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Abstract 

In 1989, Edward Lorenz published a paper entitled, “Computational chaos- a prelude to 

computational instability” [L]. His paper looked at Euler approximations to differential 

equations. If the time increment of the approximating function was increased, he found 

that computational chaos set in. Since the numerics suggested transitivity and 

noninvertibility, he conjectured that transitive, noninvertible maps of an attractor were 

chaotic. To set the stage for investigating this conjecture, this thesis looked to examine 

the relationships between some of the standard definitions of chaos and attractor used 

throughout the literature. In addition to offering a proof of the Lorenz conjecture, a 

review of a number of related results was conducted. A side product of the work done 

was a partial result that tried to address whether topological transitivity carries sensitivity 

at a point to sensitivity on a set.  
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Ch 0. Background  

In 1989, Edward Lorenz published a paper entitled, “Computational chaos- a prelude to 

computational instability” [L]. His paper was concerned with the emergence of chaos 

when difference equations with large time steps are used to approximate the solutions to 

ordinary differential equations. In particular he was looking at bad Euler approximations. 

The forward differencing scheme 1 ( )n n n  X X F X would be used to approximate 

solutions to the system of ODEs / ( )d dt X F X . If  was chosen to be so large as to give 

rise to sensitive dependence on initial conditions, for an ordinary differential equation 

without sensitivity, then the system was said to be computationally chaotic. Similarly, 

if was chosen large enough such that the approximation approached infinity, whereas 

the corresponding solution to the ODE approached an equilibrium point, then this was 

said to be computational instability.  It was pointed out that not all Euler approximations 

give rise to computational chaos or computational instability for large . For example the 

Euler method applied to 2/ (1 )dx dt x x   shows chaotic behavior for large enough but 

never reaches computational instability. He then pointed out that even one of the simplest 

nonlinear flows, 2/dx dt x x  , can elicit computational chaos via bad Euler 

approximations.  Since 2/dx dt x x   can be solved analytically to / ( c)t tx e e  it can be 

found that particular solutions approach either the stable fixed point 1x  or x   ; 

however, Euler’s method gives 2

1 (1 )n n nx x x     where for values of  between 2 and 3 

the map varies chaotically . Then for  > 3 computational instability sets in.  

The main system Lorenz studied is given in the caption of Figure 1. As can be seen in 

panel A, this system of contains an attracting equilibrium point. As Lorenz simulated 
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“solutions” to this system with increasingly large time steps, he noticed a series of images 

that showed the formation of what appeared to a smooth attracting invariant circle, which 

he called an attractor. As  was increased the attractor progressed from a smooth 

invariant circle (Fig. 1B), to a smooth circle with bumps (Fig. 1C), to a set with cusps 

(Fig. 1D/E), to set with a strong numerical indication of chaos (Fig. 1F).  Note:  Panel A 

was created using Mathematica and its NDSolve and StreamPlot commands; whereas 

Panels B-F were modified from [L]. Since Figure 1F provides a strong indication of 

chaos, a question that was asked by Lorenz was where did the transition to chaos first 

appear? Lorenz posited that this transition happened when the cusps turned to loops. This 

led Lorenz to conjecture that a sufficient condition for a system to be chaotic was that a 

map be not one-to-one on an attractor. For the rest of the paper this will be called the 

Lorenz Conjecture.  



 

 3 

 

Although the motivation for this thesis ultimately came from Lorenz’s paper, specifically 

his conjecture, this thesis has two purposes. The first is to prove the conjecture that was 

made in Lorenz’s paper about a transitive, noninvertible function acting on an attractor 

being chaotic is true. This led directly into the second purpose of the thesis. Since 

Lorenz’s claim used terms such as attractor and chaos, terms for which there are 

numerous definitions of in the literature, it was deemed worthwhile to present some of 

the more widely accepted and used definitions of chaos and attractor and present them in 

a hierarchical fashion. In other words, show the implications between the various 

definitions from the literature.  
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It was found that the main differences with respect to varying definitions of attractor stem 

from whether there is a subattractor and what, if anything, does it attract. The definitions 

of chaos that were considered were the classic Devaney definition (topological 

transitivity, dense periodic points and sensitive dependence on initial conditions), Li-

Yorke chaos (an uncountable scrambled set) and what was named in this paper as Lorenz 

chaos (topological transitivity and sensitive dependence on initial conditions).   

Several results related to the Lorenz conjecture were found in the literature. The most 

directly related came from [Si], [BV], [AAB] and [GW]. Both [Si] and [BV] showed that 

for the special case where f is a map of an interval, transitivity, or equivalently a dense 

orbit, implies chaos, thus validating the Lorenz Conjecture without the need for 

noninvertibility. Silverman also went on to prove that a dense orbit and noninvertibility 

imply chaos in the special case when f is a map of a circle. The Lorenz conjecture was 

shown to be true in a general metric space, but in the special case that the system is 

minimal, by Akin, Auslander and Berg [AAB].  

The rest of this paper will proceed by presenting definitions from the literature of basic 

terms that will be utilized in defining chaos and attractor. The more enlightened reader 

can feel free to skim over this section or skip it entirely. Next the definitions of attractor 

and chaos will be presented, followed by explanations of which definition of attractor 

(chaos) implies another definition of attractor (chaos). The next section will go into more 

detail about how much of Lorenz’s Conjecture has been answered in the literature. The 

final section will contain this author’s humble proof of the Lorenz conjecture. Also 
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included are some results in an attempt to determine whether transitivity plus sensitivity 

at a point implies sensitivity over the whole set. 

Before proceeding, it should be noted that in [K], the Lorenz conjecture was stated to be 

true where he cited [AAB] and [GW]. As mentioned above, in [AAB] it was shown that 

the conjecture was true only when the system was minimal. Furthermore, there is no 

explicit reference to transitivity and noninvertibility implying chaos in [GW]; however, 

the Lorenz Conjecture follows from Lemma 1.2 of [GW], provided one adds a few 

details.   

Ch 1. Definitions from the literature 

This section presents definitions from the literature, with references, of basic notions that 

will be used later in the thesis, especially when deriving the definitions of attractor and 

chaos. Unless stated otherwise assume : ( , ) ( , )f X d X d , where f is continuous and 

X is a metric space with metric d . When the metric is understood 

: ( , ) ( , )f X d X d will be denoted :f X X or ( , )X f for brevity. When working with 

a subset A X , the self map restricted to A will be denoted |Af or ( , )A f . 

Asymptotic:  A point x is asymptotic to y if lim ( ( ), ( )) 0n nd f x f y  . [HY] 

Attracted: The orbit 1{ ( )}nf x or the point 
1x is attracted to the forward limit set,

0( )x , if 

1( )x is contained in
0( )x . [ASY]  

Computational Chaos: Chaotic behavior in a numerical approximation that owes its 

existence to the use of an excessively large time increment. [L] 
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Computational Instability: A rapid and unbounded amplification of the variables in a 

numerical approximation that owes its existence to the use of an excessively large time 

increment. [L] 

Dense Orbit (DO): f has a dense orbit if there is an 0x X whose orbit 0 0 0{ ( )} { }n

n n nf x x 

   

is dense in X . [Si] 

Dense periodic points (DPP): :f X X has DPP if the closure of the set of periodic 

points of f is X . [D] 

Distal: A point x is distal to y if liminf ( ( ), ( )) 0n n

n
d f x f y


 . [HY] 

First/Second Category: A set E in a topological space X is nowhere dense if its closure 

E contains no non-empty open set, or in other words, int( )E  . A countable union of 

nowhere dense sets is said to be of first category. Every other subset is said to be of 

second category. [G] 

Forward/Omega Limit Set: The forward/omega limit set of the orbit 0{ ( )}nf x is the set 

0( )x = { x : for all N and   n N     0| ( ) |nf x x   }. [ASY] 

Gδ Set: In a topological space a Gδ set is a countable intersection of open sets. 

[Wikipedia] 

Indecomposable: a closed f-invariant set is indecomposable if it is not the union of two 

disjoint closed invariant subsets. [M] 

Invariant set: A X is an invariant set for A if x A then ( )nf x A for all n . [St] 

Lift: :G   is a lift of :g S S  if G is continuous, the function ( )G x x is periodic 

with period 1, and ( )mod1 ( mod1)G x g x . [Si] 
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Likely Limit Set: The likely limit set ( )f   is the smallest closed subset of X with the 

property that ( )x   for every point x X outside of a set of measure zero. [M] 

Li-Yorke Pair: { , }x y X is called a Li-Yorke pair if 

liminf ( ( ), ( )) 0n n

n
d f x f y


 and limsup ( ( ), ( )) 0n n

n

d f x f y


 . [K] 

Minimal: The system ( , )X f is said to be minimal if every point is a transitive point (i.e., 

a point with a dense orbit). [AAB] 

Not Sensitive (~S): A system is ~S if for every  > 0 there exist an x X and a 

neighborhood U of x such that for every y U  and n , ( ( ), ( ))n nd f x f y  . [GW] 

Proximal: A point x is proximal to y if liminf ( ( ), ( )) 0n n

n
d f x f y


 . [HY] 

Realm of Attraction: For the attractor A , the realm of attraction, ( )A , consists of all 

points x X for which ( )x A  . [M] 

Scattering/ 2-Scattering: Given a cover C of a dynamical system ( , )X f , usually open or 

closed, its complexity function ( , )C nC is the minimal number of a sub-cover of refinement 

0 0

n n i

iV f 

C C . A dynamical system is scattering if any cover by non-dense open sets has 

unbounded complexity, and 2-scattering if the same is true for 2-set covers only. 

Scattering implies 2-scattering. [HY] 

Scrambled set: a set S X is called a scrambled set if any pair of different points 

{ , }x y S is a Li-Yorke pair. [K] 
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Sensitive dependence on initial conditions (SIC) at a point: :f X X is said to be 

sensitive at x X if there exists a 0  such that for every neighborhood N  of x there 

exists a , 0y N n  such that ( ) ( )n nf x f y   .  

Sensitive dependence on initial conditions(SIC) on a set: :f X X has sensitivity on X if 

there exists a uniform 0  such that for every x X and for every neighborhood N  of 

x there exists a , 0y N n  such that ( ) ( )n nf x f y   . [D] 

Separable: A metric space is separable if it contains a countable dense subset. [P] 

Topological Transitivity(TT): :f X X is TT if for any pair of open sets ,U V X there 

exists a 0k   such that ( )kf U V  . [D] 

Transitive point: A point x X is said to be a transitive point of f , or Trans ( )fx X , 

if x has a dense orbit. If Trans ( )fx X then x is called an intransitive point, 

or Intr ( )fx X . 

Trapping region: A compact region N X is a trapping region for f if ( ) int( )f N N . 

[Ro] 

Wandering point: An element x  of X is a wandering point if there is a neighborhood 

U of xand an integer N such that, for all n N , ( )nf U U  . If x is not wandering, 

we call it a nonwandering point ( ) { :  is nonwandering}f x X x   . [Web] 

Ch 2. Attractor 

Being the Lorenz conjecture stated there was an attractor as one of its assumptions, it was 

determined to be worthwhile to present some of the more common definitions from the 

literature and to make comparisons when possible.   
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Ch 2.1. Definitions 

Attractor Definition 1: A subset A X is called an attractor if there is a trapping 

region N  such that A =
0

( )n

n

f N


. [D] 

Attractor Definition 2: A subset A of ( )f is an attractor provided it is 

indecomposable and has a neighborhood U such that 

( )f U U and
0

( )n

n

f U A


 , where ( )f is the non-wandering set of f. [M] 

Attractor Definition 3: A subset A X is called an attractor provided there is a 

trapping region N such that 
0

( )n

n

A f N


 and |Af is transitive. [Ro] 

Attractor Definition 4: A closed subset A X will be called an attractor if the 

realm of attraction has strictly positive measure and there is no strictly smaller 

closed set 'A A such that ( ')A has positive measure. [M] 

Ch 2.2. Relationships between definitions and examples. 

The following section will present the relationships between the definitions when the 

relationship was readily known. It should be clearly noted that not all relationships were 

known to the author at this time; however, as will be seen these relationships are not 

critical to the rest of this paper. The proof of the Lorenz Conjecture in Ch 5.1 will only 

require that A be invariant, which is common to all four of the above definitions of 

attractor [M].  

Example of Attractor under Definition 1 but not Definition 2: A circle, S , 

where 2S  , that attracts all points in a neighborhood of itself and has an attracting and 

repelling fixed point within the circle is an example of an attractor according to the first 
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definition since any annulus containing the circle, N , is a trapping region and 

clearly
0

( )n

n

f N S


 . However, the presence of an attracting fixed point within the circle 

forces the circle to not be a part of the non-wandering set, thus not an attractor by 

definition 2.  

Example of Attractor under Definition 4 but not Definition 2: In [M] it was shown 

that for a map of the interval, :f I I where 2x x c and 1.401155189...c  , almost 

every initial value 0x I converges toward a cantor set denoted A . However, there is a 

countable infinity of points that fails to converge to A , where these exceptional points are 

dense in I . Being these exceptional points are dense, any openU I contains some 

exceptional point and although A is considered an attractor by definition 4, it fails to be an 

attractor by definition 2.  

Definition 3 implies Definition 1: This implication is trivial and is an immediate 

consequence of the definitions. Furthermore, any example where |Af is not transitive, 

such as the identity on a compact set, would show that the reverse implication is not true 

in general.  

Ch 3. Chaos 

Similar to the intention of the previous section on the definitions of attractor, this chapter 

will present a sample of the more widely used notions of chaos and attempt to present 

how the definitions are related to each other.  

Ch 3.1. Dense orbit versus topological transitivity 

Before proceeding to the section dealing with chaos, it will be beneficial to the reader to 

be aware of when the existence of a dense orbit is equivalent to topological transitivity. In 
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[KS] it was shown that for compact metric spaces with no isolated points, topological 

transitivity is equivalent to the existence of a dense orbit. So for example, for any 

compact, connected subset of n the two definitions are equivalent.  

Ch 3.2. Definitions 

Chaos Definition 1 (Devaney Chaos or DC): A system ( , )X f is Devaney chaotic 

if f on X is topologically transitive, has a dense set of periodic points and 

exhibits sensitive dependence on initial conditions. [D] 

Chaos Definition 2 (Li Yorke Chaos or LYC): A system ( , )X f  is considered Li-

Yorke chaotic if X contains an uncountable scrambled set. [K] 

Chaos Definition 3 (Lorenz Chaos or LC): A system ( , )X f will be Lorenz chaotic 

if f on X is topologically transitive and exhibits sensitive dependence on initial 

conditions over the set.  

Note: Definition 3 is equivalent to that used by Wiggins [W] and Robinson [Ro].  

Ch 3.3. Relationships between definitions and examples. 

It should be pointed out that the above definitions of chaos are by no means exhaustive. 

The existence of a positive Lyapunov exponent and positive topological entropy are two 

other widely used notions of a system’s chaoticity. Scattering and 2-scattering also 

appear to be frequently used notions of chaos. 

Before continuing to the next section it will be worth pointing out that [S] showed there 

were redundancies in the three conditions that define DC. First it was shown that, in 

general, topological transitivity and dense periodic points imply sensitive dependence on 

initial conditions. It was then shown that for maps of the interval transitivity implied 



 

 12 

dense periodic points which in turn implied sensitive dependence on initial conditions. 

These results were also shown in two Math monthly articles in 1992 and 1994 by Banks 

et all [BBC] and Vellekoop and Berglund [VB], respectively.  

Definition 1 implies Definition 2: In order to show that Devaney chaos is a stronger 

definition of chaos than Li-Yorke chaos, Huang and Ye [HY] showed that if :f X X is 

transitive, X not being finite, and containing a periodic point, then f had an uncountable 

scrambled set. They started by assuming f had a fixed point denoted by p . Then it was 

noticed that for each point x in X , the set of points proximal to x is a G subset. If x has a 

dense orbit then there is an ordering in such that
0

lim ( )i

i

n

n
f x p


 which implies 

that xand ( )if x , 1,2,...i  , are proximal. Thus the points proximal to each point x with a 

dense orbit forms a dense G set. Next denote R to be the set of Li-Yorke pairs and A to be 

the set of points with dense orbits. Then each point that is in A and R contains a 

dense G subset. Then by Lemma 3.1 in [HY], there is a uncountable subset 

of X denoted B where \{( , ) : }B B x x x X R   and B is a scrambled set of f . Next assume 

that f has a periodic point with period 1n  . Let xbe a point with a dense orbit. 

Then ( , )x f X  . Next set ( ( ), )i n

iD f x f where 0 1i n   . Since
1(mod )( )i i nf D D  it is 

true that each iD is uncountable and contains an n-periodic point. Since nf restricted 

to 0D is transitive and contains a fixed point there is an uncountable scrambled 

set B for nf . Yet B is also a scrambled set for f . Thus if f contains a periodic point and is 

transitive it is LYC.  
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Since [HY] showed that a map that is transitive and contains a single periodic point is 

LYC, then certainly a map that is DC is LYC being a map that is DC contains a dense set 

of periodic points. Therefore DC implies LYC.  

Definition 1 implies Definition 3: It should be clear from the definitions that DC implies 

LC since the only variation in the two definitions is that Devaney required the extra 

condition of the existence of a dense set of periodic points.  

Definition 2 does not imply Definition 1: An example presented in [Si] for other 

purposes shows that LYC does not imply DC and simultaneously shows that LC does not 

imply DC. To show that LYC does not imply DC, let 

( , ) ( ( ), ( )) (4 (1 ), )G r f r R r r        where  is irrational, [0,1]r , and S  . Let T be 

the scrambled set of ( , )G r  . f is known to be Devaney chaotic on [0,1] f is Li-Yorke 

chaotic on [0,1] by [HY]  an uncountable scrambled set, [0,1]S   

 1 2,r r S 
1 2liminf ( ( ), ( )) 0n n

n
d f r f r


 and 1 2limsup ( ( ), ( )) 0n n

n

d f r f r


 . Since ( )R  is 

independent of r  1 2 1 2( ( , ), ( , )) ( ( ), ( ))k k k kd G r G r d f r f r   . So if 

1 2liminf ( ( ), ( )) 0n n

n
d f r f r


 then

1 2liminf ( ( , ), ( , )) 0n n

n
d G r G r 


 and similarly if 

1 2limsup ( ( ), ( )) 0n n

n

d f r f r


 then 1 2limsup ( ( , ), ( , )) 0n n

n

d G r G r 


 . Thus if { , }i jr r is a Li-Yorke 

pair for f then {( , ),( , )}i jr r  is a Li-Yorke pair for G  S T   T is uncountable 

 G is LYC. 

However, since (0,0) is the only periodic point of G it cannot be DC. Thus LYC does not 

imply DC. 
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Definition 3 does not imply Definition 1: In [Si] it was shown that 

( , ) ( ( ), ( )) (4 (1 ), )G r f r R r r       has sensitive dependence on initial conditions and 

a dense orbit, yet since (0,0) is the only periodic point, fails to have dense periodic points 

and is therefore LC but not DC.  

Neither Definition 2 or Definition 3 is implied by the other: So now we have that DC 

implies LYC (but not conversely) and DC implies LC (but not conversely). What needs 

to be addressed is how LYC relates to LC. From [K] it is found that neither LYC implies 

LC nor LC implies LYC. Kolyada [K] showed that what he called Sturm systems are an 

example of an almost distal system that has sensitivity but is not LYC. Since all 

invertible, distinct points are distal, they cannot form Li-Yorke pairs and thus the system 

cannot be LYC. The points being distal guarantees that they are sensitive. However, as 

stated by Kolyada [K], 2-scattering systems are LYC and transitive, yet not necessarily 

sensitive. 

Before continuing it should be pointed out that since ( , )G r   ( ( ), ( ))f r R   

(4 (1 ), )r r      is Lorenz chaotic but not Devaney chaotic, as stated above, 

where ( )f r is not one-to-one, then ( , )G r  provides an example that the Lorenz Conjecture 

is not true if chaos is considered in the sense of Devaney. Since Lorenz wrote in [L] that 

he considered chaos to be sensitive dependence on initial conditions, and topological 

transitivity was implied in [L], chaos will be defined as Lorenz chaos for the continuation 

of the thesis.  
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Ch 4. Work already done concerning the Lorenz Conjecture 

This section’s goal is to illuminate some of the work that had already been done that 

related to the Lorenz conjecture, which says, given a system ( , )A f , where f is continuous 

and ( )f A A , if |Af is transitive and not one-to-one, then f is sensitive on A . All the 

results below illuminate the important role of transitivity in chaos.  

Result 1 (TT + DPP implies SIC): The first result does not have any direct connection 

to the Lorenz conjecture, although it was one of the earlier results that showed transitivity 

with some other condition implied sensitive dependence on initial conditions. This 

perhaps drove others to begin looking at how role transitivity played in producing chaos. 

In [Si] and [BBC] it was shown that transitivity along with dense periodic points implied 

sensitive dependence on initial conditions.  

Result 2 (On intervals, TT implies DPP and SIC) : The second result relates more to 

the Lorenz conjecture, but is restricted to an interval of the reals. However, in this special 

case transitivity is enough to give chaos. In [Si] and [T] it was shown that transitive maps 

of the interval were chaotic. The idea of the proof from [Si] was to first show that there 

was a dense set of periodic points, then by the first result the proof would be done. For 

contradiction, it was assumed there existed an interval containing no periodic points. This 

gives some maximal interval free of periodic points, implying that all forward images of 

that interval were also free of periodic points. This ended up forcing a contradiction to the 

existence of a dense orbit, guaranteeing that transitive maps of the interval are chaotic.  

Result 3 (On circles, TT + not 1-1 implies SIC): Along with his proof that a map of the 

interval being sensitive if it is topologically transitive, Silverman [Si] also proved that if 
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1 1:f S S  has a dense orbit and f is not one-to-one, then f is chaotic. To do this he 

began by using the idea of lifts to show that there was a periodic point in the map of the 

circle given the existence of a dense orbit. Then using arguments similar to the ones from 

his proof of transitive maps of the interval, he showed that one periodic point implied 

dense periodic points by a contradiction argument stemming from the assumption that 

non-dense periodic points led to the contradiction of the assumption of a dense orbit. 

Result 4 (For minimal systems, TT + not 1-1 implies SIC): In [AAB] it was shown 

that given a minimal system, transitivity in conjunction with noninvertibility implied 

sensitive dependence on initial conditions. Since the conjecture as stated by Lorenz gave 

no reason to assume there were no periodic points, the minimality condition seemed a 

little severe, and thus cannot be considered as a proof of the Lorenz conjecture in the 

most general setting.  

Ch 5. My work 

The first section of the following chapter will present this author’s proof of the Lorenz 

conjecture. The second section will offer some partial results that attempt to answer what 

will be known as the SIC conjecture, or in other words, a function that is transitive over a 

set X and sensitive at a point x X , then it is sensitive over X .  

Ch 5.1. Proof of Lorenz conjecture 

The motivation for the work done in this section was to try to extend the results from Ch 

4 to prove the Lorenz conjecture in a general metric space setting without assuming 

minimality of the system.  
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The proof of the Lorenz conjecture makes use of the following two lemmas. The first 

lemma is almost trivial in the sense that it will show that if :f X X is sensitive at a 

point, then it is sensitive at any forward iterate of x . The second lemma will show that 

sensitivity at a transitive point, that is a point with a dense orbit, implies sensitivity over 

the whole set. The contrapositive of the second lemma will be integral in proving the 

Lorenz conjecture.  

Lemma 1: For :f X X , where f is continuous, if f has sensitive dependence on initial 

conditions at x X , with sensitivity constant  ,then f has sensitive dependence on initial 

conditions at ( ), 1mf x m  , with sensitivity constant  .  

Proof: Let 0  and m be given. Start with ( ( ))mB f x , where ( ( ))mB f x is the ball of 

radius  centered at 0( )mf x . Next construct the following series of open 

neighborhoods.  

 1 1

1 /2( ( ( ))) ( ( ))m mV f B f x B f x 

    

               

1 2

2 1 /2

1

1 /2

1

1 /2

( ) ( ( ))

( ) ( ( ))

( ) ( )

m

m i

i i

m m

V f V B f x

V f V B f x

V f V B x







 

 







 

 

 

 

Since f has sensitive dependence on initial conditions at x it implies there exists 

a my V such that for some n , ( ( ), ( ))n nd f x f y  . By construction, 

/2 ( ( )),m i

iV B f x

 1,...,i m , making n m . Also by design ( ) ( ( ))m mf y B f x . Thus we 

have found a point within  of ( )mf x , namely ( )mf y , such 
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that ( ( ( )), ( ( )))n m m n m md f f x f f y    . Therefore f has sensitive dependence on initial 

conditions at ( ), 1mf x m  .  

Lemma 2: For :f X X , where f is continuous and transitive on A , a closed invariant 

set, if f has sensitive dependence on initial conditions at x A , with sensitivity 

constant  , where the orbit of x , ( )O x , is dense in A , then f has sensitive dependence on 

initial conditions on A , with sensitivity constant / 2 . 

Proof: Start by assuming x A and ( )O x is dense in X . Let 0  and some y A be given. 

Since ( )O x is dense it implies there exists an m such that /2( ) ( )mf x B y . By Lemma 1, 

since f has sensitive dependence on initial conditions at x then f has sensitive 

dependence on initial conditions at ( )mf x  which implies there exists a /2 ( ( ))mz B f x  

(implying ( )z B y ) such that for some n , ( ( ), ( ))m n nd f x f z   . Since ( )O y cannot 

simultaneously stay close to ( ( ))mO f x  and ( )O z , this implies that the orbit of y separates 

from either the orbit of ( )mf x or the orbit of z . More formally, the triangle inequality 

implies ( ( ), ( )) / 2m n nd f x f y    or ( ( ), ( )) / 2n nd f z f y  . Either way we have found a 

point within of y whose orbit eventually diverges by / 2 from ( )O y . Therefore, 

since y was arbitrary, f has sensitive dependence on initial conditions at every point 

in A with the uniform sensitivity constant / 2 . Thus f is sensitive on A   

Contrapositive of Lemma 2: Let :f X X , where f is continuous and transitive on A , a 

closed invariant set. If f is not sensitive on A , then f is not sensitive at any of its 

transitive points. In other words, if f is not sensitive, then for each transitive 
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point x X and any 0  there exists a neighborhood ( , )U x  of x such that for 

all ( , )y U x  and all n  ( ( ), ( ))n nd f x f y  .  

Lorenz Conjecture: Given a system ( , )A f , where f is continuous and ( )f A A , if |Af is 

transitive and not one-to-one, then f is sensitive on A .  

Proof of Lorenz Conjecture: Let
1 2p p be given such that

1 2( ) ( )f p f p p  . Choose 

 such that
1 2( , ) / 2d p p  . For the sake of contradiction, assume f is not sensitive on A , 

then by the contrapositive of Lemma 2 there exists a transitive point 0x A  and a 

neighborhood 0( , / 3)U x  of 0x such that 0( ( ), ( )) / 3n nd f x f y  for all
0( , / 3)y U x  and 

all n . Since 0x has a dense orbit, there exists an 1m such that 0( ) ( , / 3)mf x U x  . 

This implies 0 0( ( ), ( )) / 3n n md f x f x   for all n .  

Claim: For this m and any z A , ( , ( ))md z f z  .  

Proof: Assume not. Label the following distances: 

0

0 0

0

( , ( ))

( ( ), ( ))

( ( ), ( ))

( , ( ))

z

z z

z

n

n n m

n m m

m

a d z f x

b d f x f x

c d f x f z

d d z f z













  for some
zn that will be assigned below.   

First note that the triangle inequality implies d a b c   , or equivalently, 

d a c b   , where it is known that / 3b  and it is assumed that d  . To force 

the contradiction it is sufficient that , / 3a c  , so 

that / 3d a c    contradicting / 3d a c b     . First by continuity there 

exists a 0  such that if ( )x B z , then /3( ) ( ( ))m mf x B f z which would assure 
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that / 3c  once it is shown that
0( ) ( )zn

f x B z . To have / 3a  ,
zn would need 

to be chosen such that 0( ) ( )znf x B z where min{ / 3, }   . Since
0x has a dense 

orbit, there is such a
zn , where 0( ) ( )znf x B z . Since / 3  , then 

0 /3( ) ( ( ))zn m mf x B f z

  . Therefore, if d  , then / 3d a c    which 

contradicts / 3d a c b     .  

Since, by the above claim, ( ( ), )md f z z  for any z A , 

then 1 1( ( ), )md f p p  and 2 2( ( ), )md f p p  . Yet since
1 2( ) ( )f p f p , 

then 1 2( ) ( )m mf p f p which implies
1 2( , ) 2d p p  . This contradicts the fact that was 

chosen such that
1 2( , ) 2d p p  . Therefore f must be sensitive on A .  

Before proceeding to the next section, it was deemed important to point out that the 

contrapositive of Lemma 2 in this paper is similar to the Lemma 1.1 in [GW], yet is in 

fact a stronger result. [GW] showed that a system being not sensitive was equivalent to 

the existence of some transitive point that was not sensitive; whereas, the contrapositive 

to Lemma 2 shows that a system being not sensitive is equivalent to all transitive points 

being not sensitive. Lemma 1.2 from [GW] would have been sufficient to complete the 

proof of the Lorenz conjecture, but it was decided that a more direct proof from this 

author was to be desired over merely copying the results of another author. Furthermore, 

[GW] used Lemma 1.1 to prove Lemma 1.2 that showed if a system was not sensitive 

then it was uniformly rigid. Within their proof of Lemma 1.2 one can find the result of 

the Claim made within the proof of the Lorenz conjecture, although this author added 

details that were missing from [GW].   
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Ch 5.2. Partial results on SIC Conjecture  

One question that frequently surfaced during the research process into the Lorenz 

conjecture was whether, given a topologically transitive system ( , )X f , sensitive 

dependence on initial conditions at a point x X meant that f was sensitive for every 

point in X . Since there was no reference to this that could be found in the literature, the 

author has taken it upon himself to try and address what is now being called the SIC 

Conjecture, or transitivity and point sensitivity imply set sensitivity . The following two 

theorems make some progress toward answering the SIC Conjecture. The first theorem 

will show that all intransitive points are sensitive and the second theorem will show that 

any accumulation point of periodic points is sensitive.  

Theorem 1: If :f A A is continuous and transitive on A  (a closed, invariant subset of 

n ), then any point ( )fx Trans A , where ( )fTrans A is the set of points in A whose orbits 

are dense, then f has sensitive dependence on initial conditions at x . 

Proof: Let x A such that ( )fx Trans A be given. Let 0  be given. Since f is transitive 

on A there exists ( )fy Trans A such that ( )y B x . Since ( )fx Trans A this implies there 

exists a 0 0  and a z A such that
0

( ) ( )O x B z  , ( )O x being the forward orbit of x . 

Yet ( )fy Trans A implies there exists an n such that 0( ( ), ) / 50nd f y z  . However, 

0
( ) ( )O x B z   implies 0( ( ), ( )) 49 / 50n nd f y f x    . Therefore, 

given 0  , y and nhave been found such that ( , )d x y  yet ( ( ), ( ))n nd f x f y  . So f has 

sensitive dependence on initial conditions at x .  
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The proof of the next theorem mimics the proof used in [BBC] to show that transitivity 

and dense periodic points imply sensitive dependence on initial conditions to show that 

transitivity and an accumulation point of periodic points implies sensitive dependence on 

initial conditions at the accumulation point. The following theorem could prove useful if 

it were known that a transitive point was an accumulation point of periodic points. 

Theorem 2: If :f A A is continuous and transitive on A  (a closed, invariant subset of 

n ), and p is an accumulation point of periodic points, then f has sensitive dependence 

on initial conditions at p .  

Proof: First notice that there is a 0 0  such that there is a periodic point q whose orbit 

O(q) is at least 0 / 2 from p . In fact, arbitrarily pick two periodic points 1 2,q q with 

disjoint orbits 1 2( ), ( )O q O q and letting 0 denote the “distance between the orbits”, then by 

the triangle inequality, p is at least a distance of 0 / 2 from one of the two orbits. Next it 

will be shown that f has sensitive dependence on initial conditions at p with sensitivity 

constant 0 / 8  . 

Let N be some neighborhood of p . Since p is an accumulations point of periodic points, 

there exists a periodic point *q in the intersection ( )U N B p  . Let the period of *q be 

denoted as n . As was shown above, there exists a point q whose orbit O(q) is of distance 

at least 04 / 2  from 1p . Set 
0

( ( ( )))
n

i i

i

V f B f q





 . It should be clear that V is both 

open and nonempty. Since f is topologically transitive, there exists an x in U and a 

natural number k such that ( )kf x V . Let j be the integer part of / 1k n  so that 
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1 nj k n   so by design one has ( ) ( ( )) ( ) ( ( ))nj nj k k nj k nj kf x f f x f V B f q

     . Now since 

* *( )njf q q , one has by the triangle inequality, *( ( ), ( ))nj njd f q f x = 

*( , ( ))njd q f x  ( , ( ))nj kd p f q *( ( ), ( )) ( , )nj nj kd f x f q d p q  , given that d is some distance 

function on A . Since *

1( )q B p and ( ) ( ( ))nj nj kf x B f q

 one has *( ( ), ( ))nj njd f q f x   

4 2      . Therefore, using the triangle inequality again, either 

( ( ), ( ))nj njd f p f x   or *( ( ), ( ))nj njd f p f q  . Either way this has shown there exists a 

point in N such that the distance of its thnj iterate is more than  from the thnj iterate of p . 

Thus f has sensitive dependence on initial conditions at p with sensitivity 

constant 0 / 8  .  

Before moving on to the summary, it should be stated what has been accomplished by the 

previous two theorems. The first theorem might prove to be the most useful along with 

Lemma 2 from Ch 5.1. In [KS] it was shown that either a system will have no intransitive 

points, meaning the system is minimal, or there will be a dense set of intransitive points. 

If the system is indeed minimal then every point is a transitive point which means that a 

sensitive point implies sensitivity over the set. If not, then Theorem 1 guarantees there is 

a dense set of sensitive points. It seems likely that a dense set of intransitive points, along 

with topological transitivity, will force the system to be sensitive using a similar approach 

that showed a dense set of periodic points, along with topological transitivity, forced the 

system to be chaotic. Unfortunately this is not completely resolved.  
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Ch 6. Summary 

In summary, Lorenz [L] looked at Euler approximations of systems of ODEs with large 

time steps. His numerics suggested that continuous, noninvertible maps of attractors were 

chaotic. Lorenz’s use of the words attractor and chaos prompted this author to investigate 

various common definitions from the literature of those two terms to determine whether 

certain definitions would allow for the proof of the Lorenz conjecture as opposed to 

others. Although the relationships between the four definitions of attractor remain a little 

muddled, the truly important feature of attractor that was required for the proof of the 

Lorenz Conjecture was that the set be f -invariant. Since all four definitions contain this 

property, it did not matter which definition one considered when looking at the Lorenz 

Conjecture.  

It was found that Lorenz chaos and Li-Yorke chaos were both implied by Devaney chaos 

with no reverse implication, while neither LYC or LC were implied by the other. As 

mentioned at the end of Ch 3.3, the example that showed that LC and LYC does not 

imply DC further showed that the Lorenz Conjecture was not true when using Devaney 

chaos as the definition of chaos. Since Lorenz stated that by chaos he meant SIC and TT 

was implied, LC was adopted as the definition used for proving the Lorenz Conjecture.  

Although the SIC conjecture has not been proved, it true in the case that the system is 

minimal, and is likely to be true in general, since one intransitive point implies the 

existence of a dense set of intransitive points, all of which are sensitive. 

It was shown that there were numerous results from the literature ([Si,][BBC],[T],[AAB]) 

that ended up being special cases of the Lorenz Conjecture. Furthermore, it was stated 
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that the Lorenz Conjecture followed from the addition of a few lines to the results of 

[GW]. The Lorenz Conjecture was thus shown to be true in a general metric space. 
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Appendix A - List of Results from Kolyada (2004) 

 

Theorem 1. Let ( , )X T be a topologically transitive system. Then exactly one of the 

following cases takes place: 

1. There exists an equicontinuity point for the system. In this case, the 

equicontinuity points are transitivity points, i.e., ( ) ( )Eq T Trans T , and the 

system is almost equicontinuous. The mapT is a homeomorphism, and the 

inverse system 1( , )X T  is almost equicontinuous. Moreover, the system is 

uniformly rigid, i.e., there exists a subsequence{ : 0,1,...}nT n  that converges 

to the identity map. 

2. The system does not have equicontinuity points. In this case, the system is 

sensitive, i.e., there exists 0  such that ( )Eq T  .  

 

Corollary 1. If ( , )X T is a minimal dynamical system, then it is either sensitive or 

equicontinuous. 

 

Corollary 2. If ( , )X T is an almost equicontinuous transitive system, then all its 

asymptotic pairs are diagonal, i.e., ( )Asym T   . 

 

Theorem 2. If a topological dynamical system ( , )X T has positive topological entropy, 

then it is Li-Yorke chaotic. 

 

Theorem 3. For any dynamical system ( , )X T the following conditions are equivalent: 

1. The system is sensitive 

2. There exists a positive such that ( )Asym T is a set of the first category 

in X X . 

3. There exists a positive such that, for any x X , ( )( )Asym T x is a set of the 

first category in X . 

4. There exists a positive such that any x X is a limit point of the complement 

of ( )( )Asym T x , i.e., \ ( )( )x X Asym T x . 

5. There exists a positive such that the set of pairs 

{( , ) : limsup ( ( ), ( )) }n n

n

x y X X T x T y 


   is everywhere dense in X X . 

 

Theorem 4. If a dynamical system ( , )X T is Li-Yorke sensitive, then it is sensitive. 

If ( , )X T is sensitive and, for any point x X , the proximal cell Prox( )( )T x is everywhere 

dense in X , then ( , )X T is Li-Yorke sensitive.  

 

Theorem 5. If ( , )X T is a weakly mixing dynamical system, then, for all x X , the 

proximal cell Prox( )( )T x is an everywhere dense (residual) subset in X . 
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Corollary 3. Any nontrivial weakly mixing system ( , )X T is Li-Yorke sensitive.  

 

Theorem 6. For a minimal dynamical system ( , )X T , the following conditions are 

equivalent: 

1. The system ( , )X T is weakly mixing. 

2. For any x X , the proximal cell Prox( )( )T x is everywhere dense in X . 

3. For some x X , the proximal cell Prox( )( )T x is everywhere dense in X . 

4. Prox( )T is everywhere dense in X X . 

 

Theorem 7. If a system ( , )X T is sensitive (or Li-Yorke sensitive), then the product 

system ( , )X Y T S  is sensitive (respectively, Li-Yorke sensitive) for any dynamical 

system ( , )Y S . 

 

Theorem 8. Suppose that a dynamical system ( , )X T satisfies the following conditions: 

1. the system is infinite and transitive; 

2. any point is recurrent; 

3. any minimal point is periodic. 

Then the system is space-time chaotic. 

 

Corollary 4. Suppose that, for a nonminimal transitive dynamical system ( , )X T , any 

point is either transitive or periodic. Then the system is space-time chaotic. 

 

Corollary 5. Suppose that a nonminimal transitive dynamical system ( , )X T is almost 

equicontinuous and all its minimal points are periodic. Then the system is space-time 

chaotic but not Li-Yorke sensitive. 
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Appendix B - List of results from Silverman (1992) 

 

Proposition (1.1). Let M be a perfect (has no isolated points). Then DO implies TT. 

Furthermore, if M is separable and second category, then TT implies DO. 

 

Theorem (2.1). If M is infinite, then DO and DPP imply SIC. 

 

Corollary (2.2). If ~f g and f is chaotic, then g is chaotic. 

 

Corollary (2.3). The determination of whether f is chaotic or not depends only on the 

topology of M and not on the metric. 

 

Lemma (3.1). Let M be an arbitrary subinterval of and let :f M M have a dense 

orbit. If ( , )a b M is free of periodic points, then so is ( , )jf a b for all 0j  . 

 

Theorem (3.2). If M is a subinterval of , then DO implies DPP and SIC. 

 

Lemma (6.1). Let 1 1:f S S have a dense orbit.  If 1( , )a b S is free of periodic points, 

then so is ( , )jf a b for all 0j  . 

 

Lemma (6.2). If 1 1:f S S has a dense orbit and F is a lift 

of f with ( ) ( ),0 1F c F d c d    , then f has a periodic point in[ , ]c d . 

 

Theorem (7.1). If 1 1:f S S has a dense orbit, then any of the following are equivalent 

to f being chaotic: 

a) f has a periodic point 

b) f is not one-to-one 

c) f is sensitive to initial conditions 

d) f has a non-dense orbit 

 

Proposition (7.2). A homeomorphism with a dense orbit and no periodic points is 

conjugate to R . 

 

(8.4) A map with a dense orbit and no periodic points is conjugate to R . 
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Appendix C - Other useful results 

 

Results from [AAB] (1996) 

 

Theorem 1.4. If a compact dynamical system is transitive, but not minimal, then the set 

of intransitive points is dense.  

 

Theorem 2.4. Let ( , )X f be topologically transitive, if ( , )X f is almost equicontinuous 

then the set of equicontinuity points coincides with the set of transitive points (and so the 

set of equicontinuity points is a denseG . In particular, a minimal almost equicontinuous 

dynamical system is equicontinuous. If ( , )X f has no equicontinuity points then it is 

sensitive. In particular, a minimal system is either equicontinuous or sensitive.  

 

Results from [GW] (1993) 

 

Lemma 1.1. For a topologically transitive system ( , )X T with no isolated points, being ~S 

is equivalent to the following property: For every 0  there exists a transitive point 

0x X and a neighborhood U of 0x such that for every y U and every n , 

0( , )n nd T x T y  . 

 

Lemma 1.2. A topologically transitive system without isolated points which is not 

sensitive is uniformly rigid. 

 

Results from [HY] (2002) 

 

Theorem 4.1. Assume that :f X X is transitive with X infinite and contains a periodic 

point. Then there is an uncountable scrambled set for f . Moreover, if f is totally 

transitive, then f is densely Li-Yorke chaotic. Particularly, chaos in the sense of Devaney 

is stronger than that in the sense of Li-Yorke.  

 

Results from [KS] (1997) 

 

Theorem 4.3.1. Let ( , )X f have no isolated point. Then the set intr ( )f X , the set of 

intransitive points, is either empty or dense in X .  


