to be a state in which both sub-populations are partially dis-

persed, and at least one of them has a constant order parameter magnitude.

Examining (1.18) we see immediately that both populations completely dispersed (ρ1 =

ρ2 = 0) is an equilibrium state for this system. Also from (1.18), that if either popula-

tion is completely dispersed (ρσ = 0) while the the other has non zero order parameter

(ρσ′ 6= 0) then ρ̇σ > 0 and we are immediately return to the quadrant of phase space

ρσ > 0, ρσ′ > 0. These observations, combined with the complete characterization of

the case ρσ = 1 for at least one σ in [6] allow us to restrict our attention to the cases

where ρ1, ρ2 ∈ (0, 1).

Additionally, if ν = 0 then the two sub-populations are non interacting, and the system

has been reduced to two independent globally coupled Kuramoto models with phase lag,

which has been completely analyzed in terms of its order parameter behaviour ((1.10)

and (1.11)). Thus we may slightly further restrict parameter space, disallowing ν = 0.

While ν = 0 represents a trivial reduction of the system, µ = 0 results in the oscillators

being coupled in a bipartite manner rather than the system having complete coupling,

which constitutes an interesting (non-trivial) variation on the model. We will character-

ize the conditions for generalized chimera first with complete coupling (µ 6= 0), and then
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with bipartite coupling (µ = 0). Note that no chimera (in the traditional sense) can

exist with bipartite coupling, as µ = 0 and ν > 0 falls in the region of parameter space

which does not admit chimerical solutions. We will accomplish this characterization en-

tirely analytically. We will, however, also implement numerical routines to demonstrate

the thus predicted behaviour, displaying the time evolution of order parameters as well

as the motion of the individual oscillators. As a final note, from this point on we will

entirely drop the explicit function notation indicating dependence on time, where thus

far it has been sometimes included for clarity.
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Chapter 2

Analysis of the Model with

Complete Coupling

In this chapter we will examine states in the phase space of the system (1.14),(1.15),

with µ 6= 0 which exist on the PKD manifold. That is, solutions of the system of two

sub-populations of Kuramoto oscillators which are all coupled to each other (complete

coupling), but with one constant coupling coefficient µ for intra-group coupling and

another, ν, for inter-group coupling. Employing the transformation ψ = φ1 − φ2, the

evolution equations for ρ1, ρ2 and ψ are (from 1.17)

ρ̇1(t) =
1

2

[
1− ρ21

]
[µρ1 cos(α) + νρ2 cos(ψ + α)] (2.1)

ρ̇2(t) =
1

2

[
1− ρ22

]
[µρ2 cos(α) + νρ1 cos(ψ − α)] (2.2)

ψ̇(t) = −1

2

[
1 + ρ21

] [
µ sin(α) + ν

ρ2
ρ1

sin(ψ + α)

]
+

1

2

[
1 + ρ22

] [
µ sin(α)− ν ρ1

ρ2
sin(ψ − α)

]
(2.3)

Our interest is in generalized chimerical solutions, in which both sub-populations are

partially clustered, with at least one population having constant order parameter magni-

tude. As discussed in section 1.4 we need not consider ρ = 0, 1 for either sub-population.

Theorem 2.1 Generalized Chimera are trajectories through phase space in which one

of two sub-populations has a constant order parameter magnitude while that of the other

16
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sub-population may vary. Traditional Chimera are those of the preceding states in which

the sub-population with constant order parameter magnitude ρσ has ρσ = 1.

For the system (1.14),(1.15), with µ > 0, ν > 0, 0 ≤ α ≤ π
2 and for points on the PKD

manifold, generalized (non-traditional) chimera exist if and only if the system occupies

one of the following equilibrium states:

• Case One: α = π
2 , ψ = 0, and ρ1ρ2 = ν

µ

• Case Two: α = π
2 , ψ = 0, π, and ρ1 = ρ2

• Case Three: ψ = π, ρ1 = ρ2, and ν = µ

Note that this excludes the possibility of having one population which is constantly

partially clustered while the clustering of the other sub-population varies in time.

We will prove this by first considering the case ρ̇1 = ρ̇2 = 0 in section 2.1, and then

showing in section 2.2 that the general case ρ̇1 = 0, ρ̇2 = ρ̇2(t) admits no further

solutions. Having done so, we will complete this chapter by exhibiting these generalized

chimera through numerical simulations in section 2.3.

2.1 Two Constant Order Parameter Magnitudes

Assuming that ρ̇1 = ρ̇2 = 0, ρ1, ρ2 ∈ (1, 0), µ > 0, ν > 0 the ρ̇σ equations of motion

(2.1) and (2.2) reduce to

0 = µρ1 cos(α) + νρ2 cos(ψ + α) (2.4)

0 = µρ2 cos(α) + νρ1 cos(ψ − α) (2.5)

Multiplying the above two equations together results in

µ2 cos2(α) = ν2 cos(ψ + α) cos(ψ − α)

= ν2
1

2
[cos(2ψ) + cos(2α)]

= ν2
1

2

[
2 cos2(ψ)− 1 + 2 cos2(α)− 1

]
= ν2

[
cos2(ψ) + cos2(α)− 1

]
⇔ cos2(ψ) = 1− cos2(α)

[
1− µ2

ν2

]
(2.6)
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Which requires ψ̇ = 0, since this specifies ψ in terms of constant system parameters.

Since it must be that cos2(ψ) ≤ 1 this restricts us further to the region ν ≥ µ > 0. Since

ρ1, ρ2, ν, µ 6= 0, from (2.4) and (2.5) we note that any one of cos(α), cos(ψ − α), and

cos(ψ + α) is zero if and only if the others are as well, which is equivalent to ψ = 0, π

and α = π
2 . This case will be handled separately following this analysis. Assuming that

this is not the case we may divide (2.4) by (2.5) to get

ρ1
ρ2

=
ρ2
ρ1

cos(ψ + α)

cos(ψ − α)

⇔ ρ21
ρ22

=
cos(ψ + α)

cos(ψ − α)

(2.7)

Multiplying (2.3) by 2ρ1/ρ2 we express the equation of motion for ψ becomes

0 = 2
ρ1
ρ2
ψ̇

= −
[
1 + ρ21

] [
µ
ρ1
ρ2

sin(α) + ν sin(ψ + α)

]
+
[
1 + ρ22

] [
µ
ρ1
ρ2

sin(α)− ν ρ
2
1

ρ22
sin(ψ − α)

]
= µ

ρ1
ρ2

sin(α)
[
ρ22 − ρ21

]
− νρ21 [sin(ψ + α) + sin(ψ − α)]− ν

[
sin(ψ + α) +

ρ21
ρ22

sin(ψ − α)

]
0 = µρ1ρ2 sin(α)

[
1− ρ21

ρ22

]
− 2νρ21 sin(ψ) cos(α)− ν

[
sin(ψ + α) +

ρ21
ρ22

sin(ψ − α)

]
Substituting ρ21/ρ

2
2 = cos(ψ+α)/ cos(ψ−α) (2.7) and multiplying through by cos(ψ−α)

results in the constraint

0 =µρ1ρ2 sin(α) [cos(ψ − α)− cos(ψ + α)]− 2νρ21 sin(ψ) cos(α) cos(ψ − α)

− ν [sin(ψ + α) cos(ψ − α) + cos(ψ + α) sin(ψ − α)]

=2µρ1ρ2 sin2(α) sin(ψ)− 2νρ21 sin(ψ) cos(α) cos(ψ − α)− ν sin(2ψ)

(2.8)

We can eliminate the cos(ψ − α) term by rearranging and equating expressions (2.6)

and (2.7)

ρ21
ρ22

= cos(ψ + α)/ cos(ψ − α) ⇒ ρ21
ρ22

cos(ψ − α) = cos(ψ + α)

µ2 cos2(α) = ν2 cos(ψ + α) cos(ψ − α) ⇒ µ2 cos2(α)/
[
ν2 cos(ψ − α)

]
= cos(ψ + α)

⇒ ρ21
ρ22

cos2(ψ − α) = µ2 cos2(α)/ν2

⇒ | cos(ψ − α) |= (µ/ν)(ρ2/ρ1) | cos(α) |
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Referencing (2.5) and since sgn[cos(α)] = +1 we see that sgn [cos(ψ − α)] = −1. Thus,

substituting the above into (2.8) we get

0 = 2µρ1ρ2 sin2(α) sin(ψ) + 2µρ1ρ2 cos2(α) sin(ψ)− ν sin(2ψ)

= 2µρ1ρ2 sin(ψ)− ν sin(2ψ)

= 2µρ1ρ2 sin(ψ)− 2ν sin(ψ) cos(ψ)

⇒ 0 = µρ1ρ2 − ν cos(ψ)

⇒ ρ1ρ2 = ν cos(ψ)/µ

(2.9)

unless sin(ψ) = 0, which will be considered at the end of this section as our second

special case.

As ρ1ρ2 < 1, equation (2.9) requires that | cos(ψ) |< µ/ν. Referring back to (2.6) and

recalling that µ ≤ ν we see that

µ2

ν2
> cos2(ψ)

= 1− cos2(α)

[
1− µ2

ν2

]
⇒ cos2(α) > 1

Which is identically false. Thus the only region in which generalized chimerical be-

haviour could exist is in the so far excluded special cases: that sin(ψ) = 0, or that

ψ = 0, π and α = π
2 . In both cases ψ = 0, π and the ρσ equations of motion ((2.4) and

(2.5)) become

0 = cos(α) [µρ1 + νρ2 cos(ψ)]

0 = cos(α) [µρ2 + νρ1 cos(ψ)]

If cos(α) 6= 0 then by inspection we see that ρ1 = ρ2, that ψ = π, and that µ = ν.

Substituting these conditions into the ψ equation of motion (2.3) results in the trivial

tautology 0 = 0. Thus the equilibria described by case 3 of theorem 2.1 exist.

If cos(α) = 0 then the ρσ equations of motion (2.1) and (2.2) are immediately satisfied,

and the ψ equation of motion (2.3) reduces to

0 =
[
ρ22 − ρ21

]
[µρ1ρ2 − ν cos(ψ)]
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Thus ρ1 = ρ2 (Case 2, thm 2.1) or cos(ψ) = µρ1ρ2/ν ⇒ ψ = 0 (since the RHS is positive

and ψ = 0, π) and ρ1ρ2 = ν/µ (Case 1, thm 2.1).

This completes the demonstration that the families of equilibria outlined in theorem 2.1

all exist. In the remainder of the chapter we will show that there are no generalized

chimera in which either population has non-constant order parameter magnitude.

Due to the symmetry considerations discussed throughout the Introduction, the equi-

libria which exist throughout the remainder of non zero parameter space (one or both

of µ and ν negative, α not restricted to [0, π2 ]) are simply repetitions of the equilibria

derived above. Thus our analysis extends to the entire (non zero for µ, ν) parameter

space, and that generalized chimeras with both order parameter magnitudes constant

in time occur, for this type of model and on the PKD manifold, exactly and only for

the conditions enumerated in Theorem 2.1.

2.2 Exactly One Non-Constant Order Parameter Magni-

tude

Assuming now that ρ̇2 6= 0, and maintaining ρ̇1 = 0 with ρ1, ρ2 ∈ (1, 0), µ > 0, ν > 0,

and 0 ≤ α ≤ π
2 the system equations (2.1)-(2.3) reduce to

0 = µρ1 cos(α) + νρ2 cos(ψ + α) (2.10)

ρ̇2 =
1− ρ22

2
[µρ2 cos(α) + νρ1 cos(ψ − α)] (2.11)

ψ̇ = −1 + ρ21
2

[
µ sin(α) + ν

ρ2
ρ1

sin(ψ + α)

]
+

1 + ρ22
2

[
µ sin(α)− ν ρ1

ρ2
sin(ψ − α)

]
(2.12)

Equation (2.10) provides a restriction on the relative values of ρ2 and ψ as well as their

time derivatives. Specifically,

ρ2 = − µρ1 cos(α)

ν cos(ψ + α)
(2.13)

ρ̇2 cos(ψ + α) = ρ2 sin(ψ + α)ψ̇ (2.14)

This allows us to use (2.13) to eliminate ρ2 and to express ψ̇ in two ways: once from the

evolution equation for ψ (2.12) and once using (2.14) and substituting in the evolution
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equation for ρ2, (2.11). This results in two expressions for ψ̇ in terms of one phase vari-

able (ψ) and three constants - the ratio λ := µ/ν, α, and ρ1, where we have introduced

λ only to simplify the following long expressions.

We now substitute (2.11) and (2.13) into (2.14), solve for ψ̇, and expanding the right

hand side (using Mathematica) into a sum of exponentials in ψ. We will expand our

other expression for ψ̇ as well, and as we wish to compare them, and they both contain

denominator terms, we will pre-emptively gain a common denominator. The numerator

of the equation (2.14) is then,

Numerator[ψ̇] =
[
− e−i3α

]
e−5ψ +

[
(λ2 − 1)e−i5α + (λ2ρ21 + 2λ2)e−i3α+

+(2λ2ρ21 + λ2 − 4)e−iα + (λ4ρ21)e
iα
]
e−i3ψ +

[
(−λ4ρ21 + λ2ρ21)e

−i5α+

+(−4λ4ρ21 + 2λ2ρ21 + 3λ2 − 4)e−i3α + (−6λ4ρ21 + 3λ2ρ21 + λ2)e−iα+

+(−4λ4ρ21 + 2λ2ρ21 + 3λ2 − 6)eiα + (−λ4ρ21 + 2λ2ρ21)e
i3α
]
e−iψ+

+[C.C.]

(2.15)

Where +[C.C.] means to add on the complex conjugate of everything appearing above.

Expanding the numerator of our original expression for ψ̇ gives

Numerator[ψ̇] =
[
− e−i3α

]
e−5ψ +

[
(−λ2 + 1)e−i5α + (λ2ρ21 + 2λ2)e−i3α+

+(3λ2 − 2)e−iα + (−λ2ρ21)eiα
]
e−i3ψ +

[
(−λ4ρ21 + λ2ρ21)e

−i5α+

+(−2λ4ρ21 + 4λ2ρ21 + λ2 + 2)e−i3α + (3λ2ρ21 + 2λ2)e−iα+

+(2λ4ρ21 + λ2)eiα + (λ4ρ21)
]
e−iψ+

+[C.C.]

(2.16)

The (common) denominator is the product 2λ cos(α) cos2(ψ+α) sin(ψ+α). As discussed

previously, any of these terms being zero requires all the others to be as well, and reduces

the resulting solution to an equilibrium. We may thus disregard the denominator, as we

are interested in conditions under which the difference of these two expressions is zero.

Taking the difference (disregarding the denominator) and setting equal to zero gives the
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condition

0 =
[
0
]
e−i5ψ +

[
(−2λ2 + 2)e−i5α + (0)e−i3α+

+(−2λ2ρ21 + 2λ2 + 2)e−iα + (−2λ2ρ21)e
iα
]
e−i3ψ+

+
[
(0)e−i5α + (2λ4ρ21 + 2λ2ρ21 − 2λ2 + 6)e−i3α+

+(6λ4ρ21 − 4λ2)e−iα + (6λ4ρ21 − 4λ2ρ21 − 2λ2 + 6)eiα+

+(2λ4ρ21 − 2λ2ρ21)e
i3α
]
e−iψ + [C.C.]

(2.17)

Since each coefficient is not identically zero these are independent descriptions of ψ̇, and

create form a restriction on the system behaviour.

While the coefficients are not identically zero, there may yet be particular points in

parameter space for which they are. To find these, first note that as the coefficient

of einψ is the complex conjugate of the coefficient of e−inψ such pairs form redundant

constraints, and so we need only examine, for instance, the coefficients of e−i5ψ, e−i3ψ,

and e−iψ. The coefficient of e−i5ψ is identically zero, so this does not constrain the

parameters. Setting the coefficient of e−i3ψ to zero results in two equalities, for the real

and imaginary parts. The imaginary terms give the condition

λ2 :=
µ2

ν2
=

sin(5α) + sin(α)

sin(5α)− sin(α)

While the real part can be re-written to give ρ21 as a function of α and λ2. Substituting

in the above expression for λ2 and simplifying gives,

ρ21 =
2

1 + 2 cos(α)

The imaginary part of the equality derived from the e−iψ term gives a second expression

for ρ21,

ρ21 =
1− 2 cos(2α)

2 + 2 cos(2α)

Equating these two expressions for ρ21 requires

0 = 3 + 6 cos(2α) + 2 cos(3α) (2.18)

This equality holds for only one value of α ∈ [0, π/2], at α ≈ .888082. Furthermore, the

right hand side of (2.18) decreases continuously on the interval .8 ≤ α ≤ .9, is positive



23

at α = 0.8 and negative at α = 0.9. Thus the root certainly lies somewhere in between.

The one remaining independent condition on the parameters is the real part of the

equation resulting from setting the coefficient of e−iψ to zero. Numerically evaluating

ρ21 and λ2 across α ∈ [0.8, 0.9] and substituting these values into this equation results in

a continuous monotonic curve decreasing from approximately −1.5536 on the left side

of the α interval to approximately −2.1095 on the right side of the interval. Since the

left hand side of this constraining equality is zero, we may conclude that there are in

fact no points in our parameter space at which these coefficients are zero. There are

therefore no values of α for which these two expressions for ψ̇ can be made to equate,

which contradicts the assumptions leading to them - that is, there are no Generalized

Chimerical solutions in which one order parameter magnitude is constant and less than

one while the other fluctuates.

Having now shown that no additional chimera exist besides those found in section 2.1,

this completes the proof of Theorem 2.1.

2.3 Numerical Simulations

According to Theorem 2.1, for an infinite population of oscillators distributed along a

PKD we should observe generalized chimera in which the order parameter magnitudes

of both sub-populations are constant and less than one iff one of the following holds:

• Case 1: α = π
2 , ψ = 0, and ρ1ρ2 = ν/µ

• Case 2: α = π
2 , ψ = 0, π, and ρ1 = ρ2

• Case 3: ψ = π, µ = ν, and ρ1 = ρ2

Here we present the results of numerical simulations of representative finite size versions

of these cases. Throughout we will use population sizes N1 = N2 = 128, and the

simulations are as follows:

Figure 2.1: Case 1 (thm 2.1), in which µ and ν are not constrained to be equal, but

α = π
2 , ψ = 0, and ρ1ρ2 = ν/µ. We use µ = 4

7 , ν = 3
7 and ρ1 = 15/16, ρ2 = 4/5.

Figure 2.2: Case 2 (thm 2.1), in which µ and ν are not constrained to be equal, but
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α = π
2 , ψ = 0, π, and ρ1 = ρ2. We use µ = 4

7 , ν = 3
7 , ρ1 = ρ2 = .75, and ψ = π.

Figure 2.3: Similar to the second simulation (Case 2, thm 2.1), however this time we

use ψ = 0.

Figure 2.4: Case 3 (thm 2.1), in which α is not constrained to be π
2 , but ψ = π, µ = ν,

and ρ1 = ρ2. We use α = 4π
9 and ρ1 = ρ2 = .75.

In each of these figures we see in subplots (a) that the order parameter magnitudes ρ1

and ρ2 are less than unity as required, and both constant as predicted. Also, in

subplots (b) that ψ is constant as predicted. In subplots (c) we see that the

distribution of oscillators in each sub-population retains the general shape of its

original distribution along the chosen PKD, though in general (figures 2.2-2.1) the

populations are in motion, and so the histograms are out of phase with the initial

PKD. In subplots (c) we see the motion of the individual oscillators, affording insight

into the machination of these chimera. Note only one population is visible in figure 2.2

(a) and in 2.3 in (a), (b), and (c): in 2.2 it is because the two have exactly equal order

parameter magnitudes, and in 2.3 this is due to the two populations being identically

distributed and exactly coincident.

Case 3, in which α is not constrained to be π
2 , but ψ = π, µ = ν, and ρ1 = ρ2 and

displayed in figure 2.4 is unique among these outcomes in that it is a very unstable

equilibrium, decaying by time t = 120. This is likely do to the instability of the equi-

librium itself and not a finite size effect as it is the only solution which exhibits such

an instability. It is also unique in that while it persists the sub-populations are each

stationary on [0, 2π).

In conclusion, these simulations suggest that the behaviours predicted in Theorem 2.1

for infinite populations do manifest in systems with finite population sizes.
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2 , µ = 4

7 , ν = 3
7 , ρ1 = 15

16 , and ρ2 = 4
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Figure 2.4: Case 3 - Chimera with ψ = π, α = 4π
9 , µ = ν = 1

2 , and ρ1 = ρ2 = 3
4

.



Chapter 3

Analysis of the Model with

Bipartite Coupling

In this chapter we examine the limiting case µ = 0 of the model (1.17), resulting in a

system with bipartite coupling. Each oscillator in sub-population 1 is coupled to each

oscillator in sub-population 2, however there is no intra-group coupling. We are still

restricting our attention to points of phase space which lie on the PKD manifold, and are

searching for generalized chimerical behaviour. As before, it is unnecessary to consider

the points which result in either population having order parameter magnitude ρ = 0

or 1.

Theorem 3.1 Generalized Chimera are trajectories through phase space in which one

of two sub-populations has a constant order parameter magnitude while that of the other

sub-population may vary. Traditional Chimera are those of the preceding states in which

the sub-population with constant order parameter magnitude ρσ has ρσ = 1.

For the system (1.14),(1.15), with µ = 0, ν > 0, 0 ≤ α ≤ π
2 and for points on the PKD

manifold, generalized chimera exist if and only if α = π
2 , ψ = 0, π, and ρ1 = ρ2.

29



30

3.1 Proof of Theorem 3.1

With µ = 0 the evolution equations for the order parameters ρ1, ρ2, and ψ become (from

(2.1) - (2.3))

ρ̇1 =
1

2

[
1− ρ21

]
νρ2 cos(ψ + α)

ρ̇2 =
1

2

[
1− ρ22

]
νρ1 cos(ψ − α)

ψ̇ = −1

2

[
1 + ρ21

]
ν
ρ2
ρ1

sin(ψ + α)− 1

2

[
1 + ρ22

]
ν
ρ1
ρ2

sin(ψ − α)

and our assumptions are that ρ̇1 = 0, ν > 0, and 0 ≤ α ≤ π
2 . First we note that each

term in the above equations contains a factor of (1/2)ν, which therefore may be scaled

out. Under these assumptions, and rescaling time to eliminate the factor of 1
2ν, these

evolution equations become

0 =
[
1− ρ21

]
ρ2 cos(ψ + α) (3.1)

ρ̇2 =
[
1− ρ22

]
ρ1 cos(ψ − α) (3.2)

ψ̇ = −
[
1 + ρ21

] ρ2
ρ1

sin(ψ + α)−
[
1 + ρ22

] ρ1
ρ2

sin(ψ − α) (3.3)

As we do not allow ρ = 0, 1 for either population, equation (3.1) must be satisfied via

the restriction cos(ψ + α) = 0, which immediately leads to ψ̇ = 0 and sin(ψ + α) = ±1.

Multiplying through by ∓ρ1ρ2 the evolution equation for ψ (3.3) then reads

0 =
[
1 + ρ21

]
ρ22 ±

[
1 + ρ22

]
ρ21 sin(ψ − α)

⇒ ρ22 =
∓ρ21 sin(ψ − α)

1 + ρ21 [1± sin(ψ − α)]

⇒ ρ̇2 = 0

Which conclusion regarding ρ̇2 follows because, by assumption ρ2 6= 0, ρ̇1 = 0; as a pa-

rameter α̇ = 0, and by previous implication ψ̇ = 0. ρ2 is then determined by constants,

and so itself must be constant. Then, from the evolution equation for ρ2 (3.2)

0 =
[
1− ρ22

]
ρ1 cos(ψ − α)
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Which requires cos(ψ − α) = 0. As ψ and α are already restricted by cos(ψ + α) = 0 it

must be that ψ = 0, π and α = π
2 . The evolution equation for ψ (3.3) then becomes

0 =
[
1 + ρ21

]
ρ22 −

[
1 + ρ22

]
ρ21

= ρ21ρ
2
2 [1− 1] +

[
ρ22 − ρ21

]
⇒ ρ1 = ρ2

Thus, generalized chimera exist on the PKD manifold for this model only under the

condition ψ = 0, π and α = π
2 as well as requiring that ρ1 = ρ2, proving Theorem 3.1

3.2 Numerical Simulations

According to Theorem 3.1, for an infinite population of oscillators distributed along a

PKD and with α = π
2 and ψ = π we should observe a generalized chimera in which

the order parameter magnitudes of both sub-populations are constant and less than one

iff ρ1 = ρ2. Here we present the results of a simulation of a representative finite size

version of this system with population sizes N1 = N2 = 128 and ρ1 = ρ2 = .8. The

results of the simulation are pictured in figure 3.1.

In 3.1 subfigure (a) each of the sub-populations has exactly the same order parameter

magnitude, ρ1 = ρ2 = .8, and we see that they do remain constant in time, as does the

difference ψ = φ1 − φ2 (subfigure (b)).

In subfigure (c) we see each oscillator sub-population approximately distributed accord-

ing to the desired PKD at time t = 0 (at top), and then a comparison of the actual

distribution and the PKD at a later time (at bottom). The actual distribution is out of

phase with the initial generating PKD as the oscillator sub-populations are in motion,

however we see that they maintain the general shape of their distribution, as we would

expect.

In subfigure (d) is pictured a time series of the phase variables of sub-populations 1 and

2 (top and bottom, respectively), in which not only is the constant ψ = π behaviour

observable, but we also see the motion of the peak of the distribution of each group.

In conclusion, this simulation with finite population sizes N1 = N2 = 128 does exhibit

the behaviour predicted in Theorem 3.1 for infinite populations.
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Chapter 4

Conclusions

We have examined a variation of the Kuramoto model in which the oscillators have

identical natural frequencies, there is a common, constant phase lag, and the population

of oscillators is divided into two groups with one constant coupling coefficient governing

intra-group coupling and another for inter-group coupling. Further, we have dealt with

two cases - a two-population model with complete coupling and a two-population model

with bipartite coupling. In both cases we categorized the conditions under which the

system exhibits what we have termed generalized chimerical behaviour, in which the

two sub-populations both have non zero, non unity order parameter magnitudes, and at

least one of which is constant in time. Specifically we have been interested in generalized

chimera that are not traditional chimera - that is, our interest has been in the generalized

chimera in which neither population is fully clustered, as the examination of traditional

chimera for this model had been previously done.

We have found that generalized chimera (again, other than the traditionally termed

chimera analyzed in [6]) only occur under very specific conditions, and as equilibrium

solutions in 3-D phase space. Models with both complete and bipartite coupling admit

chimerical equilibria when α = π
2 , ψ = 0, π, and ρ1 = ρ2. This is the full extent of

the chimerical solutions with bipartite coupling, while complete coupling also exhibits

chimera when (and only when, in addition to the above)

• α = π
2 , ψ = 0, and ρ1ρ2 = ν

µ

• ψ = π, ρ1 = ρ2, and ν = µ

33
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Note in this last case that µ = ν - that is, the two populations of oscillators are acting

on themselves and on each other equally.

Our numerical simulations demonstrate the existence of these chimera, as well as show-

ing that they are reasonably persistent for finite sized populations of oscillators.

Thus expanding on the results of [6] we have contributed to the the problem of char-

acterizing generalized chimera in the subset of phase space defined by the manifold of

pairs of PKDs for the two-population Kuramoto model with phase lag.
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Appendix:

Numerical Integration Routine

The initial conditions for each subpopulation are obtained by first using interpolating

functions to approximately invert the cumulative distribution function derived from

considering the PKD to be a probability distribution function Then the ith oscillator is

assigned an initial phase by evaluating the inverted cdf at 2i−1
2Nσ

, where Nσ is the size of

the corresponding population.

nsteps = 100000;

prec = 12;

n1 = 128;

n2 = 128;

tt = 3000;

\[Rho]1 = .75;

\[Rho]2 = .75;

\[Psi]0 = 0;

\[Phi]1 = Random[]*2*Pi;

\[Phi]2 = \[Phi]1 - \[Psi]0;

(*\[Lambda]=\[Mu]/\[Nu]*)

\[Lambda] = 3/4;

\[Alpha] = Pi/2;

PKD = (1 - \[Rho]^2)/(2*

Pi*(1 + \[Rho]^2 - 2*\[Rho]*Cos[\[Theta] - \[Phi]]));

If[\[Rho]1 != 1,
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pdf1 = PKD /. {\[Rho] -> \[Rho]1, \[Phi] -> \[Phi]1};,

pdf1 = DiracDelta[\[Theta] - \[Phi]1];]

If[\[Rho]2 != 1,

pdf2 = PKD /. {\[Rho] -> \[Rho]2, \[Phi] -> \[Phi]2};,

pdf2 = DiracDelta[\[Theta] - \[Phi]2];]

If[\[Rho]1 != 1,

grid1 = Table[2*(i - 1)*Pi/(5*n1 - 1) - Pi, {i, 5*n1}];

cdf1 = Interpolation[

Thread[{grid1,

Table[NIntegrate[pdf1, {\[Theta], -Pi, grid1[[i]]}], {i,

5*n1}]}]];

cdf1inv = InverseFunction[cdf1];,

cdf1[\[Theta]_] :=

Piecewise[{{0, -Pi <= \[Theta] < \[Phi]1}, {0, \[Phi]1 < \[Theta] \

<= Pi}, {1, \[Theta] == \[Phi]1}}]; cdf1inv[p_] := \[Phi]1;]

If[\[Rho]2 != 1,

grid2 = Table[2*(i - 1)*Pi/(5*n2 - 1) - Pi, {i, 5*n2}];

cdf2 = Interpolation[

Thread[{grid2,

Table[NIntegrate[pdf2, {\[Theta], -Pi, grid2[[i]]}], {i,

5*n2}]}]];

cdf2inv = InverseFunction[cdf2];,

cdf2[\[Theta]_] :=

Piecewise[{{0, -Pi <= \[Theta] < \[Phi]2}, {0, \[Phi]2 < \[Theta] \

<= Pi}, {1, \[Theta] == \[Phi]2}}]; cdf2inv[p_] := \[Phi]2;]

ps1 = Table[(2*i - 1)/(2*n1), {i, n1}];

seeds1 = Table[cdf1inv[ps1[[i]]], {i, n1}];

ps2 = Table[(2*i - 1)/(2*n2), {i, n2}];

seeds2 = Table[cdf2inv[ps2[[i]]], {i, n2}];

seeds = Join[Table[y[i][0] == seeds1[[i]], {i, n1}],

Table[y[i + n1][0] == seeds2[[i]], {i, n2}]];

seeds0 = Join[seeds1, seeds2];
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Kinter = 1;

Kintra = \[Lambda];

(K1 = Table[Kintra/n1, {i, n1}, {j, n1}]) // MatrixForm;

(K2 = Table[Kinter/n2, {i, n1}, {j, n2}]) // MatrixForm;

(K3 = Table[Kinter/n1, {i, n2}, {j, n1}]) // MatrixForm;

(K4 = Table[Kintra/n2, {i, n2}, {j, n2}]) // MatrixForm;

(K = ArrayFlatten[{{K1, K2}, {K3, K4}}]) // MatrixForm;

eqn = Join[

Table[y[i]’[t] ==

Sum[K[[i]][[j]]*Sin[y[j][t] - y[i][t] - \[Alpha]], {j,

n1 + n2}], {i, n1 + n2}], seeds];

g = Table[y[i][t], {i, n1 + n2}] /.

NDSolve[eqn, Table[y[i], {i, n1 + n2}], {t, 0, tt},

MaxSteps -> nsteps, PrecisionGoal -> prec, AccuracyGoal -> prec];

ord1 = Sum[Exp[I*g[[1]][[i]]], {i, n1}]/n1;

ord2 = Sum[Exp[I*g[[1]][[i]]], {i, n1 + 1, n1 + n2}]/n2;

r1 = Abs[ord1];

r2 = Abs[ord2];

phi1 = Arg[ord1];

phi2 = Arg[ord2];

g then is a list of interpolating functions of time, one for each oscillator, with domain

t ∈ [0, tt].
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