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1 Abstract

Ebola is a highly lethal virus, which has caused 10702 total deaths in Africa

since the 2013-14 winter through April 15, 2015 (World Health Organiza-

tion). Using data from the epidemics ( in Liberia in 2014), a differential

equations model was built for the spread of Ebola, with many transmission

rates and other epidemiological parameters. New in this study is the ma-

nipulation of the number of hospital beds, which increases the rate at which

infected patients enter into the hospital. This is a key parameter which

is regarded as a rapid institution of control [8]. Mathematica simulation

tools were used to forecast the progression of the Ebola epidemic. For epi-

demic profiles identified in Liberia, increasing the number of beds increases

the hospitalization rate, and reduces the number of individuals infected, as

well as delaying the epidemic. In particular, it was found that increasing

the number of the hospital beds in the range of (42200, 43000) leads to a

mushrooming rise in survival.
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3 Introduction

3.1 Background

Ebola is one of the most lethal viruses that infects humans. It seems to be

able to avoid the human immune systems. Therefore, the Ebola virus can

come on quickly and kill fast. People can be infected with Ebola by touching

the blood or bodily fluids of an infected person or animal, or contacting an

infected person’s contaminated objects. The incubation period of the Ebola

virus in the human is 2 to 21 days and the infectious period is 4 to 10 days

[1]. Merler et al. pointed out that the routes of the transmission of the Ebola

virus disease adopted from natural history model are: susceptible individu-

als acquire infection after contact with an infectious individual and become

exposed without symptoms; at the end of the latent period infectious and

symptomatic individuals can transmit infection to others [9]. Individuals

might transmit infection during their funerals and are then removed from

the model [3]. Additionally, diagnosis of Ebola is difficult. This can be why

the virus breaks out widely without control. The current Ebola outbreak

is the largest yet. Understanding the spread and control of this disease is

clearly important. It has caused 10702 total deaths in Africa since the 2013-

14 winter through April 15, 2015 (World Health Organization).
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3.2 Approach

There are two standard ways to fight the Ebola disease; one is using good

treatment to cure the patients, and another way is sending all patients to

the hospital where they have a low contact rate. That is to say, in the

hospital, the disease transmission rate is low compared with infectious indi-

viduals who are out of the hospital. Even today, there still are no efficient

medical treatments to cure the disease. Therefore, controlling the spread

the disease is the only thing we can do to fight the disease. As we want a

low transmission rate of the spread of the disease, we should send more pa-

tients to the hospital. That is, we want to increase the hospitalization rate,

where the hospitalization rate depends on the number of the hospital beds.

A mathematical differential equation system model is used to simulate the

trend of the disease to study how increasing the number of hospital beds

could increase the hospitalization rate, and consequently increase the total

survival number [11]. In the model, the total survival number contains three

subparts; the first part is people who never catch the disease, the second

part is people infected by the disease but who recover by their own immune

system, and the third part is the patients who recover from the hospital.

The project consisted of the following parts:

1. Analyzing existing differential equations disease models which have

been used to analyze the outbreak of Ebola and to get general sense

of SIR disease modeling.

2. Adding more compartments to the basic SIR model to construct a

SEIHFDR disease model which is more realistic but it still includes

the unrealistic assumptions. Additionally, instead of setting all rates

as constants, the hospitalization rate is a variable, changing with the

number of hospital beds.

3. Creating a numerical differential equations simulation tool in Mathe-

3



matica by using the data from Liberia, which is one of the most severely

affected areas, to simulate the trend of evolution of each group.

4. Understanding how varying the number of hospital beds in the model

will change the outcome, modifying the behavior of the SEIHFDR

model.

4 Assumptions

Dixon and Schafer suggested that the major challenges faced by all disas-

ter areas in the efforts to control the outbreak include its wide geographic

spread and weak health-care infrastructures [5]. However, in this model,

we concentrated on the Liberia area and the wider geographic spread was

ignored. The model included all the variables which seemed to be neces-

sary to describe the outbreak of Ebola. I comprehensively considered all the

situations, and the models were built on reality, using sensible, and useful

criteria. However, to make the model to fit the general situation, I settled

on several requisite assumptions.

1. According the periodic report from CDC, the outbreak happened in

very short time. Thus, we ignored birth rate and background death

and migration rates for population in our models. Therefore, the total

population stays a constant.

2. Biologically, the Ebola virus is a kind of filoviridae family. They infect

human beings by direct contact with infected patients or body fluids;

even a dead body is still infectious. We assumed that all the infections,

other than exposures, are infectious. Every individual is equally likely

to be infected.

3. The population for Liberia is homogeneous.
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4. The strain for Ebola does not vary before it is eradicated.

5. People in group R, group E and D are noninfectious. No quaran-

tine will be provided to people in group E (Groups are defined in the

Disease Model section below).

6. Patients who eventually arrive at group R and D do not infect other

compartments. The people recovered from the Ebola never are rein-

fected by the disease.

7. Hospital capacity is limited, and it increases by adding more beds.
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5 Notation

There was a total of thirteen transition rates enrolled in building our Ebola

epidemic model. βI indicated the transmission coefficient of infected people

spreading the virus in the community, and βH was the transmission coeffi-

cient at the hospital; βF indicated the infection rate during funerals. The

mean duration of the incubation period was 1/ α. The mean duration from

symptom onset to hospitalization was 1/ γH . Additionally, the mean dura-

tion of a patient being hospitalized to death was 1/ γDH , and 1/ γD denoted

the mean duration to death without hospitalization. A dead infected body

should wait the mean duration of 1/ γF to burial.

Description Parameter

Contact Rate, Community βI

Contact Rate, Hospital βH

Contact Rate, Funeral βF

Incubation Period 1/ α

Time until Hospitalization 1/ γH

Time from Hospitalization to Death 1/ γDH

Duration of Traditional Funeral 1/ γF

Duration of Infection 1/ γI

Time from Infection to Death 1/ γD

Time from Hospitalization to Recovery 1/ γIH

Daily probability a Case is Hospitalized τ

Case Fatality Rate, Unhospitalized δ1

Case Fatality Rate, Hospitalized δ2

Table 1: Model Parameters for the Ebola Epidemic in Liberia, 2014 [10].

Some infectious patients recovered without hospitalization, and 1/ γI rep-
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resented the mean duration of these infectious period for survivors; While,

for those patients who were hospitalized, 1/ γIH denoted the mean duration

from hospitalization to end of infectiousness for cure; The probability of a

case being hospitalized per day was τ ; δ1 and δ2 represented the infected

case fatality rate with and without hospitalization, respectively.

6 Disease Model

In order to optimize the eradication of Ebola, we have to know about how

fast this disease spreads, how many people will die, and how long this epi-

demic will take to destroy Liberia; in other words, we should understand

this mystery killer mathematically.

Figure 1: Compartmental flow of a Ebola mathematical model

Mathematical modeling has emerged as an important tool for gaining un-

derstanding of the dynamics of the spread of infectious diseases [2]. We

model the progress of an epidemic in a large population comprising many

different individuals by keeping track of the number of individuals within

the subgroups, which are called compartments [4]. Differential equations

are written to model the rates at which people go from one compartment

to another [7]. An improved model (SEIHFDR), is shown in the Figure

1. Susceptible individuals (S) will become exposed (E) after contact with

the infectious patients, and then turn to infectious individuals (I) after an

incubation period of the Ebola disease. Additional sub-groups: hospitaliza-
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tion (H) represents the number of hospitalized cases, and funeral (F) is the

number of cases who are dead but still can infect other people who come

in contact with their bodies prior to burial. After funerals, all the cases

will be transmitted to the death group (D) and removed from the chain of

transmission. Patients can recover (R) from Ebola either on their own or

under hospital control. In the model, natural death, birth, and migration

are ignored.

dS

dt
= −βISI + βHSH + βFSF

N
(1)

dE

dt
=
βISI + βHSH + βFSF

N
− αE (2)

dI

dt
= αE − [γHτ + γI (1 − τ) (1 − δ1) + γD (1 − τ) δ1] I (3)

dH

dt
= γHτI − [γDHδ2 + γIH (1 − δ2)]H (4)

dF

dt
= γD (1 − τ) δ1I + γDHδ2H − γFF (5)

dD

dt
= γFF (6)

dR

dt
= γI (1 − τ) (1 − δ1) I + γIH (1 − δ2)H (7)

7 Simulation and Analysis

Data for Ebola cases was collected from public data released by the World

Health Organization, as well as the Ministries of Health of the afflicted coun-

tries. For this paper, the parameters are fixed from the 2014 Ebola epidemic

in Liberia shown the table 2 below.

The total population in Liberia in 2014 was around 4,302,475, with 8,475

infectious patients; the rest are the initial susceptible population. The num-

ber of hospital beds is manipulated. According to the graph the susceptible
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Description Parameter Fitted Values

Contact Rate, Community βI 0.160

Contact Rate, Hospital βH 0.062

Contact Rate, Funeral βF 0.489

Incubation Period 1/ α 12 days

Time until Hospitalization th =1/γH 3.24 days

Time from Hospitalization to Death 1/ γDH 10.07 days

Duration of Traditional Funeral 1/ γF 2.01 days

Duration of Infection 1/ γI 15.00 days

Time from Infection to Death 1/ γD 13.31 days

Time from Hospitalization to Recovery 1/ γIH 15.88 days

Daily probability a Case is Hospitalized τ 0.197

Case Fatality Rate, Unhospitalized δ1 0.500

Case Fatality Rate, Hospitalized δ2 0.500

Table 2: Model parameters and fitted values for a model of an Ebola epi-

demic in Liberia, 2014 [10].

group immediately decreases and at the same time the infected groups num-

bers begin to increase. The number of the death and recovery begin to rise

and continues to increase until a certain percentage of the population. The

death groups peak is around 1.7 × 106, and recovery groups peak is around

2.1 × 106, respectively. Around the same time, susceptible groups curve is

also hitting a plateau, which is just about 3 × 105 people left. The exposed

group and the infected group both head to zero.

8 Analysis of Hospitalization: An Improved Model

Instead of the hospitalization rate γH being constant, we assume a Holling

type II functional response. This function is given below, where b denotes
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Figure 2: Simulation of the compartmental models with Mathematica. Each

compartment is graphed as a function of t. Note that parameters were token

from table 2 and the number of beds is fixed at 40000.
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number of the hospital beds. The slope of γH when b is close to H is ε. We

note that the number of hospitalized patients (H) is always less than the

number of available beds (b). The hospitalization rate for large b is 1/th.

See the graph of γH in left side of figure 3.

γH =
ε (b−H)

1 + ε th (b−H)
(8)

In the improved model, the rate at which patients are hospitalized will de-

pend on the number of open beds in the hospitals. By the form of equation

(8), as hospital capacity approaches infinity (increasing b by adding more

beds to the hospital), the rate of hospitalization γH approaches the con-

stant 1/ th . Consequently, the total number of people surviving will not

increase by increasing the number of hospital beds after the hospitalization

rate approaches to a certain value, shown in the right side of Figure 3 below.

Figure 3: Left: Hospitalization rate, γH , as a function of hospital beds,

b. Right: Total survival as a function of γH . Enlarging the capacity of the

hospital seems ineffectual after some number of beds(b)

By manipulating the number of the beds and fixing the other parameters,

as we increase the number of beds, the epidemic will delay. Additionally,

11



people who are infected and die due to Ebola will both decrease.

Figure 4: The epidemic is delayed by increasing beds(b). The dashed lines

represent the disease when number of beds equal 15,000 and solid lines

represent the number of beds equal 40,000.

When adding more beds, more patients will be sent to the hospital, where

the contact rate to infect susceptible individuals is lower. In the bottom

of Figure 6, it shows that more hospital beds lead the increase of the to-

tal survival population. Note that, the total population surviving contains

people never infected by the virus, shown at the bottom of Figure 5, people

recovered by themselves, shown at the top of Figure 6, and people cured in

the hospital, shown at the top of Figure 5.

In particular, increasing the number of the hospital beds in the range of

(42200, 43000) leads to a mushrooming rise of the total surviving shown in
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Figure 5: Amount of people who survive as number of beds(b) changes
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Figure 6: Amount of people who survive as number of beds(b) changes
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figure 7. Note that, the total who recover from the disease is decrease, due

to fewer being infected.

Figure 7: Zoom of the part of Survival vs Beds graph in bottom of Figure

6, where a small number of increase beds(b) effects a significant change in

the total amount who survive.

9 Conclusion

Mathematical models are widely used to examine, explain and predict the

dynamics of infectious disease transmission, and models of specific diseases

of global import have played a vital role in developing public health strate-

gies for control and prevention [6]. The Ebola disease model relies on vi-

tal parameters and they all play a part in determining epidemic evolution.

Based on the simulation using known data from Liberia, as we increase the

capacity of the hospital, the hospitalization rate is increased. However, after

exceeding 43,000 beds in the hospital, the hospitalization rate approaches

a constant. As the hospitalization rate increases, the total survival amount

increases. However, as the hospitalization rate approaches its maximum, the
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survival stays relatively constant. Therefore, it is a poor use of resources to

keep increasing the number of the beds. From the result of the simulation,

it can be concluded the number of hospital beds in Liberia in the range of

(42200, 43000) will be the most efficient use of resources to control the out-

break of the Ebola disease. In that range, a small increase in the number of

beds result in a significant increase in total number of people who survive.
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