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Abstract

In the last two years Ebola has filled news headlines more than ever, it is mainly be-
cause of the large outbreak in West Africa in 2014-2015 with thousands of casualties.
What are the options for control of this deadly disease? This paper provides an innova-
tive model of Ebola transmission and discusses three control strategies: hospitalization,
burial teams, and probability of seeking hospitalization. By varying certain parame-
ters we measure the effectiveness of these interventions and we focus on suggesting
solutions.

Keywords: Basic Epidemic Models, Advanced Epidemic Models, Ebola Models, Ebola
Control Strategies, Hospitalization, Burial Teams, Probability of Seeking Hospital-
ization
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1 INTRODUCTION

1 Introduction

Origins of mathematical modeling of infectious diseases go back to the early 1900’s.
With an increasing risk of population illnesses in the society, disease modeling has be-
come a significant part of epidemic control. Mathematical models can project how infec-
tious illnesses progress, predict an epidemic, or help us to calculate the effects of possible
interventions. Over time many models have been developed and it is not a surprise that
different diseases require specific ways of modeling them. Possible questions as the fol-
lowing can arise. Does there exist a cure for the disease? Can people catch the disease
multiple times? Is there a known vaccine for the disease? One has to consider all these
options to create a meaningful model. As the topic of this paper suggests, the focus of
our work was on one specific disease, Ebola.

“Ebola, previously known as Ebola hemorrhagic fever, is a rare and deadly disease
caused by infection with one of the Ebola virus species. Ebola can cause disease in hu-
mans and nonhuman primates (monkeys, gorillas, and chimpanzees). Ebola is caused
by an infection with a virus of the family Filoviridae, genus Ebolavirus. There are five
identified Ebola virus species, four of which are known to cause disease in humans.
Ebola viruses are found in several African countries. Ebola was first discovered in 1976
near the Ebola River in what is now the Democratic Republic of the Congo. Since then,
outbreaks have appeared sporadically in Africa, up until the last decade. People get
Ebola through direct contact (through broken skin or mucous membranes in, for exam-
ple, the eyes, nose, or mouth) with blood or body fluids of a person who is sick with
or has died from Ebola, objects (like needles and syringes) that have been contaminated
with body fluids from a person who is sick with Ebola or the body of a person who has
died from Ebola.” [1].

The interest in modeling Ebola has recently increased as a consequence of outbreaks
in West Africa. The outbreak in 2014-2015 was the largest one in history of this disease,
with multiple countries affected. The outbreak began in Guinea on March 23, 2014 [13],
and spread to yield widespread and intense transmission in Guinea, Liberia, and Sierra
Leone, as well as cases in five additional countries (Nigeria, Senegal, Mali, Spain, USA)
[5], with over 28,000 cases by March 2016. [7]. Having a good model would allow peo-
ple to make reliable predictions of the possible future spread of the disease and stop
it before an outbreak. One of the key factors of the spread of Ebola was also a lack of
information among people in these countries. For example, people there still perform
traditional burials where the possibility of catching Ebola is extremely high. This with
other aspects made the fight against Ebola even harder.

Ebola is usually modeled with a system of deterministic differential equations, based
on the very first models by W. O. Kermack and A .G. McKendrick in 1927 [3]. The
derivation of this and other simple models is provided in the next chapter.
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2 DERIVATION OF THE SIMPLEST EPIDEMIC MODELS

2 Derivation of the Simplest Epidemic Models

2.1 SI Model

This chapter will introduce approaches of creating a mathematical disease model.
We assume that we are modeling a disease in a population of constant size, N. This
means there are no new people born, or individuals leaving the population (for example
migration). We define a compartment I(t) as the number of people infectious at time
t. Note that infectious means that an individual has the disease and can spread it to
someone else. As a second compartment we shall define S(t) to be the number of people
susceptible to the disease at time t. By assumption I(t) + S(t) = N. An important task
is to define a rate at which contacts among the population are made and where there
is a chance for the illness to spread. We will call this rate simply the contact rate and
denote it by β.

Remark 2.1. Note that one might assume that the contact rate β is proportional to the
size of a population N, which yields the number of contacts of an individual with others
to be βN. For example, this approach is used in [4]. As those authors say themselves,
this is rather unrealistic, because not everyone can make a contact with everyone else
based on a structure of a country, etc.

We assume that the population is homogeneous, and we define β to be the number
of effective (this means a contact, if between an infective and a susceptible, would be
sufficient to transmit infection) contacts per any individual per unit time. Based on this,
since the probability that a random contact by an infectious person is with a susceptible
is S(t)

N , then the number of new infections per unit time and per each infectious person
is β

S(t)
N . This gives a rate of new infections β

S(t)
N I(t). Thus, the rate of change İ(t) (the

dot denotes the derivative in respect to time t) of the number of infectious individuals
is given by the following differential equation:

İ(t) = β
S(t)
N

I(t),

İ(t) = β

(
1− I

N

)
I, since S = N − I.

The full model with an initial condition is then:

{
İ(t) = β

(
1− I

N
)

I,
I(0) = I0.

(M2.1)
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2 DERIVATION OF THE SIMPLEST EPIDEMIC MODELS

Since compartment I is assumed to be non-negative and I ≤ N, then 1− I
N ≥ 0.

Also, β > 0, therefore İ(t) ≥ 0. This means that I(t) is a non-decreasing function
bounded by N from above. Hence, it has a limit for any I0 > 0. The simplicity of this
model even allows us to solve it explicitly, so we could show that the limit is actually
N. The sense of qualitative behavior can be seen in Figure 1.

Figure 1: Solution to the system (M2.1) with I0 = 0.1, N = 1, β = 0.5.

This model represents a situation when the whole population becomes eventually
infected. Once an individual gets the disease, it is not lethal, neither can it be cured.
Thanks to this very simple model, one can get an impression how disease modeling
works in general. However, such a simplistic model would not likely be applicable to
any real disease, especially Ebola.

Remark 2.2. For the sake of brevity we might write S instead of S(t) since the time
dependence is rather obvious. This applies to other compartments as well. We will use
this shorter notation for all the following models.

2.2 SIR Model

As a next step in the introduction to epidemic modeling, we will mention the model
introduced by W. O. Kermack and A. G. McKendrick in 1927 [3]. It is considered to be
one of the very first epidemiology models and it is used as a stepping stone for future
work. Their model is formed by three stages. In other words, population is divided
into three different groups. As in the previous model, we consider the two compart-
ment groups of susceptible S(t) and infectious I(t). In addition to these two, a third
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2 DERIVATION OF THE SIMPLEST EPIDEMIC MODELS

class R(t) of people who recover from the disease is introduced. A standard assump-
tion in epidemic models is that the rate of recovery is proportionate to the number of
infected individuals. Let us denote the proportionality constant by α > 0, then the rate
of recovery is αI(t). All together we get the following system of differential equations:

dS
dt

= − 1
N

βSI,

dI
dt

=
1
N

βSI − αI,

dR
dt

= αI.

(M2.2)

Remark 2.3. The assumption that the recovery rate is proportionate to the number of
infected individuals comes from the fact that the constant α determines the average
length of an individual being infected as 1

α . This can be shown by solving the second
equation of the SIR model, while considering no new infections to the system. (dI

dt =

0− αI, I(0) = I0 ⇒ I(t) = I0e−αt. This is the exponential distribution with mean 1
α .)

The flow chart of the SIR model is shown below. We can see that people who recover
do not return to the group of susceptible. How does this modification affect the spread
of a disease compared to the SI model? We will answer this question by the following
analysis of (M2.2).

Figure 2: Flow chart of the SIR model (M2.2).

Although this model has still only three equations, our options for solving it explic-
itly are already limited due to the non-linearity of the first two equations. More about
finding a solution can be found in [3], but it is not a standard solution in sense that we
cannot find an explicit formula for S, I, and R respectively. Fortunately, there is another
more general approach which can be used to analyze this and other more complicated
systems.

Note that S′ + I′ + R′ = 0. This corresponds to our assumption that the popula-
tion remains constant. This fact is one of the immediate flaws of this model. What
about people who die from the sickness and are no longer infected? What about new-
born people? What about people who die without being sick? On the other hand, we
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2 DERIVATION OF THE SIMPLEST EPIDEMIC MODELS

can argue that in short-term, newborn and dead people do not significantly affect the
size of the population, so we can still use this approach as a reasonable approximation.
Consider an initial population of susceptible S0 and let us introduce an initial group of
infectious I0, then N = S0 + I0. It is important to observe that all the compartments in
the model are assumed to be non-negative differentiable functions. The starting point
of our analysis is to add the first two equations of (M2.2).

S′ + I′ = −αI. (2.1)

This means that (S + I)′ < 0. Therefore, the function S + I is a non-negative differ-
entiable non-increasing function bounded by 0. Therefore, S + I has a constant limit
which implies that lim

t→∞
(S + I)′ = 0. Hence, from (2.1) we get lim

t→∞
I = I∞ = 0.

Now, by integrating (2.1) from 0 to ∞, we get

∞∫
0

S′dτ +

∞∫
0

I′dτ = −α

∞∫
0

Idτ,

S0 − S∞ + I0 − I∞ = α

∞∫
0

Idτ.

Next, divide the first equation of (M2.2) by S and integrate it from 0 to ∞ to get the
following

log
S0

S∞
=

1
N

β

∞∫
0

Idτ,

=
1
N

β

α
[S0 − S∞ + I0 − I∞] ,

=
1
N

β

α
[S0 − S∞ + I0] ,

=
1
N

β

α
[N − S∞] ,

=
β

α

[
1− S∞

N

]
. (2.2)

The expression (2.2) is called the final size relation. The fraction β
α is called the basic

reproduction number and is denoted byR0.

Definition 1. The (basic) reproduction number R0 is the number of secondary infec-
tions caused by a single infectious individual introduced into a wholly susceptible pop-
ulation of size N.
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2 DERIVATION OF THE SIMPLEST EPIDEMIC MODELS

If R0 < 1, then an infected individual produces on average less than one new in-
fection over the course of its infectious period, and the infection cannot grow. On the
contrary, if R0 > 1, then each infected individual produces, on average, more than one
new infection, and the disease can spread into the population [9]. This is why R0 is
sometimes called the threshold parameter.

More detailed descriptions of the final size relation and the reproduction number
with formal definitions can be found in [9], or in [10]. It is important to say that the
basic reproduction number is related to the disease-free equilibrium. We will show the
methods described in [9] and in [10] later on a specific example.

The simplicity of the SIR model also allows us to demonstrate directly the meaning
ofR0. Consider the second equation

dI
dt

=
1
N

βSI − αI,

= I
[

S
N

β− α

]
.

See that, if

S0

N
β− α < 0, (2.3)

then I is a decreasing function for all t. This means that the number of infectious people
will be decreasing from the beginning of an outbreak (no epidemic). Conversely, if

S0

N
β− α > 0, (2.4)

then I is an increasing function as long as S
N > α

β . Thus, the number of infectious
individuals will be increasing initially (epidemic), but since S is decreasing for all t, then
I reaches its maximum at S

N = α
β , and then decreases to 0 as shown above. Considering

the definition ofR0, we assume that the system is in a disease-free equilibrium. Hence,
S0 = N (or S0 ≈ N, meaning that the initial number of infectious people is very small
compared to the magnitude of N). This can be understood as having a population
of susceptibles into which we introduce an outside infectious individual. Therefore,
inequalities (2.3) and (2.4) become

β

α
< 1,

β

α
> 1 respectively.
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2 DERIVATION OF THE SIMPLEST EPIDEMIC MODELS

We can see that this matches the term found above for the basic reproduction num-
ber for the SIR model (M2.2). Note that we are able to directly explain the meaning ofR0
only because the SIR model is simple. The qualitative behavior of the two possibilities
(epidemic or no epidemic) is shown below.

Figure 3: Solution to the system (M2.2) with I0 = 0.1, N = 1, β
α = 5.

Figure 4: Solution to the system (M2.2) with I0 = 0.1, N = 1, β
α = 5

8 .

The pulse depicted in Figure 3 is typical for epidemic models. Moreover, the two
behaviors, shown in Figures 3 and 4, are the only two outcomes we can obtain for the
models we are dealing with. This is because individuals do not cycle between the com-
partments. We explain this by the fact the for Ebola, if one survives the disease, a long
lasting immunity is granted.
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2 DERIVATION OF THE SIMPLEST EPIDEMIC MODELS

This chapter presented the basic SIR model and ways to analyze it. We showed that
if the recovered compartment is introduced, meaning that individuals can recover from
the disease, the function I(t) limits to zero, whereas the function S approaches a posi-
tive limit as t → ∞. This limit can be computed using the final size relation. Another
application of the final size relation is to actually estimate the parameters of our model.
One could track an ongoing outbreak of a certain disease and then retrospectively use
the relation (2.2), by knowing how many people got the disease, to determine the con-
tact rate β. This is actually the crucial part of creating a meaningful model. However, it
is not an easy question, because the contact rate β depends on many factors. For exam-
ple, population size and density, effectiveness of hospital care, safe burials of diseased
people, etc.

Clearly, the SIR model is not perfect. However, it is a good starting epidemic model
and since it is rather simple, we can use it to develop analytical tools suitable for the
analysis. Which, as we will show later, are applicable to more complicated models as
well.

8



2 DERIVATION OF THE SIMPLEST EPIDEMIC MODELS

2.3 SEIR Model

An immediate extension to the SIR model is a SEIR model. This model adds an
“exposed” compartment to the system. For many diseases there is usually an exposed
(incubation) period after the transmission of the disease, during which the individual is
infected but not infectious yet (or does not show any symptoms to be able to spread the
disease). This is typical for diseases such as HIV, Mononucleosis, Chickenpox, Mumps,
etc. For Ebola, the incubation period ranges from 2 - 21 days [12].

The model becomes

dS
dt

= − 1
N

βSI,

dE
dt

=
1
N

βSI − κE,

dI
dt

= κE− αI,

dR
dt

= αI.

(M2.3)

with the following flow chart:

Figure 5: Flow chart of SEIR model (M2.3).

We introduce a new constant κ, which gives us the average length, 1
κ , of the incuba-

tion period. This model is more realistic than the SIR model but for the purposes of this
work, it is still rather simple.

Other examples of models such as Treatment Model, A Quarantine-Isolation Model,
Models with Disease Deaths, A Vaccination Model can be found in [4].
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3 EBOLA RELATED MODELS

3 Ebola Related Models

3.1 Example 1 - Legrand Model of Hospitalization

The intention of this chapter is to provide examples of actual models used for trans-
mission of Ebola. The first one is a model from a paper from 2007 by J. Legrand, et al.
[11]. This model is an extension to the SEIR model shown in the previous chapter. It
still contains susceptible, exposed, infectious, and removed classes, but the authors also
introduce hospital and funeral classes. The hospital compartment simply represents
people who occupy a bed in a hospital. The funeral class represents people who died
but have not been buried yet. Thus, they can still spread the disease. The system of
differential equations is the following:

dS
dt

= − 1
N

[bISI + bHSH + bFSF] ,

dE
dt

=
1
N

[bISI + bHSH + bFSF]− aE,

dI
dt

= aE− [chh1 + ci(1− h1)(1− d1) + cd(1− h1)d1] I,

dH
dt

= chh1 I − [cdhd2 + cih(1− d2)] H,

dF
dt

= cd(1− h1)d1 I + cdhd2H − c f F,

dR
dt

= ci(1− h1)(1− d1)I + cih(1− d2)H + c f F.

(M3.1)

Figure 6: Flow chart of Legrand model (M3.1)

We will not describe the model (M3.1) any further. More information on the param-
eters and results for this model can be found in the paper [11]. Our goal at this point is

10



3 EBOLA RELATED MODELS

to demonstrate the computation for finding the reproduction number R′ and the final
size relation. Similar analysis, as shown for the SIR model, can be also done for this
model.

3.1.1 Reproduction Number R0 - Basic Integration Method

This section will describe the extended method from [10] for obtaining the repro-
duction number R0 and the limited size relation. We will demonstrate the method on
the Legrand model mentioned above.

The initial step is to divide the first equation of (M3.1) by S:

S′

S
= − 1

N
[bI I + bH H + bFF] ,

Integrate this equation from 0 to ∞:

log
S0

S∞
=

1
N

bI

∞∫
0

Idt + bH

∞∫
0

Hdt + bF

∞∫
0

Fdt

 . (3.1)

Add the first two equations of the system (M3.1) and integrate them from 0 to ∞:

S′ + E′ = −aE,

a
∞∫

0

Edt = −S∞ + S0 − E∞ + E0.

Next, integrate third, fourth, and fifth equation of (M3.1) from 0 to ∞

∞∫
0

Idt =
−I∞ + I0 + a

∞∫
0

Edt

chh1 + ci(1− h1)(1− d1) + cd(1− h1)d1
,

∞∫
0

Hdt =
−H∞ + H0 + chh1

∞∫
0

Idt

cdhd2 + cih(1− d2)
,

∞∫
0

Fdt =
−F∞ + F0 + cd(1− h1)d1

∞∫
0

Idt + cdhd2

∞∫
0

Hdt

c f
.
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3 EBOLA RELATED MODELS

Substitute in for the integrals on the right side of each equation.

∞∫
0

Idt =
−I∞ + I0 − S∞ + S0 − E∞ + E0

chh1 + ci(1− h1)(1− d1) + cd(1− h1)d1
, (3.2)

∞∫
0

Hdt =
−H∞ + H0 + chh1

−I∞+I0−S∞+S0−E∞+E0
chh1+ci(1−h1)(1−d1)+cd(1−h1)d1

cdhd2 + cih(1− d2)
, (3.3)

∞∫
0

Fdt =
−F∞ + F0 + cd(1− h1)d1

−I∞+I0−S∞+S0−E∞+E0
chh1+ci(1−h1)(1−d1)+cd(1−h1)d1

c f
+ (3.4)

+
cdhd2

−H∞+H0+chh1
−I∞+I0−S∞+S0−E∞+E0

chh1+ci(1−h1)(1−d1)+cd(1−h1)d1
cdhd2+cih(1−d2)

c f
.

Note that one of the assumptions for this model is S + E + I + H + F + R = N.
Thus, the population remains constant. Also, we assume that the initial conditions are:
S(0) = S0, E(0) = 0, I(0) = 0, H(0) = 0, F(0) = 0. Therefore S0 = N which means that
the population is initially in disease free equilibrium.

Recall that we were able to show that I∞ = 0 for the SIR model. For the model
(M3.1), by applying the similar procedure, we can show that E∞ = 0, I∞ = 0, H∞ =
0, F∞ = 0. The approach is as follows.

Remark 3.1. Note that all the compartmental functions S, E, I, H, F, R are assumed to be
non-negative differentiable functions.

The first equality E∞ = 0 can be obtained by adding equations for I, H, F, R. Then,
we get:

I′ + H′ + F′ + R′ = aE,

which means that I + H + F + R is a non-negative smooth non-decreasing function
bounded by N. This implies that it has a limit as t → ∞ (By Monotone Convergence
Theorem). Therefore, the derivative of such function will limit to zero as t→ ∞. Hence,
E∞ = 0.

We proceed by adding equations for H, F, R and we get:

H′ + F′ + R′ = [chh1 + cd(1− h1)d1 + ci(1− h1)(1− d1)] I.

This shows that H + F + R is a non-negative smooth non-decreasing function bounded
by N. Hence, it has a limit as t→ ∞ and, similarly as in the previous case, its derivative

12



3 EBOLA RELATED MODELS

will limit to zero. Therefore, I∞ = 0.

By adding equations for F, R we get:

F′ + R′ = [cd(1− h1)d1 + ci(1− h1)(1− d1)] I + [cdhd2 + cih(1− d2)] H.

Again, this means that F+R is a non-negative smooth non-decreasing function bounded
by N. Thus, it has a limit as t → ∞. It follows that derivative will limit to zero. We al-
ready know that I∞ = 0, hence H∞ = 0.

Finally, from the last equation, we get that R is a non-negative smooth non-decreasing
function bounded by N. Therefore, it has a limit as t→ ∞, and in analogy to the previ-
ous case, its derivative will limit to zero as well. We already know that I∞ = 0, H∞ = 0.
Hence, F∞ = 0.

As the last step, we substitute the equations (3.2), (3.3), (3.4) for the integrals in (3.1)
and we get:

log
S0

S∞
=

1
N

[
bI

(
N − S∞

chh1 + ci(1− h1)(1− d1) + cd(1− h1)d1

)
+

+ bH

(
(N − S∞)chh1

cdhd2 + cih(1− d2)

1
chh1 + ci(1− h1)(1− d1) + cd(1− h1)d1

)
+

+ bF

(
(N − S∞)cd(1− h1)d1

chh1 + ci(1− h1)(1− d1) + cd(1− h1)d1

1
c f
+

+

(N−S∞)chh1cdhd2
cdhd2+cih(1−d2)

chh1 + ci(1− h1)(1− d1) + cd(1− h1)d1

1
c f


Factor out (N − S∞)

log
S0

S∞
=

[
1− S∞

N

] [
bI

(
1

chh1 + ci(1− h1)(1− d1) + cd(1− h1)d1

)
+

+ bH

(
chh1

cdhd2 + cih(1− d2)

1
chh1 + ci(1− h1)(1− d1) + cd(1− h1)d1

)
+

+ bF

(
cd(1− h1)d1

chh1 + ci(1− h1)(1− d1) + cd(1− h1)d1

1
c f
+

+

chh1cdhd2
cdhd2+cih(1−d2)

chh1 + ci(1− h1)(1− d1) + cd(1− h1)d1

1
c f


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3 EBOLA RELATED MODELS

To get the desired expression for the final size relation, let

R0 = bI
1

chh1 + ci(1− h1)(1− d1) + cd(1− h1)d1
+

+ bH

chh1
cdhd2+cih(1−d2)

chh1 + ci(1− h1)(1− d1) + cd(1− h1)d1
+

+ bF

cd(1−h1)d1+
chh1cdhd2

cdhd2+cih(1−d2)
c f

chh1 + ci(1− h1)(1− d1) + cd(1− h1)d1

(3.5)

and then we obtain

log
S0

S∞
=

[
1− S∞

N

]
R0.

We claim that the expression (3.5) found for R0 is the reproduction number for the
model (M3.1). When we evaluate (3.5) with the parameters from the paper [11], we
obtain R0 ≈ 2.67. This means that, at the beginning of the outbreak, one infectious
individual yields on average 2.67 new infections during the duration of their infection.

3.1.2 Reproduction Number R0 - Advanced Derivation

As mentioned earlier, there is another, more rigorous way to compute the reproduc-
tion number. This method is described by P. van den Driessche and James Watmough
in [9], or also again in [10]. For more details see these two papers. Note that we use the
same notation as in the paper [9] for the following description. We will use the the same
model (M3.1) as for the basic method for the demonstration.

For this method, we define two (m× 1) vectors F and V , where m is the number
of infectious compartments. For the Legrand model m = 4. Then, Fi is the rate of
appearance of new infections in compartment i, and

Vi = V−i − V
+
i ,

where V−i denotes the rate of transfer of individuals out of the compartment i and V+i
denotes the rate of transfer of individuals into the compartment i by all other means.
The reproduction numberR0 is then the spectral radius of FV−1, where

F =
∂Fi

∂xj

∣∣∣∣
x=x0

and V =
∂Vi

∂xj

∣∣∣∣
x=x0

, with 1 ≤ i, j ≤ m.
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3 EBOLA RELATED MODELS

For clarity, the compartments are sorted so that the first m compartments correspond
to infectious compartments. Hence, X = (x1, x2, x3, x4, x5, x6) = (E, I, H, F, S, R). We as-
sume x0 = (0, 0, 0, 0, N, 0) to be the disease free equilibrium. Note that x0 is not unique,
but it is customary to choose the one with the whole population susceptible.

The vectors F and V for the model (M3.1) are:

F =


1
N bISI + 1

N bHSH + 1
N bFSF

0
0
0


and

V =


aE

−aE + [chh1 + ci(1− h1)(1− d1) + cd(1− h1)d1] I
−chh1 I + [cdhd2 + cih(1− d2)] H
−cd(1− h1)d1 I − cdhd2H + c f F


It follows that,

F =


0 bI bH bF
0 0 0 0
0 0 0 0
0 0 0 0


and

V =


a 0 0 0
−a ch ∗ h1 + ci ∗ (1− h1) ∗ (1− d1) + cd ∗ (1− h1) ∗ d1 0 0
0 −ch ∗ h1 cdh ∗ d2 + cih ∗ (1− d2) 0
0 −cd ∗ (1− h1) ∗ d1 −cdh ∗ d2 c f



The spectral radius of FV−1 is equal to the expression R0 found in 3.1.1 using the
integration method. The computation was done in MATLAB and the code can be found
in the Appendix B. Note that the reproduction number (3.5) found for the Lagrand
model can be divided into three parts. Each part gives us the average yield of infections
from the infectious compartments I, H, F respectively. We could use this information
to determine which group contributes to the outbreak the most. Then, we can try to
decrease that value by some means of intervention.
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3.2 Example 2 - Eisenberg Multi-stage Ebola Model

As a second example of Ebola related model we chose a recent model from 2015 by
M. Eisenberg, et al. [5]. We can think of it as an extension of the model from the Example
1. The main difference is that authors introduce two different stages of infectivity. The
reason for it is that, at the beginning of an Ebola infection, a person shows just minor
flu-like symptoms such as fever, joint and muscle pain, fatigue, etc. But after a certain
period of time, the symptoms become more severe and that person becomes even more
infectious. When the progress of Ebola gets to this stage the likelihood of surviving is
very small. Group RH represents people who already recovered but would still require
a bed in a hospital.

Figure 7: Flow chart of Eisenberg model.

For the sake of brevity, we will only depict the flow chart of this model. The system
of differential equations, results, and information on all the parameters can be found in
[5].

At this point we finished the introductory chapters and we will focus on the devel-
opment of a new model. Our goal is to create a reasonable model, which could be used
to model the transmission of Ebola. Then, we would like to discuss plausible ways
to control the disease. Our advantage is that the most recent outbreak (2014-2015) in
Africa is most likely over. Therefore, we can use the historical data to suggest what
kind of interventions would have the greatest impact on the spread of the disease.
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4 Models of Ebola Control

We developed a multicompartmental model based on the natural behavior of the
disease and on the facts from previous outbreaks. The main focus was to incorporate
the following control strategies into the model: hospitalization and safe burials. One of
the main problems of the 2014-2015 outbreak in Africa was a limited number of beds in
hospitals along with a lack of expertise of the medical workers. This led to a massive
epidemic of Ebola mainly in three West African countries: Guinea, Liberia, and Sierra
Leone. One of the WHO articles [6] aptly describes the situation in Liberia. “Basically
no hospital anywhere in Liberia had an isolation ward. Few medical staff had been
trained in the basic principles of infection prevention and control. Facilities had little or
no personal protective equipment, not even gloves, and virtually no knowledge about
how to use this equipment properly. Under such conditions, treatment of the first hos-
pitalized patients ignited multiple chains of transmission, among staff, patients, and
visitors, in ambulance and taxi drivers who ferried the sick to care, in relatives, neigh-
bors, and eventually entire neighborhoods. Case numbers that had multiplied quickly
began to grow exponentially”. We can assume that a similar situations were true for the
other two countries.

The outbreak started approximately in the summer 2014 and continued to spread
significantly for about 200-250 days. After that, the disease got under control with only
occasional cases from time to time. The following graphs depict the situation for the
three countries.

Figure 8: Cumulative cases of Ebola in Liberia in 2014-2015. The population of Liberia is 4.29 million.
The mortality rate of people exposed to Ebola is 45.05%. The country was declared Ebola free by WHO
on May 9, 2015. [2], [7].
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Figure 9: Cumulative cases of Ebola in Guinea in 2014-2015. The population of Guinea is 11.75 million.
The mortality rate of people exposed to Ebola is 66.73%. The country was declared Ebola free by WHO
on December 29, 2015. [2], [7].

Figure 10: Cumulative cases of Ebola in Sierra Leone in 2014-2015. The population of Sierra Leone is 6.1
million. The mortality rate of people exposed to Ebola is 28.01%. The country was declared Ebola free by
WHO on November 7, 2015. [2], [7].
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An interesting fact can be observed around November 14, 2014. We can see a de-
crease in the number of cases even though the graphs show the cumulative numbers.
This is due to imperfect case reporting and it illustrates how complicated the situation
actually was. The lack of quarantine and troubles with localizing Ebola patients made
the situation even more severe. As mentioned at the beginning, the deceased individ-
uals were usually buried in a way of traditional customs for the certain country which
resulted in a high risk of exposure for the people present at the funeral. One of the
goals of the health organizations (such as CDC or WHO) was to inform people about
the potential risks and to educate them to decrease the likelihood of the transmission.

Another important thing we can see from the graphs is the mortality rate of people
exposed to Ebola. It significantly varies between the three countries and also over time.
There are a couple possible explanations for this. One factor could be the initial level of
medical care at the beginning of the outbreak. Another aspect could be the traditions
and customs related to burials for certain areas as mentioned above. Lastly, the demo-
graphic structure of each country certainly plays a role.

A key role in fighting Ebola was the start of building more medical facilities, called
Ebola Treatment Units (ETU). Safety procedures used in the ETUs provided the needed
care which led to a decrease in spreading Ebola between staff in hospitals. In addition
to that, there were medical (burial) teams working on the streets trying to locate indi-
viduals exposed to Ebola as well as performing safety burials of those who already died.
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The main aim of this work is to show how these interventions might affect the epi-
demic of Ebola. Specifically, we consider an increase of the number of ETU beds as well
as burial teams fighting the disease.

The first draft of our model is based on the following assumptions

- Population size N is assumed to be a constant

- The initial number of infectious people in the population is very small

- Mortality of those exposed to Ebola is approximately 50 % regardless of whether or
not people are hospitalized

- We assume the same infective rates between infectious individuals who survive and
those who do not

- We assume the same probability of hospitalization between the individuals who
survive and those who do not

- Hospital size is unlimited

- Each non-hospital Ebola fatality is buried through the traditional burial

- People who recover from the disease receive permanent immunity
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The first variant of our model does not include any limiting number of ETU beds or
the presence of burial teams in the community. The model is described by the following
differential equations:

dS
dt

= − 1
N
[
β IR SIR + β ID SID + βHR SHR + βHD SHD + βFSF

]
,

dE
dt

=
1
N
[
β IR SIR + β ID SID + βHR SHR + βHD SHD + βFSF

]
− αE,

dIR
dt

= (1− θ) αE− (1− π)ε1 IR − πε2 IR,

dID
dt

= θαE− (1− π)κ1 ID − πκ2 ID,

dHR
dt

= πε2 IR − ρHR,

dHD
dt

= πκ2 ID − δHD,

dR
dt

= (1− π)ε1 IR + ρHR,

dF
dt

= (1− π)κ1 ID − γF,

dD
dt

= γF + δHD.

(M4.1)

A better visualization of the model (M4.1) can be obtained from the flow chart shown
below. The arrows represent the flow of individuals between the compartments.

Figure 11: Flow chart of the developed model (M4.1). The rough idea for this model came from combining
two models from students’ projects [15] and [16].
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The description of each of the compartments

S = susceptibles; people who can catch Ebola

E = people exposed to Ebola

IR = infectious people who will recover

ID = infectious people who pass away

HR = hospitalized people who will recover

HD = hospitalized people who will pass away

R = recovered individuals

F = non-hospitalized people waiting to be buried

D = deceased individuals

The main difference between our and other models from recent papers is that we di-
vide the exposed population into two branches directly from the exposed class E, rather
than doing that later on from the infectious or hospital classes. The split is based on the
Ebola mortality at the given region. The individuals do not know in advance if they
are going to survive or not, but since we know the probability of survival we can corre-
spondingly use the information to determine their “destiny”.

Another observation we made was that models from other papers yielded signifi-
cantly bigger numbers of people who died from Ebola compared to the actual situation.
This was usually due to the fact that the authors used the whole population of a cer-
tain country as a population at risk for catching the disease. But this assumption seems
to be rather unrealistic. Clearly, people from different places do not interact with each
other. Not even all people within one city interact with each other. Thus, our goal was
to experiment with the population size to determine the effective population size. We
decided to focus only on one county of Liberia: Montserrado, for which we were able
to find enough of relevant information. It is the biggest county of Liberia with Liberia’s
capital, Monrovia, located there. The population of Montserrado is approximately 1.5
million. The initial parameters used for our model are shown in Table 1 below.
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Parameters
Parameter Value Units Source
Population Size N 1500000 people [14], Estimated
Contact Rate - Community β IR , β ID 0.160 people−1days−1 [13], Estimated
Contact Rate - Hospitals βHR , βHD 0.062 people−1days−1 [13]
Contact Rate - Funerals βF 0.489 people−1days−1 [13]
Probability of Survival 1− θ 0.54951 unitless [7]
Incubation Period α−1 12.00 days [13]
Time from Infection to Recovery ε−1

1 15 days [13]
Time until Hospitalization ε−1

2 , κ−1
2 3.24 days [13]

Time from Infection to Death κ−1
1 13.31 days [13]

Probability of Seeking Hospitalization π 0.197 unitless [13]
Time from Hospitalization to Recovery ρ−1 15.88 days [13]
Time from Hospitalization to Death δ−1 10.07 days [13]
Duration of Traditional Burial γ−1 2.01 days [13]

Table 1: The description of parameters used in our model. Most of them were obtained from the paper [13]
which deals directly with the outbreak in Liberia.

4.1 Analysis of the Model

At this moment we will perform an analysis of the model (M4.1) by finding the
reproduction number and the final size relation. Once we introduce the desired inter-
ventions, the non-linearity of some of the terms will make it impossible to find these
characteristics. We would like to find out if decreasing the population size can provide
us with more accurate results. Our goal is not to produce a complete model, because
our model still does not include important assumptions, but we want to focus on the
effects of the presented interventions. However, we would still like to use reasonable
parameter values, which yield results comparable to the general picture of the real sit-
uation.
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By analogy to 3.1.2 the vectors F and V for the model (M4.1) in this section are:

F =



1
N β IR SIR + 1

N β ID SID + 1
N βHR SHR + 1

N β ID SHD + 1
N βFSF

0
0
0
0
0


and

V =


αE

−(1− θ)αE + (1− π)ε1 IR + πε2 IR
−θαE + (1− π)κ1 ID + πκ2 ID

−πε2 IR + ρHR
−πκ2 ID + δHD
(1− π)κ1 ID − γF


Note that X = (E, IR, ID, HR, HD, F, S, R, D) and the disease free equilibrium is anal-

ogously x0 = (0, 0, 0, 0, 0, 0, N, 0, 0). It follows that the matrices F and V for our model
are:

F =


0 β IR β ID βHR βHD βF
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



V =


α 0 0 0 0 0

−(1− θ) ∗ α (1− π)ε1 + π ∗ ε2 0 0 0 0
−θ ∗ α 0 (1− π)κ1 + π ∗ κ2 0 0 0

0 −π ∗ ε2 0 ρ 0 0
0 0 −π ∗ κ2 0 δ 0
0 0 −(1− π)κ1 0 0 γ


The spectral radius of FV−1 yields

R0 = R1
0 +R2

0 +R3
0 +R4

0 +R5
0,

R0 =
(1− θ)β IR

(1− π)ε1 + πε2
+

θβ ID

(1− π)κ1 + πκ2
+

+
(1− θ)βHR πε2

ρ((1− π)ε1 + πε2)
+

θβHD πκ2

δ((1− π)κ1 + πκ2)
+

θβF(1− π)κ1

γ((1− π)κ1 + πκ2)

(4.1)
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Evaluating the reproduction number (4.1) using the parameters from Table 1 gives
usR0 = 2.013. The following table tells us how much each infectious group contributes
to the spread of the disease.

i Group Ri
0

1 Infectious compartment, to recover (IR) 0.7690
2 Infectious compartment, to die (ID) 0.5950
3 Hospital compartment, to recover (HR) 0.2877
4 Hospital compartment, to die (HD) 0.1412
5 Funeral compartment (F) 0.2205

Table 2: Reproduction number of each infective group.

Since there are few other analytical tools to analyze this model, we will focus on
numerical simulations using computer software (Mathematica, Matlab). Firstly, we will
run the simulation of the whole model and plot the solutions over a certain time inter-
val. The following graph shows the simulation of our system with initial conditions
S0 = N − E0 and E0 = 32. Other compartments are initially zero.

Figure 12: Numerical simulation of the model (M4.1), with the parameters from Table 1 and S0 = N− E0
and E0 = 32. The graph shows long term behavior over 700 days. We can see the progress of the outbreak
through each of the compartments. Note that the typical pulse pattern as described for the SIR model is
present. However, it seems like even though we focus only on one specific region, the size of N is still too
big. The prediction from our model is nowhere near to the actual number of people exposed to Ebola or the
duration of the outbreak.
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Remark 4.1. The initial time for this simulation is taken to be July 1, 2014 based on the
information found in [8]. The initial number of hospital beds in Montserrado county
was less than 100 and after 20 days the first of a total of 4 ETUs started to be built. They
reached a peak of ETU size around 80 days after July 1 with roughly 500 beds. It was
claimed that more than a 1, 000 beds were needed [14]. The main portion of the outbreak
lasted for 200-250 days. ETU bed limitation will be included later on in our advanced
model.

4.2 Fitting of the Model to the Data

As a measure of the predictive accuracy of our models, we add a cumulative func-
tion of people exposed to Ebola given by the following equation to the model (M4.1)

It
c =

t∫
0

αE(τ) dτ (4.2)

Figure 13: Figure depicts (the dashed line) the real cumulative cases of Ebola in Montserrado county dur-
ing the 2014-2015 outbreak [8]. The solid line is the prediction from the model (M4.1), with parameters
from Table 1. The result likely suggests that the population at risk is actually significantly smaller than
the actual population size N.

We used numerical simulations to experiment with the population size N. Based on
the information from Table 2, we know that the main source of new infections is from
the non-hospitalized infectious population from compartments IR and ID. Hence, we
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also vary these in the hope of obtaining better results. Figure 14 depicts the resulting
parameter fitting.

Figure 14: We can see a very close match of the model (M4.1) with the real data. The new parameter
values are N = 2860 and β IR , β ID = 0.27. (Table 3)

Remark 4.2. The new size of the population N = 2860 is significantly smaller than
the original one. It actually seems to make sense, because if we look at the real data,
even though the outbreak was enormous by historical standards, “only” 0.249% were
exposed to Ebola in Liberia. We also slightly increased the community contact rates β IR
and β ID from 0.16 to 0.27 to match the steeper exponential growth of the disease.

Updated Parameters
Parameter Value Units Source
Population Size N 2860 people Estimated
Contact Rate - Community β IR , β ID 0.270 people−1days−1 Estimated

Table 3: The list of updated parameters after visual fitting. We varied the population size N and the
community contact rates β IR and β ID .
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4.3 Modeling Ebola Control Strategies

4.3.1 Limited Number of Hospital Beds

To make our model more realistic we have to consider that hospitals (or ETUs)
have limited sizes. Based on the information found in [14], there were 4 ETUs built
in Montserrado county (Liberia) between 20th-80th day of the outbreak. This increased
the number of hospital beds from 100 to 500. The officials claimed that there was a
significant shortage of beds at the beginning of the outbreak (more than 1,000 beds
needed). For simplicity, we assume that number of beds is equally distributed between
the ETUs and that they are spread over the region, so that an individual seeking help
can go only to one of them per day. This means that the number of hospital beds is
effectively divided by 4. Also, we know that many people who came to the ETUs did
not have Ebola, although they would still occupy a bed until the tests confirmed that.
These tests usually took 2-5 days. As described in [14] (and shown in Figure 15), the
proportion of non-Ebola patients varies significantly over time. However, for simplic-
ity we will assume it was constant. We denote the ratio of Ebola patience versus all
patients by µ and we estimate it to be the mean of actual data, µ = 0.85.

Figure 15: The cases admitted to ETUs during the Liberia epidemic in Montserrado county. [14] The
starting date of our simulation, July 1, represents week 27 in the picture. We use the data to estimate a
constant average number of people admitted to ETUs who tested negative for Ebola.
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The way we modeled the limited size of ETUs is the following. Hospitals with avail-
able beds are being filled by incoming patients at the same rate as in our initial model
(M4.1). Recall that the rates are πε2 IR and πκ2 ID. Once the hospital reaches its maxi-
mum capacity, there are two options. If the number of people trying to get into a hospi-
tal is higher than the rate out of the hospital, then some individuals cannot be accepted
and the rate of admission is set to be equal to the rate at which beds become available.
A way to model this is to decrease the probability of seeking hospitalization π (note
that it is assumed to be the same for both recovery and death divisions of our model).
Let us denote this new decreased probability of seeking hospitalization by Π(t).

The decreased Π(t) is designed, so that the rate of change of the hospital class is zero
when the hospital is full. In other words, (H′R(t) + H′D(t)) = 0. The new rates of full
hospital admission are:

Recovery division: Π(t)ε2 IR,
Death division: Π(t)κ2 ID,

where Π(t) =
ρHR + δHD

ε2 IR + κ2 ID
.

Remark 4.3. Note that the updated probability of hospitalization

Π(t) =
ρHR + δHD

ε2 IR + κ2 ID
(4.3)

describes the ratio of people leaving the hospitals versus the people available to go to
the hospital. For the sake of brevity we will denote this fraction by Π(t) = Π.

When the number of people trying to get in drops and the hospital frees some beds,
then the rate of admission becomes again πε2 IR and πκ2 ID, respectively. We model this
with a switch between π and Π based on if the hospital is full.

It is important to say that the change from π → Π results in a bigger portion of peo-
ple staying in the non-hospitalized infectious classes who recover/die on their own. We
must correspondingly adjust that proportion as well. We will use an additional switch
between (1− π) and (1− Π). Note that both switches must be triggered simultane-
ously. The rates of recovery/death for non-hospitalized are then:

Recovery division: (1− π)ε1 IR or (1−Π)ε1 IR,
Death division: (1− π)κ1 ID or (1−Π)κ1 ID,

respectively.
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Let us introduce a new term Hmax which will denote the maximum number of hos-
pital beds. For simplicity we assume that the number of beds is constant even though
we found the information about when each ETU in Montserrado county was built. This
is justified by numerical experiments which showed that the results were practically the
same whether Hmax was time dependent or just a fixed number. The benefit of this is
that the numerical simulations are faster. We experienced significant numerical issues
with the time changing Hmax because the system became stiff.

The way we modeled the described approach was to use If functions along with
Minimum and Maximum functions in Mathematica. The changes to the equations are
the following (we use Mathematica syntax for the description):

dS
dt

= − 1
N
[
β IR SIR + β ID SID + βHR SHR + βHD SHD + βFSF

]
,

dE
dt

=
1
N
[
β IR SIR + β ID SID + βHR SHR + βHD SHD + βFSF

]
− αE,

dIR
dt

= (1− θ)αE− If [(HR + HD) < µHmax, (1− π)ε1 IR + πε2 IR,

Max [(1−Π) ε1 IR, (1− π)ε1 IR] + Min [Πε2 IR, πε2 IR]] ,

dID
dt

= θαE− If [(HR + HD) < µHmax, (1− π)κ1 ID + πκ2 ID,

Max [(1−Π) κ1 ID, (1− π)κ1 ID] + Min [Πκ2 ID, πκ2 IR]] ,

dHR
dt

= If [(HR + HD) < µHmax, πε2 IR, Min [Πε2 IR, πε2 IR]]− ρHR,

dHD
dt

= If [(HR + HD) < µHmax, πκ2 ID, Min [Πκ2 ID, πκ2 ID]]− δHD,

dR
dt

= If [(HR + HD) < µHmax, (1− π)ε1 IR, Max [(1−Π) ε1 IR, (1− π)ε1 IR]] + ρHR,

dF
dt

= If [(HR + HD) < µHmax, (1− π)κ1 ID, Max [(1−Π) κ1 ID, (1− π)κ1 ID]]− γF,

dD
dt

= γF + δHD.

(M4.2)

Note that the equations for S, E, and D remain the same as in the model (M4.1).
Rather than fitting this model to the real data again, our intentions are to find out how
effectively we can influence the outbreak by increasing the number of hospital beds. To
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do this we plot the cumulative function It
c, given by (4.2), at the time t = 500 (after the

outbreak is over) as a function of the number of hospital beds Hmax. The results are
depicted in the graph below.

Figure 16: The graph shows the function It
c of the model (M4.2) at time t = 500 as a function of combined

hospitals/ETUs size (the number of beds Hmax). The parameter values used for this model are in Table 1
updated by Table 3, with µ = 0.85.

We can see that as we increase the number of beds the total cases decrease steadily
until we reach approximately 1, 100 of beds. From a disease control point of view, hav-
ing more than 1, 000 beds does not make sense because they would never fill up anyway.
Recall that the report [14] claimed that over 1, 000 of beds were needed during the peak
period. The result from our model predicts 1, 100 beds needed. Note that the result
is influenced by our estimation of the fraction µ of hospital beds actually available to
Ebola patients, 0 ≤ µ ≤ 1. µHmax represents the effective hospital size.

We conclude from our model that Montserrado county with a population of 1.5 mil-
lion requires roughly over 1, 100 beds to effectively fight the disease. Anything more
than that would be a waste of resources. With large hospital capacity, 93.81 % of the
susceptible population is infected by Ebola, but with no hospitals at all the ration in-
creases to 98.57 %. Note that the percentages are related to a hypothetical community
of reduced size N = 2860, rather than the whole population of Montserrado county.
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4.3.2 Modeling Burial Teams

To continue the discussion of various Ebola control strategies we describe the effect
of burial teams. In our model the teams help with safety burials, and therefore decrease
the transmission of Ebola from the F (funeral) compartment. At this point, we do not
take into account that the teams can inform people, distribute health kits with basic
medical equipment, or encourage more people to go seek help or get tested in ETUs.
These factors might also influence the disease dynamic and some will be considered in
the next section of this chapter.

The way we modeled the effect of burial teams is the following.

dS
dt

= − 1
N

[β IR SIR + β ID SID + βHR SHR + βHD SHD + βFSF] ,

dE
dt

=
1
N

[β IR SIR + β ID SID + βHR SHR + βHD SHD + βFSF]− αE,

dIR

dt
= (1− θ) αE− (1− π)ε1 IR − πε2 IR,

dID

dt
= θαE− (1− π)κ1 ID − πκ2 ID,

dHR

dt
= πε2 IR − ρHR,

dHD

dt
= πκ2 ID − δHD,

dR
dt

= (1− π)ε1 IR + ρHR,

dF
dt

= κ1 ID − γF− T f1F
f1
f2
+ F

,

dD
dt

= γF + T f1F
f1
f2
+ F

(M4.3)

Note that the only difference from the model (M4.1) is in equations for F and D.
These equations are modified with the Holling Type-II functional response term. The
parameter T denotes the number of burial teams and f1 represents the maximum num-
ber of bodies that can be buried per day. The ratio f1

f2
is the so-called half saturation

constant. It tells us how many bodies would set the burial teams to half of their maxi-
mum performance. Specifically, the teams are burying the bodies, but if there are very
few people to bury, they spend more time searching for them.
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4 MODELS OF EBOLA CONTROL

We were not able to find exact information about how many teams were working on
the streets and how many bodies they could possibly bury per day. We decided to vary
the number of teams from 0− 40 with f1 = 1 and f1/ f2 = 2. These values might seem
rather low, but we have to consider that the teams are spread around the whole county.
This is analogous to limited ETU size, where Hmax was divided by 4 to effectively dis-
tribute the hospital beds among the four ETUs built in Montserrado.

As with hospital size, we produce the following graph:

Figure 17: The graph shows the function It
c of the model (M4.3) at time t = 500 as a function of the

number of burial teams T . The parameter values used for this model are in Table 1 updated by Table 3.

We observe a differently shaped effect on the Ebola dynamics in Figure 17 compared
to the analogous result with limited number of ETU beds in Figure 16. There is a rapid
decrease between 0− 20 teams and then the influence of more teams becomes less sig-
nificant. If we assume that each team consist of 10 people, then having 20 teams means
200 workers total. Even though we could not find any precise information, this num-
ber seems to be believable. From a control point of view, these results suggest not to
increase the number of teams to more than 20 to ensure a reasonable performance/cost
effectiveness.
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4 MODELS OF EBOLA CONTROL

4.3.3 Combining Limited Hospital Size and Burial Teams

In order to measure the combined effects of larger hospital sizes and burial teams
we will combine the two approaches from sections 4.3.1 and 4.3.2. The resulting system
of differential equations is the following. The goal is to distinguish between the effects
of these two interventions and to determine the best combination which results in the
highest decrease of Ebola transmission while also saving as many resources as possible.

dS
dt

= − 1
N
[
β IR SIR + β ID SID + βHR SHR + βHD SHD + βFSF

]
,

dE
dt

=
1
N
[
β IR SIR + β ID SID + βHR SHR + βHD SHD + βFSF

]
− αE,

dIR
dt

= (1− θ)αE− If [(HR + HD) < µHmax, (1− π)ε1 IR + πε2 IR,

Max [(1−Π) ε1 IR, (1− π)ε1 IR] + Min [Πε2 IR, πε2 IR]] ,

dID
dt

= θαE− If [(HR + HD) < µHmax, (1− π)κ1 ID + πκ2 ID,

Max [(1−Π) κ1 ID, (1− π)κ1 ID] + Min [Πκ2 ID, πκ2 IR]] ,

dHR
dt

= If [(HR + HD) < µHmax, πε2 IR, Min [Πε2 IR, πε2 IR]]− ρHR,

dHD
dt

= If [(HR + HD) < µHmax, πκ2 ID, Min [Πκ2 ID, πκ2 ID]]− δHD,

dR
dt

= If [(HR + HD) < µHmax, (1− π)ε1 IR, Max [(1−Π) ε1 IR, (1− π)ε1 IR]] + ρHR,

dF
dt

= If [(HR + HD) < µHmax, (1− π)κ1 ID, Max [(1−Π) κ1 ID, (1− π)κ1 ID]]− γF− NT
f1F

f1
f2
+ F

,

dD
dt

= γF + NT
f1F

f1
f2
+ F

.

(M4.4)

Recall that Π =
ρHR + δHD

ε2 IR + κ2 ID
as given by (4.3).
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4 MODELS OF EBOLA CONTROL

We will again measure the effect of the two interventions by plotting the total num-
ber of people exposed to Ebola measured at the end of the outbreak (t = 500).

Figure 18: The graph shows the function It
c of the model (M4.4) at time t = 500 as a function of the

number of hospital beds Hmax and the number of burial teams T . The parameter values used for this
model are in Table 1 updated by Table 3, with µ = 0.85.

Figure 19: Same as the previous figure but from a different angle.
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4 MODELS OF EBOLA CONTROL

For better understanding of the two previous 3D plots, we will depict a contour plot.
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Figure 20: The contour plot version of the previous two graphs.

Remark 4.4. By looking at the last Figure we choose the most effective control to be in
the top right region (contour level equals to 2634). For It

c = 2634 an optimal solution was
observed to be 20 burial teams and roughly 1020 beds. This would be our suggestion
for officials responsible for the chosen county to use their resources reasonably. Using
the resources to create these numbers of beds and teams would result in approximately
2, 634 Ebola cases in the population of Montserrado.
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4 MODELS OF EBOLA CONTROL

For curiosity, we are interested in fixing the number of beds and burial teams to the
values mentioned in the Remark 4.4 and plotting the cumulative Ebola cases along with
the real data [8].

Figure 21: The graph of It
c of the model (M4.4), with fixed number of burial teams T = 20 and hospital

beds Hmax = 1020 for the Montserrado county over time. The dashed line depicts the real data [8]. The
parameter values used for this model are in Table 1 updated by Table 3, with µ = 0.85.

It is not a surprise that we see our model predicting fewer people catching Ebola
compared to the real situation. This was our control goal from the beginning. We in-
tended to model the medical interventions which were actually implemented by the
local government and international health organizations. However, we observe only a
slight improvement. This is because through the used interventions we modified the
hospital and funeral transmissions. Although, the most significant contribution of the
Ebola transmission is from the infectious classes (infectious people who are alive but not
in the hospitals). Thus, reducing the contact rates β IR and β ID would affect the outcome
of the outbreak the most. This could be done through quarantine and distribution of
surgical masks and gloves. But if this was actually possible, then there probably would
not be an outbreak at all or it would be at least at a significantly smaller scale.
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4 MODELS OF EBOLA CONTROL

4.3.4 Modeling Increased Probability of Seeking Hospitalization

The last question we asked ourselves was how an increased desire for hospitaliza-
tion would affect the dynamic of the epidemic. This means to increase the parameter π.
Recall that this parameter was estimated to be π = 0.197 which means that nearly 20 %
of people exposed to Ebola try to go to an ETU.

We justify changing the value of π by knowing that there were medical teams work-
ing on the streets which could send individuals to hospitals. Our approach was the
following. We assumed that the parameter π is dependent on the number of burial
teams present in the community. However, it is difficult to guess any specific relation-
ship. Hence, we will fix the number of hospital beds and burial teams to be the optimal
values found in the previous section: Hmax = 1020 and T = 20, respectively. Then, we
will produce the same kind of plot as in Figures 16 and 17.

After running the simulations, we discovered very interesting behavior. Increased
probability of hospitalization resulted in significantly lesser Ebola transmissions as well
as delayed the outbreak. The hospitals filled up almost at the same pace but they would
stay full for longer period of time. The main significance of that change was mainly at
the beginning of the epidemic which resulted in lesser consequences of Ebola crises.
The effect of increasing π was small when the number of beds was small, but with a
large ETU capacity, the effect was enormous.

Figure 22: The graph shows the function (4.2) It
c of the model (M4.4) at time t = 500 as a function of

the probability of seeking hospitalization π. The size of ETUs and burial teams are fixed to Hmax = 1020
and T = 20 respectively. Change in the parameter π seems to affect the epidemic significantly. We can
see nearly 28.80 % decrease of the total Ebola cases. The parameter values used for this model are in Table
1 updated by Table 3, with µ = 0.85.
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4 MODELS OF EBOLA CONTROL

We were also interested in knowing how would increased desire for hospitaliza-
tion along with increased hospital size affect the epidemic. To answer this question we
produce a plot of cumulative cases as a function of number of hospital beds and the
probability of hospitalization π.

Figure 23: The graph shows the function (4.2) It
c of the model (M4.4) at time t = 500 as a function of

the number of hospital beds Hmax and the probability of hospitalization π. The number of burial teams
is fixed to T = 20. The parameter values used for this model are in Table 1 updated by Table 3, with
µ = 0.85.

Figure 24: The same as previous Figure but from a different angle.
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4 MODELS OF EBOLA CONTROL

The last result we would like to present is the comparison of the cumulative cases
of the prediction of our model and the real situation for hypothetical choices of the
number of hospital beds and burial teams along with the probablity of hospitalization
π. We found out in Figure 21 that increasing the number of hospital beds and burial
teams only slightly decreases the epidemic size. However, we can observe a significant
effect of the probability of seeking hospitalization π in the Figures 25 and 26.

Figure 25: The graph of It
c of the model (M4.4), with fixed number of burial teams T = 20 and hospital

beds Hmax = 1020. The dashed line depicts the real data [8]. The parameter values used for this model
are in Table 1 updated by Table 3, with µ = 0.85 and π = 0.5.

Figure 26: As the previous Figure but with the probability of hospitalization is π = 0.8. The epidemic is
significantly influenced by increasing π.
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5 CONCLUSION

5 Conclusion

The main goal of this work was to describe effects of strategies for Ebola control. We
provided examples of three control approaches: increasing hospital size, introducing
burial teams to the population, and increasing the probability of seeking hospitalization.
We showed the differences between impacts of these three strategies on the disease dy-
namic. The population size N and the community contact rates β IR , β ID were estimated
based on the most recent 2014− 2015 Ebola outbreak in west Africa. We found a very
close fit of our initial model (M4.1) to the real data. We also discussed the problems of
the effective size of the population at risk. It was shown that the effective population at
risk is significantly smaller than the actual population size.

We found out that larger hospital size Hmax would be more influential on the out-
break than the number of burial teams T . It is not surprising that the combined effect
of those two would be the best solution for the Ebola control. However, we observed
that with fixed number of hospital beds and burial teams, the biggest impact on the
epidemic was the desire of population for hospitalization π. This along with increase
in hospital size would result in a significant decrease of Ebola casualties.

Effect of Interventions
Control Strategy Effect Level of Control
Hospital Size 4.82 % 0-1200 beds, 0 teams
Burial Teams 1.90 % 0-40 teams, 0 beds
Burial Teams with limited hospital size♥ 1.71 % 0-40 teams, 500 beds
Hospital Size & Burial Teams 6.60 % 0-1200 beds, 0-40 teams
Probability of Hospitalization♦ 28.80 % 0-100 %

Table 4: The list of different effects on the epidemic size for the described control strategies. The effects are
measured as a difference between certain levels of each intervention. ♥: We can observe an interesting
result for this case. Limited hospital size causes more total cases overall, which results in burials teams
getting busy too fast and not being able to compensate for the surplus of bodies. Therefore, we observe
only very small effect of burial teams. ♦: Note that the hospital size and the number of burial teams are
Hmax = 1020 and T = 20 respectively.
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5 CONCLUSION

A possible question for future research is to examine the way of modeling the lim-
ited ETU size, which in our model (M4.4) seems to be rather complicated. Our model
assumes that everyone who is rejected from the ETU stays in the infectious class and
recover/die on their. However, they are allowed to try reentering the hospital. This
however, is not clear. Individuals repelled from the hospital may not want to go back
or may be incapacitated. For curiosity we tried to model this situation as well. The
diagram and the system of differential equations can be found in the Appendix A. The
comparison of our model and this new approach is depicted in the following plot.

Figure 27: The graph shows the function It
c of the models (M4.4) and (M4.5) at time t = 500 as a

function of the number of hospital beds Hmax. The solid line represents the prediction from the model
(M4.2) meanwhile the dashed line depicts the new approach given by (M4.5). The new approach yields
larger numbers of people exposed to Ebola, explained by people not trying to reenter the hospitals after
rejection. The parameter values used for this simulation are in Table 1 updated by Table 3, with µ = 0.85
and π = 0.197.

We can observe a significant difference between the two approaches. It would inter-
esting to study a comparison of modeling limited hospitalization and maybe find a way
to model a weighted average, meaning that some people when rejected from hospital
are willing to come back and try to reenter the hospital meanwhile others are not ever
returning.

Another possibility for future work is to describe the parameters µ, π or number of
ETU beds and burial teams in a more detailed way. One suggestion is to treat param-
eters as time dependent. Although we experimented with this approach, the results
we obtained were nearly the same or the numerical simulations became problematic.
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5 CONCLUSION

Therefore, we decided not to pursue this issue at all. A second suggestion is to treat
these parameters as independent variables along with time.

Lastly, we could assign a cost to each kind of presented interventions. Then, we
would minimize the cost function as an optimization problem to determine cost-effectiveness
of the Ebola control strategies described in this paper.

The codes for all the computations and simulations are part of the Appendix B.

43



6 Appendix A

The system of differential equations for the different approach of modeling limited
hospitalization when people rejected from ETUs never try coming back.

dS
dt

= − 1
N
[
β IR SIR + β ID SID + βHR SHR + βHD SHD + βFSF

]
,

dE
dt

=
1
N
[
β IR SIR + β ID SID + βHR SHR + βHD SHD + βFSF

]
− αE,

dPR
dt

= (1− θ)αE− ε2PR,

dPD
dt

= θαE− κ2PD,

dIR
dt

= (1− π)ε2PR + If [(HR + HD) < µHmax, 0, Max [0, πε2PR −Πε2PR]]−
1

1
ε1
− 1

ε2

IR,

dID
dt

= (1− π)κ1PD + If [(HR + HD) < µHmax, 0, Max [0, πκ2PD −Πκ2PD]]−
1

1
κ1
− 1

κ2

ID,

dHR
dt

= If [(HR + HD) < µHmax, πε2PR, Min [πε2PR, Πε2PR]]− ρHR,

dHD
dt

= If [(HR + HD) < µHmax, πκ2PD, Min [πκ2PD, Πκ2PD]]− δHD,

dR
dt

=
1

1
ε1
− 1

ε2

IR + ρHR,

dF
dt

=
1

1
κ1
− 1

κ2

ID − γF,

dD
dt

= γF + δHD.

(M4.5)

Note that Π =
ρHR + δHD

ε2PR + κ2PD
, derived in the same way as (4.3).

Figure 28: Flow chart of the model (M4.5) with alternative way of hospitalization.
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7 Appendix B

Mathematica and MATLAB codes used for the numerical simulations and computa-
tions.

• MATLAB code for the Reproduction numberR0

1 % Computation of the Reproduction number R0 for the model M1
2 % Author: Vaclav Hasenohrl
3
4 clear all
5
6 % parameters
7 syms beta1 beta2 beta3 beta4 beta5
8 syms alpha theta epsilon1 kappa1 epsilon2 kappa2 pi delta gamma rho
9

10 disp('test');
11
12 % matrices F and V defined in the Section 3
13 F = [0,beta1,beta2,beta3,beta4,beta5;
14 0,0,0,0,0,0;
15 0,0,0,0,0,0;
16 0,0,0,0,0,0;
17 0,0,0,0,0,0;
18 0,0,0,0,0,0];
19
20 V = [alpha,0,0,0,0,0;
21 −(1−theta)*alpha,(1−pi)*epsilon1+pi*epsilon2,0,0,0,0;
22 −theta*alpha,0,(1−pi)*kappa1+pi*kappa2,0,0,0;
23 0,−pi*epsilon2,0,rho,0,0;
24 0,0,−pi*kappa2,0,delta,0;
25 0,0,−(1−pi)*kappa1,0,0,gamma];
26
27 pretty(eig(F*inv(V))) % prints the eigenvalues of FV^−1
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MATHEMATICA code for the simulation of the Model M4.1 - simulation

In[1]:= Manipulate[
soln = NDSolve[{

S'[t] == -1/n*(b1*S[t]*Ir[t] + b2*S[t]*Id[t] + b3*S[t]*Hr[t] + b4*S[t]*Hd[t] + b5*S[t]*F[t]),
Ex'[t] == 1/n*(b1*S[t]*Ir[t] + b2*S[t]*Id[t] + b3*S[t]*Hr[t] + b4*S[t]*Hd[t] + b5*S[t]*F[t]) -

a*Ex[t],
Ir'[t] == (1 - th)*a*Ex[t] - (1 - p)*e1*Ir[t] - p*e2*Ir[t],
Id'[t] == th*a*Ex[t] - (1 - p)*k1*Id[t] - p*k2*Id[t],
Hr'[t] == p*e2*Ir[t] - r*Hr[t],
Hd'[t] == p*k2*Id[t] - d*Hd[t],
R'[t] == (1 - p)*e1*Ir[t] + r*Hr[t],
F'[t] == (1 - p)*k1*Id[t] - g*F[t],
Dh'[t] == g*F[t] + d*Hd[t],
Cml'[t] == a*Ex[t],
S[0] == n - Ex0, Ex[0] == Ex0, Ir[0] == 0, Id[0] == 0, Hr[0] == 0,
Hd[0] == 0, R[0] == 0, F[0] == 0, Dh[0] == 0,

Cml[0] == 0}, {S[t], Ex[t], Ir[t], Id[t], Hr[t], Hd[t], R[t],
F[t], Dh[t], Cml[t]}, {t, 0, tmax}];

Show[Plot[{S[t] /. soln,
Ex[t] /. soln, (Ir[t] + Id[t]) /. soln, (Hr[t] + Hd[t]) /. soln,
R[t] /. soln, F[t] /. soln, Dh[t] /. soln}, {t, 0, tmax},

PlotStyle -> {Blue, Darker[Yellow], Red, Orange, Darker[Green],
Purple, Black},

PlotLegends -> {"Susceptibles", "Exposed", "Infectious",
"Hospitalized", "Recovered", "Funeral", "Deceased"},

PlotRange -> {{0, tmax}, {0, ymax}}], Frame -> True,
FrameLabel -> {Style["Time t", Black, Larger],

Style["N", Black, Larger]}, RotateLabel -> False,
ImageSize -> 500],

{{n, 1500000}, 1, 1500000, 1}, {{hmax, 501}, 1, 1200, 1}, {{NT, 25},
0, 40, 1}, {{p, 0.197}, 0, 1, 0.05}, Delimiter, {{tmax, 700}, 0.01,
1000, 0.5}, {{ymax, 1500000}, 0, 1500000, 1},
Initialization :> {n = 1500000, b1 = 0.16, b2 = 0.16, b3 = 0.062,
b4 = 0.062, b5 = 0.489, a = 1/12, e1 = 1/15, e2 = 1/3.24,
k1 = 1/13.31, k2 = 1/3.24, th = 0.45049, r = 1/15.88, d = 1/10.07,
g = 1/2.01, Ex0 = 32, tmax = 700}, ControlPlacement -> Right]
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MATHEMATICA code for the simulation of the Model M4.1 - fitting of the parame-
ters

In[2]:= Manipulate[
soln = NDSolve[{

S'[t] == -1/n*(b1*S[t]*Ir[t] + b2*S[t]*Id[t] + b3*S[t]*Hr[t] + b4*S[t]*Hd[t] + b5*S[t]*F[t]),
Ex'[t] == 1/n*(b1*S[t]*Ir[t] + b2*S[t]*Id[t] + b3*S[t]*Hr[t] + b4*S[t]*Hd[t] + b5*S[t]*F[t]) -

a*Ex[t],
Ir'[t] == (1 - th)*a*Ex[t] - (1 - p)*e1*Ir[t] - p*e2*Ir[t],
Id'[t] == th*a*Ex[t] - (1 - p)*k1*Id[t] - p*k2*Id[t],
Hr'[t] == p*e2*Ir[t] - r*Hr[t],
Hd'[t] == p*k2*Id[t] - d*Hd[t],
R'[t] == (1 - p)*e1*Ir[t] + r*Hr[t],
F'[t] == (1 - p)*k1*Id[t] - g*F[t],
Dh'[t] == g*F[t] + d*Hd[t],
Cml'[t] == a*Ex[t],
S[0] == n - Ex0, Ex[0] == Ex0, Ir[0] == 0, Id[0] == 0, Hr[0] == 0,
Hd[0] == 0, R[0] == 0, F[0] == 0, Dh[0] == 0,

Cml[0] == 0}, {S[t], Ex[t], Ir[t], Id[t], Hr[t], Hd[t], R[t],
F[t], Dh[t], Cml[t]}, {t, 0, tmax}];

Show[{data,
Plot[{Cml[t] /. soln}, {t, 0, tmax}, PlotStyle -> {Darker[Yellow]},
PlotLegends -> {"Cumulative Cases"}]}, Frame -> True,

FrameLabel -> {Style["Time t", Black, FontSize -> 16],
Style["\!\(\*SubsuperscriptBox[\(E\), \(c\), \(t\)]\)", Black,
FontSize -> 16]}, RotateLabel -> False,

PlotRange -> {{0, tmax}, {0, ymax}}, ImageSize -> 500],

{{n, 2860}, 1, 3500, 1}, {{b1, 0.27}, 0.16, 0.3, 0.005}, {{b2, 0.27},
0.16, 0.3, 0.005}, {{hmax, 501}, 1, 1200, 1}, {{NT, 25}, 0, 40,

1}, {{p, 0.197}, 0, 1, 0.05}, Delimiter, {{tmax, 700}, 0.01, 1000,
0.5}, {{ymax, 3000}, 0, 1500000, 1},
Initialization :> {n = 2860, b1 = 0.27, b2 = 0.27, b3 = 0.062,
b4 = 0.062, b5 = 0.489, a = 1/12, e1 = 1/15, e2 = 1/3.24,
k1 = 1/13.31, k2 = 1/3.24, th = 0.45049, r = 1/15.88, d = 1/10.07,
g = 1/2.01, Ex0 = 32,
tmax = 270, {data =

ListPlot[{{0, 29}, {7, 47}, {14, 65}, {21, 90}, {28, 119}, {35, 208}, {42, 324}, {49, 493},
{56, 697}, {63, 949}, {70, 1239}, {77, 1498}, {84, 1746}, {91, 1896}, {98, 2087}, {105,

2207},
{112, 2284}, {119, 2366},{126, 2418}, {133, 2469}, {140, 2504}, {147, 2552}, {154, 2585},
{161, 2608}, {168, 2618}, {175, 2642}, {182, 2648}, {189, 2651}, {196, 2663}, {203, 2667},
{210, 2673}, {217, 2676}, {224, 2680}, {231, 2681}, {238, 2681}, {245, 2681}, {252, 2681},
{259, 2682}, {266, 2682}},
Joined -> True, PlotStyle -> {Red, Dashed},
PlotLegends -> {"Real Data"}];}}, ControlPlacement -> Right]
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MATHEMATICA code for the simulation of the Model M4.2 - Limited hospital size, It
c

as a function of Hmax

In[3]:= n = 2860; b1 = 0.27; b2 = 0.27; b3 = 0.062; b4 = 0.062; b5 = 0.489; a = 1/12;

e1 = 1/15; e2 = 1/3.24; k1 = 1/13.31; k2 = 1/3.24; th = 0.45049; r = 1/15.88;

d = 1/10.07; g = 1/2.01; p = 0.197; mu = 0.85; Ex0 = 32; tmax = 500;

Fn[hmax_] :=

Cml[tmax] /. NDSolve[{

S'[t] == -1/n*(b1*S[t]*Ir[t] + b2*S[t]*Id[t] + b3*S[t]*Hr[t] + b4*S[t]*Hd[t] + b5*S[t]*F[t]),

Ex'[t] == 1/n*(b1*S[t]*Ir[t] + b2*S[t]*Id[t] + b3*S[t]*Hr[t] + b4*S[t]*Hd[t] + b5*S[t]*F[t]) - a*Ex[t],

Ir'[t] == (1 - th)*a*Ex[t] - If[(Hr[t] + Hd[t]) < mu*hmax/4, (1 - p)*e1*Ir[t] + p*e2*Ir[t],

Max[(1 - ((r*Hr[t] + d*Hd[t])/(e2*Ir[t] + k2*Id[t])))*(e1*Ir[t]), (1 - p)*e1*Ir[t]] +

Min[(e2*Ir[t])/(e2*Ir[t] + k2*Id[t])*(r*Hr[t] + d*Hd[t]), p*e2*Ir[t]]],

Id'[t] == th*a*Ex[t] -

If[(Hr[t] + Hd[t]) < mu*hmax/4, (1 - p)*k1*Id[t] + p*k2*Id[t],

Max[(1 - ((r*Hr[t] + d*Hd[t])/(e2*Ir[t] + k2*Id[t])))*(k1*Id[t]), (1 - p)*k1*Id[t]] +

Min[(k2*Id[t])/(e2*Ir[t] + k2*Id[t])*(r*Hr[t] + d*Hd[t]), p*k2*Id[t]]],

Hr'[t] == If[(Hr[t] + Hd[t]) < mu*hmax/4, p*e2*Ir[t],

Min[(e2*Ir[t])/(e2*Ir[t] + k2*Id[t])*(r*Hr[t] + d*Hd[t]), p*e2*Ir[t]]]

- r*Hr[t],

Hd'[t] == If[(Hr[t] + Hd[t]) < mu*hmax/4, p*k2*Id[t],

Min[(k2*Id[t])/(e2*Ir[t] + k2*Id[t])*(r*Hr[t] + d*Hd[t]), p*k2*Id[t]]]

- d*Hd[t],

R'[t] == If[(Hr[t] + Hd[t]) < mu*hmax/4, (1 - p)*e1*Ir[t],

Max[(1 - ((r*Hr[t] + d*Hd[t])/(e2*Ir[t] + k2*Id[t])))*(e1*Ir[t]), (1 - p)*e1*Ir[t]]]

+ r*Hr[t],

F'[t] == If[(Hr[t] + Hd[t]) < mu*hmax/4, (1 - p)*k1*Id[t],

Max[(1 - ((r*Hr[t] + d*Hd[t])/(e2*Ir[t] + k2*Id[t])))*(k1*Id[t]), (1 - p)*k1*Id[t]]]

- g*F[t],

Dh'[t] == g*F[t] + d*Hd[t],

Cml'[t] == a*Ex[t],

S[0] == n - Ex0, Ex[0] == Ex0, Ir[0] == 0, Id[0] == 0, Hr[0] == 0,

Hd[0] == 0, R[0] == 0, F[0] == 0, Dh[0] == 0, Cml[0] == 0}, {S,

Ex, Ir, Id, Hr, Hd, R, F, Dh, Cml}, {t, 0, tmax},

Method -> "Adams", AccuracyGoal -> 4, PrecisionGoal -> 4]

In[4]:= dat = Table[{x = Hmax, Fn[Hmax][[1]]}, {Hmax, 1, 1200, 30}];

In[5]:= plot = ListPlot[dat, Joined -> True, PlotStyle -> Darker[Yellow],

PlotRange -> All, Frame -> True,

FrameLabel -> {Style["\!\(\*SubscriptBox[\(H\), \(max\)]\)", Black,

FontSize -> 16],

Style["\!\(\*SubsuperscriptBox[\(E\), \(c\), \(t\)]\)", Black,

FontSize -> 16]}, RotateLabel -> False, ImageSize -> 500,

PlotLegends -> {"Cumulative Cases"}]
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MATHEMATICA code for the simulation of the Model M4.3 - Burial Teams, It
c as a

function of T

In[6]:= n = 2860; b1 = 0.27; b2 = 0.27; b3 = 0.062; b4 = 0.062; b5 = 0.489; a = 1/12;
e1 = 1/15; e2 = 1/3.24; k1 = 1/13.31;k2 = 1/3.24; th = 0.45049; r = 1/15.88;
d = 1/10.07; g = 1/2.01; p = 0.197; mu = 0.85; f1 = 1; f2 = 0.5; Ex0 = 32;
tmax = 500;

Fn[NT_] :=
Cml[tmax] /. NDSolve[{

S'[t] == -1/n*(b1*S[t]*Ir[t] + b2*S[t]*Id[t] + b3*S[t]*Hr[t] + b4*S[t]*Hd[t] + b5*S[t]*F[t]),
Ex'[t] == 1/n*(b1*S[t]*Ir[t] + b2*S[t]*Id[t] + b3*S[t]*Hr[t] + b4*S[t]*Hd[t] + b5*S[t]*F[t])

- a*Ex[t],
Ir'[t] == (1 - th)*a*Ex[t] - (1 - p)*e1*Ir[t] - p*e2*Ir[t],
Id'[t] == th*a*Ex[t] - (1 - p)*k1*Id[t] - p*k2*Id[t],
Hr'[t] == p*e2*Ir[t] - r*Hr[t],
Hd'[t] == p*k2*Id[t] - d*Hd[t],
R'[t] == (1 - p)*e1*Ir[t] + r*Hr[t],
F'[t] == (1 - p)*k1*Id[t] - g*F[t] - NT*f1*F[t]/(f1/f2 + F[t]),
Dh'[t] == g*F[t] + NT*f1*F[t]/(f1/f2 + F[t]) + d*Hd[t],
Cml'[t] == a*Ex[t],
S[0] == n - Ex0, Ex[0] == Ex0, Ir[0] == 0, Id[0] == 0, Hr[0] == 0,
Hd[0] == 0, R[0] == 0, F[0] == 0, Dh[0] == 0, Cml[0] == 0}, {S,

Ex, Ir, Id, Hr, Hd, R, F, Dh, Cml}, {t, 0, tmax},
Method -> "Adams", AccuracyGoal -> 4, PrecisionGoal -> 4]

In[7]:= dat = Table[{x = T, Fn[T][[1]]}, {T, 0, 40, 1}];

In[8]:= plot = ListPlot[dat, Joined -> True, PlotStyle -> Darker[Yellow],
PlotRange -> All, Frame -> True,
FrameLabel -> {Style["\[ScriptCapitalT]", Black, FontSize -> 16],

Style["\!\(\*SubsuperscriptBox[\(E\), \(c\), \(t\)]\)", Black,
FontSize -> 16]}, RotateLabel -> False, ImageSize -> 500,

PlotLegends -> {"Cumulative Cases"}]
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MATHEMATICA code for the simulation of the Model M4.4 - Both interventions, It
c as

a function of Hmax and T

In[9]:= n = 2860; b1 = 0.27; b2 = 0.27; b3 = 0.062; b4 = 0.062; b5 = 0.489; a = 1/12;
e1 = 1/15; e2 = 1/3.24; k1 = 1/13.31; k2 = 1/3.24; th = 0.45049; r = 1/15.88;
d = 1/10.07; g = 1/2.01; p = 0.197; hmax = 500; mu = 0.85; f1 = 1; f2 = 0.5;
Ex0 = 32; tmax = 500;
Fn[hmax_, NT_] :=
Cml[tmax] /. NDSolve[{

S'[t] == -1/n*(b1*S[t]*Ir[t] + b2*S[t]*Id[t] + b3*S[t]*Hr[t] + b4*S[t]*Hd[t] + b5*S[t]*F[t]),
Ex'[t] == 1/n*(b1*S[t]*Ir[t] + b2*S[t]*Id[t] + b3*S[t]*Hr[t] + b4*S[t]*Hd[t] + b5*S[t]*F[t])

- a*Ex[t],
Ir'[t] == (1 - th)*a*Ex[t] - If[(Hr[t] + Hd[t]) < mu*hmax/4, (1 - p)*e1*Ir[t] + p*e2*Ir[t],

Max[(1 - ((r*Hr[t] + d*Hd[t])/(e2*Ir[t] + k2*Id[t])))*(e1*Ir[t]), (1 - p)*e1*Ir[t]] +
Min[(e2*Ir[t])/(e2*Ir[t] + k2*Id[t])*(r*Hr[t] + d*Hd[t]), p*e2*Ir[t]]],

Id'[t] == th*a*Ex[t] - If[(Hr[t] + Hd[t]) < mu*hmax/4, (1 - p)*k1*Id[t] + p*k2*Id[t],
Max[(1 - ((r*Hr[t] + d*Hd[t])/(e2*Ir[t] + k2*Id[t])))*(k1*Id[t]), (1 - p)*k1*Id[t]] +
Min[(k2*Id[t])/(e2*Ir[t] + k2*Id[t])*(r*Hr[t] + d*Hd[t]), p*k2*Id[t]]],

Hr'[t] == If[(Hr[t] + Hd[t]) < mu*hmax/4, p*e2*Ir[t],
Min[(e2*Ir[t])/(e2*Ir[t] + k2*Id[t])*(r*Hr[t] + d*Hd[t]), p*e2*Ir[t]]] - r*Hr[t],

Hd'[t] == If[(Hr[t] + Hd[t]) < mu*hmax/4, p*k2*Id[t],
Min[(k2*Id[t])/(e2*Ir[t] + k2*Id[t])*(r*Hr[t] + d*Hd[t]), p*k2*Id[t]]] - d*Hd[t],

R'[t] == If[(Hr[t] + Hd[t]) < mu*hmax/4, (1 - p)*e1*Ir[t],
Max[(1 - ((r*Hr[t] + d*Hd[t])/(e2*Ir[t] + k2*Id[t])))*(e1*Ir[t]), (1 - p)*e1*Ir[t]]]
+ r*Hr[t],

F'[t] == If[(Hr[t] + Hd[t]) < mu*hmax/4, (1 - p)*k1*Id[t],
Max[(1 - ((r*Hr[t] + d*Hd[t])/(e2*Ir[t] + k2*Id[t])))*(k1*Id[t]), (1 - p)*k1*Id[t]]]
- g*F[t] -

NT*f1*F[t]/(f1/f2 + F[t]),
Dh'[t] == g*F[t] + NT*f1*F[t]/(f1/f2 + F[t]) + d*Hd[t],
Cml'[t] == a*Ex[t],
S[0] == n - Ex0, Ex[0] == Ex0, Ir[0] == 0, Id[0] == 0,
Hr[0] == 0, Hd[0] == 0, R[0] == 0, F[0] == 0, Dh[0] == 0,
Cml[0] == 0}, {S, Ex, Ir, Id, Hr, Hd, R, F, Dh, Cml}, {t, 0,
tmax}, Method -> "BDF", AccuracyGoal -> 5, PrecisionGoal -> 5];
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In[10]:= Z = Table[{Hmax, T, Fn2[Hmax,T][[1]]}, {Hmax, 1,
1250, 65}, {T, 0, 40, 1}];

In[11]:= dat = ArrayReshape[Z, {Dimensions[Z][[1]]*Dimensions[Z][[2]], 3}];

In[12]:= ListContourPlot[dat, InterpolationOrder -> 5,
Contours -> {2800, 2760, 2720, 2680, 2640, 2634},
PlotLegends -> Automatic, Frame -> True,
FrameLabel -> {Style["\!\(\*SubscriptBox[\(H\), \(max\)]\)", Black,

Larger, Bold], Style["\[ScriptCapitalT]", Black, Larger, Bold]} ,
olorFunction -> "SandyTerrain", ImageSize -> 500]

In[13]:= ListPlot3D[dat, MeshFunctions -> {#3 &}, Mesh -> {9},
InterpolationOrder -> 5, ColorFunction -> "SandyTerrain",
ImageSize -> 500,
AxesLabel -> {Style["\!\(\*SubscriptBox[\(H\), \(max\)]\)", Black,

Larger, Bold], Style["\[ScriptCapitalT]", Black, Larger, Bold],
Style["\!\(\*SubsuperscriptBox[\(E\), \(c\), \(t\)]\)", Black,
Larger, Bold]}, BoxStyle -> Bold]
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