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Abstract 

Producer-consumer (predator-prey) systems have been studied for many years. 

Stoichiometry has more recently been included in systems to track food quality and 

quantity. In this work, we assume the food quality is determined by the presence of a 

nutrient. A certain target (stoichiometric) ratio of nutrient to carbon is necessary for the 

creation of consumer biomass. Whichever is in excess is eliminated. The model is based 

on Zimmermann’s stoichiometric elimination model[7]. We generalize her model and 

investigate the dynamics for different parameter values, and bifurcations that arise as 

parameters are varied. We are especially interested in varying two parameters which can 

be considered carbon and nutrient enrichment parameters. We also vary the rate of 

elimination.  As this rate approaches infinity, the system can be reduced to a lower 

dimensional model.  We compare the original model to the reduced model Different 

types of behavior observed include no-life equilibrium, monoculture equilibrium, 

coexistence equilibrium, periodic coexistence and bistability between periodic 

equilibrium and periodic coexistence.  
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1 Introduction 

Mathematical population models follow the size of interacting populations over time. A 

variety of producer-consumer models has been developed and studied. Recently, 

stoichiometry, which tracks food quality as well as quantity, has been widely introduced 

into producer-consumer models (Loladze, Kuang, and Elser 2000 [4], Kuang, Huisman, 

and Elser 2004 [3], Laura J. Zimmerman 2006[7]). 

 

We start with a producer-consumer model (RM) which is modeled with a variation of the 

Lotka-Volterra equations (Rosenzweig and MacArthur 1963[6]): 
𝑑𝑥
𝑑𝑡

= 𝑟𝑥 − 𝑏𝑥2 − 𝑓(𝑥)𝑦 

𝑑𝑦
𝑑𝑡

= 𝑒𝑓(𝑥)𝑦 − 𝑑𝑦 

Variables x and y represent the population of producer and consumer, respectively; r is 

the producer birth rate and b is the self limitation coefficient of the producer. Parameter e 

is the consumption efficiency as consumer cannot convert everything from producer to 

itself, and d is the death rate of consumer. Here f(x) is the monotonically increasing 

predation function as the consumer obtains or harvests more food when the population of 

producer is larger. The RM model has three equilibria: one is in a no life stage, the 

second is a producer monoculture and the third one is a producer and consumer 

coexistence. 

  

The RM model also has three bifurcations as the growth rate r is increased. The first one 

is a transcritical bifurcation where the stable equilibrium goes from no-life equilibrium to 

producer monoculture equilibrium. The second bifurcation is another transcritical 

bifurcation where the stable equilibrium changes from producer monoculture to producer 

and consumer coexistence. The last one is a Hopf bifurcation where the coexistence 

equilibrium becomes unstable and a stable limit cycle is born.     
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In the present model, we keep track of food quantity through carbon and food quality 

through nutrient, which is typically nitrogen for terrestrial systems and phosphorous for 

aquatic systems.  Following Zimmermann [7] [8], we add a sediment class and nutrient 

input and exports. This leads to an open model with six variables: P,p,C,c,S,s, which 

represent densities of carbon of producer, phosphorus of producer, carbon of consumer, 

phosphorus of consumer, carbon in sediment and phosphorus in sediment. We introduce 

stoichiometric effect by requiring that the consumer needs a fixed ratio of nutrient to 

carbon to create biomass. Whichever is in excess is then eliminated. There are many 

parameters in the model. The model separates into two basic cases: one is high nutrient 

where the evolution of the producer and consumer are the same as in the RM model, 

while low nutrient reduces the production rate of consumer biomass.  Compared to the 

Zimmermann study, we have simplified the model by eliminating only excess carbon or 

nutrient in the consumer rather than eliminating excesses in both the producer and 

consumer. More generally, we allow different conversion efficiency rates for the carbon 

and the nutrient. We also perform a more detailed bifurcation analysis, with 

corresponding time series. The results are significantly different from the RM model 

because of the introduction of stoichiometric elimination.  

 

Although the same types of bifurcations as for the RM[6] model have been observed (two 

transcritical bifurcations and a Hopf bifurcation), the stoichiometric model also has a 

saddle node of limit cycles. When nutrient input levels are low, the stoichiometric 

elimination model behavior will be significantly different from the nonstoichiometric 

one.   

 

Through numerical and analytic methods, we compute different equilibrium states for the 

model: no-life, producer monoculture and coexistence of the producer with the consumer. 

The result is close to Zimmerman’s work but provides more detail by identifying regions 

of high/low consumer stoichiometry, and high/med/low producer stoichiometry. 
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The rest of the paper is organized as follows. In section 2, we introduce some 

terminology of dynamical systems. Section 3 is the development of consumer-producer 

model. The models with/without stoichiometric elimination are discussed in section 4, 

and we present our 4D model in section 5. Section 6 is a discussion on the model 

implications for ecology. Summary, model limitations and future work are in sections 7 

and 8 

 

. 
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2  Dynamical Systems Terminology 

 
The following standard dynamical systems terms will be used throughout this paper [2]. 

Our dynamical systems model is in the form of an n-dimensional autonomous system of 

differential equations: �̇� = 𝑓(𝑥).  An equilibrium point, p, is a point in state space 

where all derivative functions in the system simultaneously equal 0; that is 𝑓(𝑥) = 0. As 

the rate of change of compartments all equals 0, any solution which starts at an 

equilibrium point will stay there. Equilibrium points can be classified as stable or 

unstable. Nearby solution are attracted to stable equilibrium while nearby solutions are 

mostly repelled from an unstable equilibrium point. The stability of equilibrium point is 

determined by the signs of the real part of eigenvalues of the linearization of the 

equations through evaluating Jacobian matrix at each of equilibrium points of the system. 

When the real parts of all the eigenvalues are negative the equilibrium point is stable and 

the equilibrium point is unstable if the real part of at least one eigenvalues is positive, 

A bifurcation is a qualitative change in the dynamical system when the system 

parameters are varied, and here we locate and describe 4 different kinds of bifurcations. 

A transcritical bifurcation occurs when two different equilibrium points come 

together at a bifurcation point and exchange the stability when they pass through each 

other. The location of possible transcritical bifurcation can be determined where an 

eigenvalue of the Jacobian matrix evaluated at equilibrium equals 0. 

A Hopf bifurcation occurs when a fixed point of a dynamical system loses stability 

as a pair of complex conjugate eigenvalues of the linearization around the equilibrium 

point crosses the imaginary axis of the complex plane. A supercritical Hopf bifurcation 

occurs when a stable spiral changes to an unstable spiral surrounded by limit cycle. That 

means before the Hopf bifurcation solutions spiral into the equilibrium. After Hopf 

bifurcation, solutions near the equilibrium points spiral out to the limit cycle and 

solutions starting outside the limit cycle spiral in toward the limit cycle. 

A subcritical Hopf bifurcation occurs when an unstable limit cycle surrounding a 

stable equilibrium point shrinks around the equilibrium point making it unstable. Before 

http://en.wikipedia.org/wiki/Fixed_point_(mathematics)�
http://en.wikipedia.org/wiki/Dynamical_system�
http://en.wikipedia.org/wiki/Complex_conjugate�
http://en.wikipedia.org/wiki/Eigenvalue�
http://en.wikipedia.org/wiki/Linearization�
http://en.wikipedia.org/wiki/Complex_plane�
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the subcritical Hopf bifurcation, solutions inside the unstable limit cycle spiral in toward 

the equilibrium point. After the subcritical Hopf bifurcation, all local solutions are 

repelled away from the unstable equilibrium point.  

The location of potential Hopf bifurcation points can be found by determining where 

the real part of a pair of complex eigenvalues of the Jacobian matrix evaluated at the 

equilibrium point equals zero. 

A saddle-node bifurcation of equilibrium points occurs when a pair of equilibrium 

points is destroyed or created. As a parameter is varied, two equilibrium points move 

toward each other, collide and annihilate each other. At bifurcation, there is a single 

equilibrium with a zero eigenvalue.  

A Saddle node of limit cycles occurs when a pair of limit cycles is destroyed (or 

created). As a parameter is varied, two limit cycles move toward each other, collide, and 

annihilate each other.  
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3 Model Development  

We start from a slightly generalized version of Zimmermann’s stoichiometric elimination 

model[8]. That model starts with logistic growth of the producer and a Holling-type-II 

predation function. It introduces stoichiometric effects by assuming consumer biomass 

production requires a fixed ratio of nutrient to carbon. Whenever this ratio varies from 

the target ratio, whichever is in excess is eliminated.  

 

More specifically, following Zimmermann we include the effect of food quality, by 

making the following stoichiometric assumptions. We intend that consumers tend toward 

a fixed nutrient to carbon ratio,𝜃𝑐, and producers tend toward a range of possible nutrient 

to carbon ratios, 𝜃3 < 𝑝:𝑃 < 𝜃4. 

 

If consumers have  𝑐:𝐶 > 𝜃𝑐 , they eliminate excess nutrient. If consumers 

have 𝑐:𝐶 < 𝜃𝑐, they eliminate excess carbon. The rate of elimination is proportional to 

the distance from the current ratio to the optimal ratio.  The proportionality constant is a 

parameter we vary in this study. 

 

If producers have 𝑝:𝑃 > 𝜃4, they eliminate only nutrient at a rate proportional to the 

distance from the current ratio to 𝜃4. If producers have 𝑝:𝑃 < 𝜃3, they eliminate only 

carbon at a rate proportional to the distance from the current ratio to 𝜃3. In between 𝜃3 

and 𝜃4, they neither eliminate carbon nor nutrient. In this study, we keep track of the 

stoichiometry of the producer, but we simplify the model behavior because producers do 

not eliminate either excess carbon or nutrient. Equivalently, we set the elimination rates 

for the producer to zero. 

 

These assumptions give six possible cases: 

1. High nutrient consumer, mid nutrient producer 𝑐
𝐶

> 𝜃𝑐 and 𝜃3 < 𝑝
𝑃

< 𝜃4 

2. High nutrient consumer, low nutrient producer 𝑐
𝐶

> 𝜃𝑐 and 𝑝
𝑃

< 𝜃3 
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3. High nutrient consumer, high nutrient producer 𝑐
𝐶

> 𝜃𝑐 and 𝑝
𝑃

> 𝜃4 

4. Low nutrient consumer, mid nutrient producer 𝑐
𝐶
≤ 𝜃𝑐 and 𝜃3 ≤

𝑝
𝑃
≤ 𝜃4 

5. Low nutrient consumer, high nutrient producer 𝑐
𝐶
≤ 𝜃𝑐 and 𝑝

𝑃
> 𝜃3 

6. Low nutrient consumer, high nutrient producer 𝑐
𝐶
≤ 𝜃𝑐 and 𝑝

𝑃
≥ 𝜃4 

For the parameter sets we considered, we only observed cases 1,3,4,6.  

 

For convenience, we will use the following notation in the model 

 

(𝑥)+ = �𝑥  𝑖𝑓 𝑥 ≥ 0
0  𝑖𝑓 𝑥 < 0

� 

The full 6D model is given here: 
𝑑𝑃
𝑑𝑡

= 𝑏𝑃 − 𝑙𝑃2 −
𝑚𝑃
ℎ + 𝑃

· 𝐶 − 𝑑𝑃𝑃 −𝑚1(𝑃 −
𝑝
𝜃3

)+  

𝑑𝑝
𝑑𝑡

= µ𝑃𝑠 − 𝑑𝑃𝑝 −
𝑝
𝑃

·
𝑚𝑃
ℎ + 𝑃

𝐶 −𝑚3(𝑝 − 𝜃4𝑃)+ 

𝑑𝐶
𝑑𝑡

= 𝑒𝑐 ·
𝑚𝑃
ℎ + 𝑃

· 𝐶 − 𝑑𝑒𝐶 − 𝑑𝐶𝐶 −𝑚2(𝐶 −
𝑐
𝜃𝑐

)+  

𝑑𝑐
𝑑𝑡

= 𝑒𝑛 ·
𝑚𝑃
ℎ + 𝑃

· 𝐶
𝑝
𝑃
− 𝑑𝑒𝑐 − 𝑑𝐶𝑐 − 𝑚4(𝑐 − 𝜃𝑐𝐶)+ 

𝑑𝑆
𝑑𝑡

= 𝑑𝑃𝑃 + 𝑑𝐶𝐶 − 𝑑𝑠𝑆 + (1 − 𝑒𝑐) ·
𝑚𝑃
ℎ + 𝑃

· 𝐶 + 𝑚1(𝑃 −
𝑝
𝜃3

)+ + 𝑚2(𝐶 −
𝑐
𝜃𝑐

)+ 

𝑑𝑠
𝑑𝑡

= 𝑑𝐶𝑐 + 𝑑𝑃𝑝 + 𝐼𝑁 − 𝑑𝑠𝑠 − µ𝑃𝑠 + (1 − 𝑒𝑛)𝐶 ·
𝑝
𝑃

·
𝑚𝑃
ℎ + 𝑃

+ 𝑚3(𝑝 − 𝜃4𝑃)+ + 

           𝑚4(𝑐 − 𝜃𝑐𝐶)+ 
 

where 

Phase variables are: 

𝑃 =density of carbon of producer in environment 

𝑝 =density of nutrient of producer in environment 

𝐶 =density of carbon of consumer in environment 

𝑐 =density of nutrient of producer in environment 
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S= density of carbon in sediment 

s= density of nutrient in sediment 

 

Parameters: 

𝑏 = growth rate coefficient of the producer without self limitation 

l = coefficient of self limitation of the producer 

𝑚 = the consumer’s maximum ingestion rate  

ℎ =  the consumer’s ingestion rate half saturation constant  

𝑑𝑃= coefficient of the producer death rate 

𝑒𝑐= maximum consumer carbon consumption efficiency 

𝑒𝑛= maximum consumer nutrient consumption efficient 

𝑑𝑒= coefficient of consumer export rate 

𝑑𝐶= coefficient of consumer death rate 

𝑑𝑠= coefficient sediment export rate  

µ = producer nutrient uptake rate  

𝐼𝑁= nutrient input rate 

𝜃𝑐 = target c: C in consumer  

𝜃3 = minimum target p: P in producer 

𝜃4 = maximum target p: P in producer 

𝑚1 = producer carbon elimination rate when p: P is less than θ3 

𝑚2 = consumer carbon elemination rate when c: C is less than θc 

𝑚3 = producer carbon elimination rate when p: P is less than θ4 

𝑚4 = consumer carbon elemination rate when c: C is greater than θc 

 

Terms: 

𝑏𝑝 − 𝑙𝑝2 is the logistic growth rate of the producer on its own 
𝑚𝑃
ℎ+𝑃

· 𝐶 is the rate of carbon taken from producer by the consumer 

𝑑𝑃𝑝 is the death rate for the producer 

𝑒𝑐 · 𝑚𝑃
ℎ+𝑃

· 𝐶 is the rate that the consumer ingests food from the producer 
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𝑑𝑒𝐶 is the export rate of the consumer 

𝑑𝐶𝐶 is the death rate for the consumer 

𝑑𝑠𝑆 is the export rate of the sediment  

µ𝑃𝑠 is the uptake rate of nutrient from the sediment by the producer 

𝑑𝑃𝑝 is the rate of nutrient going into the sediment due to the death of the producer 
𝑝
𝑃

· 𝑚𝑃
ℎ+𝑃

· 𝐶 is the rate of nutrient taken from the producer by the consumer 

𝑒𝑛 · 𝑚𝑃
ℎ+𝑃

· 𝐶 𝑝
𝑝
 is the rate of nutrient ingested by the consumer from the producer 

𝑑𝑒𝑐 is the export rate of consumer nutrient 

𝑑𝐶𝑐 is the rate of nutrient going to the sediment due to consumer death 

𝑑𝑠𝑠 is the rate of sediment nutrient leaving the system 

(1 − 𝑒𝑐) · 𝑚𝑃
ℎ+𝑃

· 𝐶 is the rate at which carbon is taken up by the consumer but not 

ingested 

(1 − 𝑒𝑛) · 𝑚𝑃
ℎ+𝑃

· 𝐶 𝑝
𝑃
 is the rate at which nutrient is taken up by the consumer but not 

ingested 
𝑚1
𝜃3

(𝜃3𝑃 − 𝑝)+ is the elimination rate of excess producer carbon when p: P is too low 

𝑚2
𝜃𝑐

(𝜃𝑐𝐶 − 𝑐)+ is the elimination rate of excess consumer carbon when c: C is too low 

𝑚3(𝑝 − 𝜃4𝑃)+ is the elimination rate of excess producer nutrient when p: P is too high 

𝑚4(𝑐 − 𝜃𝑐𝐶)+ is the elimination rate of excess producer carbon when c: C is too high 

 
Producer and Consumer carbon & nutrient Flow  

          Carbon flow                            Nutrient flow 
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4 Analysis of Model  

4.1 The model without Stoichiometric Elimination 

We start our model analysis from Zimmermann’s stoichiometric elimination model[7]. 

The model without stoichiometric elimination is: 
𝑑𝑃
𝑑𝑡

= 𝑏𝑃 − 𝑙𝑃2 −
𝑚𝑃
ℎ + 𝑃

· 𝐶 − 𝑑𝑃𝑃 

𝑑𝑝
𝑑𝑡

= µ𝑃𝑠 − 𝑑𝑃𝑝 −
𝑝
𝑃

·
𝑚𝑃
ℎ + 𝑃

· 𝐶 

𝑑𝐶
𝑑𝑡

= 𝑒𝑐 ·
𝑚𝑃
ℎ + 𝑃

· 𝐶 − 𝑑𝑒𝐶 − 𝑑𝐶𝐶 

𝑑𝑐
𝑑𝑡

= 𝑒𝑛 ·
𝑚𝑃
ℎ + 𝑃

· 𝐶
𝑝
𝑃
− 𝑑𝑒𝑐 − 𝑑𝐶𝑐 

𝑑𝑆
𝑑𝑡

= 𝑑𝑃𝑃 + 𝑑𝐶𝐶 − 𝑑𝑠𝑆 + (1 − 𝑒𝑐) ·
𝑚𝑃
ℎ + 𝑃

· 𝐶 

𝑑𝑠
𝑑𝑡

= 𝑑𝐶𝑐 + 𝑑𝑃𝑝 + 𝐼𝑁 − 𝑑𝑠𝑠 − µ𝑃𝑠 + (1 − 𝑒𝑛) ·
𝑚𝑃
ℎ + 𝑃

· 𝐶 ·
𝑝
𝑃

 

 

Equilibrium Analysis: 

Through setting 𝑑𝑃
𝑑𝑡

= 𝑑𝐶
𝑑𝑡

= 𝑑𝑐
𝑑𝑡

= 𝑑𝑝
𝑑𝑡

= 𝑑𝑠
𝑑𝑡

= 0, we can find the system equilibria.  There 

are three types which we describe below.  We used Mathematica for some of the 

computations.  

 

No life equilibrium: 

The no-life equilibrium is  

(𝑃,   𝑝,   𝐶,   𝑐,   𝑆,   𝑠) = � 0,   0,   0,   0,   0,   
𝐼𝑁
𝑑𝑠
� 

 

Monoculture equilibrium: 

When C=0, P ≠ 0, the solution under monoculture situation is:  
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(𝑃,   𝑝,   𝐶,   𝑐,   𝑆,   𝑠) = (
𝑏 − 𝑑𝑃

𝑙
,   

µ(𝑏 − 𝑑𝑃)𝑠
𝑙𝑑𝑃

,   0,   0,   
𝑑𝑃(𝑏 − 𝑑𝑃)

𝑙𝑑𝑠
,   
𝐼𝑁
𝑑𝑠

) 

 

Coexistence equilibrium: 

When P ≠ 0 and C ≠ 0 

The coexistence solution with explicit form (with the help of Mathematica) of parameters 

is: 

 

𝑃:  
(𝑑𝑒 + 𝑑𝐶)ℎ

𝑒𝑐𝑚 − 𝑑𝐶 − 𝑑𝑒
 

𝑝:  
ℎ𝐼𝑁𝜇(𝑑𝐶 + 𝑑𝑒)(𝑑𝐶 + 𝑑𝑟 −𝑚𝑒𝑐)

−(𝑏 + ℎ𝑙)𝑑𝐶2𝑑𝑠 − 𝑏𝑚2𝑑𝑠𝑒𝑐2 − 𝑑𝑒2((𝑏 + ℎ𝑙)𝑑𝑠 − ℎ𝜇(𝑏 + ℎ𝑙 − 𝑑𝑝)𝑒𝑛) + 𝑚𝑑𝑒𝑒𝑐((2𝑏 + ℎ𝑙)𝑑𝑠 + ℎ𝜇(−𝑏 + 𝑑𝑝)𝑒𝑛) + 𝑑𝐶((2𝑏 + ℎ𝑙)𝑚𝑑𝑠𝑒𝑐 + 𝑑𝑟(−2(𝑏 + ℎ𝑙)𝑑𝑠 + ℎ𝜇(𝑏 + ℎ𝑙 − 𝑑𝑝)𝑒𝑛)) 

𝐶: (𝑒𝑐ℎ) ·
(𝑑𝑃 − 𝑏)(𝑑𝑒 + 𝑑𝐶 − 𝑒𝑐𝑚) − ℎ𝑙(𝑑𝑒 + 𝑑𝐶)

(𝑑𝑒 + 𝑑𝐶 − 𝑒𝑐𝑚)2
 

𝑐:  
ℎ𝐼𝑁𝜇�𝑑𝐶�𝑏 + ℎ𝑙 − 𝑑𝑝� + @�𝑏 + ℎ𝑙 − 𝑑𝑝�𝑑𝑒 + 𝑚�−𝑏 + 𝑑𝑝�𝑒𝑐�𝑒𝑛

−(𝑏 + ℎ𝑙)𝑑𝐶2𝑑𝑠 − 𝑏𝑚2𝑑𝑠𝑒𝑐2 − 𝑑𝑒2 �(𝑏 + ℎ𝑙)𝑑𝑠 − ℎ𝜇�𝑏 + ℎ𝑙 − 𝑑𝑝�𝑒𝑛�+ 𝑚𝑑𝑒𝑒𝑐 �(2𝑏 + ℎ𝑙)𝑑𝑠 + ℎ𝜇�−𝑏 + 𝑑𝑝�𝑒𝑛�+ 𝑑𝐶 �(2𝑏 + ℎ𝑙)𝑚𝑑𝑠𝑒𝑐 + 𝑑𝑒�−2(𝑏 + ℎ𝑙)𝑑𝑠 + ℎ𝜇�𝑏 + ℎ𝑙 − 𝑑𝑝�𝑒𝑛��
 

 

𝑆: −
ℎ �(𝑏 + ℎ𝑙)𝑑𝐶2 + 𝑑𝑒 �𝑚𝑒𝑐�−𝑏 + �𝑏 − 𝑑𝑝�𝑒𝑐� + 𝑑𝑒�𝑏 + ℎ𝑙 − �𝑏 + ℎ𝑙 − 𝑑𝑝�𝑒𝑐�� − 𝑑𝐶 �𝑏𝑚𝑒𝑐 + 𝑑𝑟�−2(𝑏 + ℎ𝑙) + �𝑏 + ℎ𝑙 − 𝑑𝑝�𝑒𝑐���

𝑑𝑠(𝑑𝐶 + 𝑑𝑒 −𝑚𝑒𝑐)2  

𝑠: 
𝐼𝑁(𝑑𝐶 + 𝑑𝑒 −𝑚𝑒𝑐)�(𝑏 + ℎ𝑙)𝑑𝐶 + (𝑏 + ℎ𝑙)𝑑𝑒 − 𝑏𝑚𝑒𝑐�

(𝑏 + ℎ𝑙)𝑑𝐶2𝑑𝑠 + 𝑏𝑚2𝑑𝑠𝑒𝑐2 + 𝑑𝑒2 �(𝑏 + ℎ𝑙)𝑑𝑠 − ℎ𝜇�𝑏 + ℎ𝑙 − 𝑑𝑝�𝑒𝑛� − 𝑚𝑑𝑒𝑒𝑐 �(2𝑏 + ℎ𝑙)𝑑𝑠 + ℎ𝜇�−𝑏 + 𝑑𝑝�𝑒𝑛�+ 𝑑𝐶 �−(2𝑏 + ℎ𝑙)𝑚𝑑𝑠𝑒𝑐 + 𝑑𝑒�2(𝑏 + ℎ𝑙)𝑑𝑠 − ℎ𝜇�𝑏 + ℎ𝑙 − 𝑑𝑝�𝑒𝑛��
 

 

Bifurcation analysis: 

Based on above analysis, there is a transcritical bifurcation from the no life to the 

monoculture equilibrium at b=𝑑𝑃.  

When 0 < 𝑏 < 𝑑𝑃, there is no life: 𝑃 = 𝐶 = 0. 

 

There is a second transcritical bifurcation – at 𝑏 = 𝑑𝑃 + ℎ𝑙(𝑑𝑒+𝑑𝐶)
𝑒𝑐𝑚−𝑑𝑒−𝑑𝐶

 (Determined by 

setting C equals 0 in the coexistence solution and solving for b.   

When 𝑑𝑃 < 𝑏 < 𝑑𝑃 + ℎ𝑙(𝑑𝑒+𝑑𝐶)
𝑒𝑐𝑚−𝑑𝑒−𝑑𝐶

, the producer monoculture is stable: 

𝑃 = 𝑏−𝑑𝑃
𝑙

 and 𝐶 = 0 

 

When 𝑏 > 𝑑𝑃 + ℎ𝑙(𝑑𝑒+𝑑𝐶)
𝑒𝑐𝑚−𝑑𝑒−𝑑𝐶

, the coexistence equilibrium becomes stable:  

𝑃 =
(𝑑𝑒 + 𝑑𝐶)ℎ

𝑒𝑐𝑚 − 𝑑𝐶 − 𝑑𝑒
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𝐶 = 𝑒𝑐ℎ ·
(𝑑𝑃 − 𝑏)(𝑑𝑒 + 𝑑𝐶 − 𝑒𝑐𝑚) − ℎ𝑙(𝑑𝑒 + 𝑑𝐶)

(𝑑𝑒 + 𝑑𝐶 − 𝑒𝑐𝑚)2
 

 

Coexistence persists until a Hopf bifurcation causes the birth of periodic orbit. 

The Hopf bifurcation is located at: 

𝑏 = 𝑑𝑃 +
ℎ𝑙𝑑𝐶

𝑚𝑒𝑐 − 𝑑𝐶 − 𝑑𝑒
+

ℎ𝑙𝑑𝑠
𝑚𝑒𝑐 − 𝑑𝐶 − 𝑑𝑒

+
ℎ𝑙𝑚(𝑑𝐶 + 2𝑑𝑒 − 𝑑𝑠)𝑒𝑐

(𝑑𝐶 + 𝑑𝑒)(𝑚𝑒𝑐 − 𝑑𝐶 − 𝑑𝑒)
 

 

 

Numerical Results 

 

As in the Zimmermann stoichiometric elimination model, the numerical values of 

parameters we set are l = 0.05, dP = 0.1, ec = 0.8, en = 0.9, m = 0.5, h = 0.5, de =

0.1, dC = 0.15, ds = 0.3, µ = 0.2, m1 = m2 = m3 = m4 = 1, θc = 0.031, θ3 =

0.0038, θ4 = 0.05  

 

IN vs b Bifurcation Diagrams 

 
 

Description: 

5 

6 
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8 
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11 

12 

IN 

b 

1 2 

3

 
  

4 

9 
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The above picture is the IN vs b plane when m2=m4 = 10. There are three vertical 

lines, the blue one (b=0.1) is the first transcritical bifurcation, the dividing line between 

no-life and monoculture. It means when crossing this line, some producer starts to exist in 

this system but not the consumer. The second vertical line (b=0.14167, yellow) is also a 

transcritical bifurcation and is the dividing line between monoculture and 

producer-consumer coexistence. It means when crossing that line, consumer and producer 

can coexist in the system and solutions approach the coexistence equilibrium. The last 

vertical line (b=0.2083, red) is the Hopf bifurcation. It’s the cutoff line between 

equilibrium coexistence and periodic coexistence. The population of the producer and 

consumer oscillate in a stable limit cycle instead of converging to an attracting 

equilibrium after crossing the third vertical line.   

In the monoculture area the two horizontal lines separate the regions of high to 

medium and medium to low levels of producer’s stoichiometry. On the upper horizontal 

line p:P equals 0.05, on the lower horizontal line p:P equals 0.0038. That means the 

points in the area above the top horizontal line correspond to high nutrient . for producer 

defined by p:P > 0.05. The points in the area between two lines correspond to medium 

nutrient levels for the producer defined by 0.05 > p:P > 0.0038. The points of bottom area 

correspond to low nutrient levels defined by p:P < 0.0038.  

In the coexistence regions, there are three upward sloping lines. The upper and 

lower lines separate high-medium producer stoichiometry and medium-low producer 

stoichiometry (p:P = 0.05 & p:P = 0.0038), while the middle line represents consumer 

stoichiometry exactly at its target ratio (c:C=0.031). The points above this line have high 

nutrient levels for the consumer, below are low consumer nutrient levels. The reason the 

latter parts of these lines are dashed is because they represent classification of 

stoichiometry at equilibrium, but in the periodic regions, the orbits are not at equilibrium; 

the stoichiometry of P and C can cross the stoichiometric classification boundaries. So 

the corresponding p:P and c:C sometimes crosses dividing lines and sometimes not. More 

detail will be in the time series analysis. 

The software used here is Mathematica: Following the above calculation, we know 

first transcritical bifurcation is located at b=0.1. The second transcritical and Hopf 
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bifurcations are at b=0.14167 and b=0.2083. For high and low producer nutrient ratio 

dividing lines, we set p:P=0.05 and p:P=0.0038 and used Mathematica to get the function 

of p:P=0.05 and p:P=0.0038 in the form of b versus IN. For consumer carbon ratio 

dividing line, we use same method to set c:C=0.031 and use Mathematica to get the 

solution in the form of IN as a function of b. 

Time series analysis 

According to different nutrient levels and bifurcations, the IN vs b bifurcation 

diagram is divided into different regions. We pick one representative point from each 

region to perform time series analysis. 

 

Producer and Consumer 

The first set of time series is for producer and consumer carbon in each region. Blue 

represents the population of the producer and red the population of the consumer. Point 1 

is picked in the no life region, so both producer and consumer die out. Points 2, 3 and 4 

are in monoculture areas with different nutrient levels, so the consumer of these points 

still dies out. Points 5, 6, 7 and 8 are in the stable coexistence equilibrium area, where 

both producer and consumer stably persist. We can observe that both producer and 

consumer approach stable equilibrium with time increasing. The last four points 9, 10, 11 

and 12 are in the periodic coexistence area. These points have periodic solutions so the 

population of producer and consumer oscillate and never converge to equilibrium.  
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Producer Stoichiometry 

The second set of time series is for producer stoichiometry: the blue curve stands for 

the ratio of p:P.  The corresponding parameter values chosen are the same as those used 

for the first set of time series above. It starts from point 2 as there is no life at point 1 so p 

and P are both 0. The horizontal green lines stand for high nutrient to carbon standard for 

producer (p:P=0.05) and low nutrient to carbon standard for producer (p:P=0.0038). The 

middle black one is for consumer nutrient to carbon ratio (c:C=0.031) and we just add it 

here for comparison with later bifurcation diagrams. 

The first three points 2, 3 and 4 are from the monoculture area. 2 is in high nutrient 

of producer so the blue curve stays above the green line. 3 belongs to medium nutrient 

level of producer so the blue curve stays between the two green lines which are high 

standard and low for producer nutrient. 4 is in low level so the blue curve stays below the 

bottom green level. It also applies for the next four points 5, 6, 7 and 8. 5 is at high 

nutrient for producer, 6 and 7 for medium and 8 for low. 
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The last four points 9, 10, 11 and 12 are from the periodic coexistence area. 9 is in 

high producer nutrient, 10 and 11 are in medium producer nutrient, 12 is low producer 

nutrient. But as their solutions are periodic points, their producer nutrient to carbon ratio 

classification does not necessarily stay constant. The blue curve bounces up and down. 

Some stay in the supposed area like 9 and 11, but some just keep bouncing on the 

dividing line.  

  

 
 

Consumer Stoichiometry 

The third set of time series is for evaluating consumer stoichiometry. The red curve 

is the result of c:C of the points in the first time series analysis. Time series analysis starts 

from point 5 as in monoculture and no-life c and C equal 0. First 4 points 5, 6, 7, 8 are in 

stable coexistence stage. Point 5 and 6 are in high consumer nutrient so the red curve 

stays above the black horizontal line (c:C = 0.031), while 7 and 8 have low consumer 

nutrient so that red curve stay below black horizontal line. The last 4 points are from 

periodic points, We can also observe that some cross the dividing line and some do not, 

which is consistent with the property of periodic points. 
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4.2 Model with Stoichiometric Elimination 

Zimmermann’s stoichiometric elimination model is given: 
𝑑𝑃
𝑑𝑡

= 𝑏𝑃 − 𝑙𝑃2 −
𝑚𝑃
ℎ + 𝑃

· 𝐶 − 𝑑𝑃𝑃 −𝑚1(𝑃 −
𝑝
𝜃3

)+  

𝑑𝑝
𝑑𝑡

= µ𝑃𝑠 − 𝑑𝑃𝑝 −
𝑝
𝑃

·
𝑚𝑃
ℎ + 𝑃

· 𝐶 −𝑚3(𝑝 − 𝜃4𝑃)+ 

𝑑𝐶
𝑑𝑡

= 𝑒𝑐 ·
𝑚𝑃
ℎ + 𝑃

· 𝐶 − 𝑑𝑒𝐶 − 𝑑𝐶𝐶 −𝑚2(𝐶 −
𝑐
𝜃𝑐

)+  

𝑑𝑐
𝑑𝑡

= 𝑒𝑛 ·
𝑚𝑃
ℎ + 𝑃

· 𝐶
𝑝
𝑃
− 𝑑𝑒𝑐 − 𝑑𝐶𝑐 − 𝑚4(𝑐 − 𝜃𝑐𝐶)+ 

𝑑𝑆
𝑑𝑡

= 𝑑𝑃𝑃 + 𝑑𝐶𝐶 − 𝑑𝑠𝑆 + (1 − 𝑒𝑐) ·
𝑚𝑃
ℎ + 𝑃

· 𝐶 + 𝑚1(𝑃 −
𝑝
𝜃3

)+ + 𝑚2(𝐶 −
𝑐
𝜃𝑐

)+  

𝑑𝑠
𝑑𝑡

= 𝑑𝐶𝑐 + 𝑑𝑃𝑝 + 𝐼𝑁 − 𝑑𝑠𝑠 − µ𝑃𝑠 + (1 − 𝑒𝑛) ·
𝑚𝑃
ℎ + 𝑃

· 𝐶 ·
𝑝
𝑃

+ 𝑚3(𝑝 − 𝜃4𝑃)+ + 

          𝑚4(𝑐 − 𝜃𝑐𝐶)+ 

 

Equilibria 

As in the nonstoichiometric case, there are three types of equilibria: no life, producer 

monoculture, and coexistence.  

 

No-Life Equilibrium 
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Through setting 𝑑𝑃
𝑑𝑡

= 𝑑𝐶
𝑑𝑡

= 𝑑𝑐
𝑑𝑡

= 𝑑𝑝
𝑑𝑡

= 𝑑𝑠
𝑑𝑡

= 0, we can find the first equilibrium under no 

life situation is  

(𝑃,   𝑝,   𝐶,   𝑐,   𝑆,   𝑠) = � 0,   0,   0,   0,   0,   
𝐼𝑁
𝑑𝑠
� 

 

Monoculture Equilibrium: 

Setting 𝐶 = 𝑐 = 0 , we have monoculture equilibrium in three cases 

Case 1 Low nutrient: 

When 𝑝 − 𝜃3𝑃 < 0,𝑚3(𝑝 − 𝜃4𝑃)+ = 0,𝑚1
𝜃3

(𝜃3𝑃 − 𝑝)+ = 𝑚1
𝜃3

(𝜃3𝑃 − 𝑝) 

The model reduces to 
𝑑𝑃
𝑑𝑡

= 𝑏𝑃 − 𝑙𝑃2 − 𝑑𝑃𝑃 −
𝑚1

𝜃3
(𝜃3𝑃 − 𝑝) 

𝑑𝑝
𝑑𝑡

= µ𝑃𝑠 − 𝑑𝑃𝑝 

𝑑𝑆
𝑑𝑡

= 𝑑𝑃𝑃 − 𝑑𝑠𝑆 + 𝑚1(𝑃 −
𝑝
𝜃3

) 

ds
dt

= dPp + IN − dss − µPs 

Then the monoculture equilibrium when it is under low nutrient situation is: 

(P, p, S, s)

= (
b − dP − m1 + m1µIN

θ3dPds
l

,   
µ IN�m1µIN + bθ3dPds − mθ3dPds + θ3dP

2ds�
ldP

2ds
2θ3

,  

−
(−INm1μ + m1θ3dpds + θ3dp2ds)(−INm1μ + (−b + m1)θ3dpds + θ3dp2ds)

lθ3
2dp2ds3

,
IN
ds

) 

 0 <  𝐼𝑁 <
θ3(b + m1 − dp)dpds

m1μ
 

 

Case 2 High nutrient: 

When nutrient is at a high level, means 𝑝 − 𝜃4𝑃 > 0,𝑚3(𝑝 − 𝜃4𝑃)+ = 𝑚3(𝑝 − 𝜃4𝑃),
𝑚1
𝜃3

(𝜃3𝑃 − 𝑝)+ = 0 
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The model reduces to 
𝑑𝑃
𝑑𝑡

= 𝑏𝑃 − 𝑙𝑃2 − 𝑑𝑃𝑃 

𝑑𝑝
𝑑𝑡

= µ𝑃𝑠 − 𝑑𝑃𝑝 − 𝑚3(𝑝 − 𝜃4𝑃) 

𝑑𝑆
𝑑𝑡

= 𝑑𝑃𝑃 − 𝑑𝑠𝑆 

𝑑𝑠
𝑑𝑡

= 𝑑𝑃𝑝 + 𝐼𝑁 − 𝑑𝑠𝑠 − µ𝑃𝑠 + 𝑚3(𝑝 − 𝜃4𝑃) 

Then the monoculture equilibrium when nutrient is at a high level is: 

(𝑃,   𝑝, 𝑆,   𝑠) = (𝑏−𝑑𝑃
𝑙

,   
�µ 𝐼𝑁𝑑𝑠

+𝑚3𝜃4�(𝑏−𝑑𝑃)

𝑙(𝑑𝑃+𝑚3) , �𝑏−𝑑𝑝�𝑑𝑝
𝑙𝑑𝑠

,   𝐼𝑁
𝑑𝑠

)  𝐼𝑁 > 𝑑𝑃𝑑𝑠𝜃4
µ

 

 

Case 3 Intermediate nutrient: 

When nutrient is at an intermediate level, means 𝜃3𝑃 < 𝑝 < 𝜃4𝑃 ,𝑚3(𝑝 − 𝜃4𝑃)+ =
𝑚1
𝜃3

(𝜃3𝑃 − 𝑝)+ = 0 

The model will be exactly same as the model without stoichiometric elimination, the 

monoculture equilibrium is given: 

(𝑃,   𝑝, 𝑆, 𝑠) = (𝑏−𝑑𝑃
𝑙

,   µ(𝑏−𝑑𝑃)𝐼𝑁
𝑙𝑑𝑃 𝑑𝑠

, �𝑏−𝑑𝑝�𝑑𝑝
𝑙𝑑𝑠

, 𝐼𝑁
𝑑𝑠

)  

𝜃3(𝑏 + 𝑚1 − 𝑑𝑝)𝑑𝑝𝑑𝑠
𝑚1𝜇

< 𝐼𝑁 <
𝑑𝑃𝑑𝑠𝜃4

µ
 

 

Coexistence Equilibrium: 

We have not computed analytical expressions of equilibrim in all 6 cases of the 

coexistence stage, but the formulas for P and C from section 4.1 apply to cases 1 and 3 

from Section 3. 
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4.3 Bifurcation Diagram and time series analysis 

We now compute the bifurcation diagram and perform time series analysis on model with 

stoichiometric elimination when setting the elimination coefficient m2 = m4 = 10. For 

high nutrient, we use the formulas we computed above for the two transcritical 

bifurcations. Other bifurcation curves are computed with software Auto[1]. We use the 

same parameter values as above.   
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IN vs b Bifurcation Diagram (m2=m4 = 10) 

 

 
In IN vs b plane (m2=m4 = 10), the first transcritical bifurcation is the first vertical line 

(b=0.1) which is same non-stoichiometric model. The second transcritical and Hopf 

bifurcations, though their upper parts are still vertical lines (b=0.14167 & b=0.2083), but 

their lower part becomes the curve up to the right. The cut-off line (black) is where the 

equilibrium value of c:C=0.031. As when c:C > 0.031, m2(C − c
θc

)+ = 0, like the 

non-stoichiometric model, the differential equations for P and C decouple from the rest of 

the system. When c:C < 0.031, m2(C − c
θc

)+ > 0, this new term makes these two 

bifurcation curves head to the right; it leaves the part near the b axis as part of the 

monoculture area; that’s the reason the bottom line horizontal green line (p:P=0.0038) 

extends to the right. 

 

An interesting point is the existence of a small curve of saddle-node of limit cycles 

(purple). It connects to the Hopf curve. The region between these two curves is a bistable 

area. The points in this area have a special property that trajectories from different initial 

starting points can either approach a stable equilibrium or a periodic orbit. The lower 
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boundary of the bistable region, a saddle-node of limit cycles, is computed through 

AUTO[1] software. Due to periodic orbits on which the producer and consumer both pass 

very close to zero, AUTO[1] continuation failed when b was between 0.5 and 0.6. But we 

expect the curve continues. 

 

In order to compute the bifurcation diagram, we use AUTO[1] to compute the points on 

the transcritical, Hopf and saddle-node of limit cycles bifurcations when c: C < θc. 

When c: C ≥ θc , the model is the same for the carbon terms as the one without 

stoichiometric elimination whose bifurcation values we already computed above. After 

we compute the function corresponding to equilibria with c: C = θc in the form of IN as 

a function of b, which acts as a border line in this diagram, we combine the bifurcation 

curves we get from software when c: C < θc  and the result of the model without 

stoichiometry when c: C ≥ θc to form the whole bifurcation diagram. Note that there is a 

jump between the two parts of Hopf bifurcation which are connected along the c:C 

dividing line. This is caused by the nonsmoothness of the system due to the use of the 

``positive part’’ function. 

 

For the producer nutrient dividing line, we simply set p:P=0.05 and p:P=0.0038 and 

compute the equilibria through Mathematica in the both circumstances of c: C ≥ θc and 

c: C < θc. Then the result shows the high producer target stoichiometry level (p:P=0.05) 

is in the region where c: C ≥ θc,while the low producer target stoichioimetry level 

(p:P=0.0038) is in the region where c: C < θc.   

 

Time series analysis 

 

The IN vs b plane (m2 = m4 = 0) is divided it into different regions by the bifurcation 

curves and by the stoichiometric classification of the producer & consumer.. We pick one 

representative point from each region to show the resulting time series. 
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Producer and Consumer 

 
The first set of time series is for producer and consumer in different regions. The first 

point is from the no-life stage, so both producer (blue) and consumer (red) die out. The 

points of the second row are from the monoculture stage with different producer nutrient 

level. Points 5, 6 and 7 are in the stable coexistence equilibrium area while the next four 

points 8, 9, 10 and 11 are in the periodic coexistence area. The last two sub graphs 12a 

and 12b actually are time series for the same point 12 in the “bistability” area. We can 

observe that when changing initial starting point, solutions can either go to stable 

equilibrium or become periodic. And the amplitude of the oscillation is very high, almost 

driving the producer and consumer to extinction.      
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Producer stoichiometry 

 
The second set of time series is for producer stoichiometry. The blue curve stands for p:P 

of above points. The horizontal green lines stand for p:P=0.05 and p:P=0.0038. And the 

middle black lines are for c:C=0.031 and we just add it here for reference. We can 

observe among periodic points, some cross nutrient dividing lines while some do not. 12a 

and 12b are from point 12 in the bistability area; one as approaches a periodic solution 

and the other approaches equilibrium. 
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Consumer stoichiometry 

 
Time series analysis for consumer stoichiometry starts from point 5 as in the monoculture 

and no-life cases, both c and C equal 0. The next three points 5, 6, 7 are in the stable 

coexistence stage. The last four points are from the periodic orbit region. Some cross the 

black reference line and some stay on one side. 12a and 12b are from the same parameter 

point in the bistability area. One approaches a periodic solution and keeps crossing 

consumer nutrient dividing line, and the other one stays below the black line. 
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5 4-Dimensional Reduction  

We now try to reduce the 5-Dimensional system with stoichiometric elimination model to 

a 4-Dimensional system through letting m2 and m4 go to infinity. Recall that, for 

simplicity, we have set the producer elimination rates, m1 and m3, equal to 0. 

When m2 goes to infinity and c: C ≤ θc,  dC
dt

 goes to negative infinity, and the 

consumers will eliminate extra carbon more and more quickly.  

When m4 goes to infinity and c: C ≥ θc, 
dc
dt

 goes to negative infinity, and the 

consumers will eliminate extra nutrient more and more quickly..  

 

5.1 Development of the 4-Dimensional Model  

    We start from 5D system 

1. 𝑑𝑃
𝑑𝑡

= 𝑏𝑃 − 𝑙𝑃2 − 𝑚𝑃
ℎ+𝑃

· 𝐶 − 𝑑𝑃𝑃 

2. 𝑑𝑝
𝑑𝑡

= µ𝑃𝑠 − 𝑑𝑃𝑝 −
𝑝
𝑃

· 𝑚𝑃
ℎ+𝑃

· 𝐶 

3. 𝑑𝐶
𝑑𝑡

= 𝑒𝑐 · 𝑚𝑃
ℎ+𝑃

· 𝐶 − 𝑑𝑒𝐶 − 𝑑𝐶𝐶 −𝑚2(𝐶 − 𝑐
𝜃𝑐

)+ 

4. 𝑑𝑐
𝑑𝑡

= 𝑒𝑛 · 𝑚𝑃
ℎ+𝑃

· 𝑐 𝑝
𝑃
− 𝑑𝑒𝑐 − 𝑑𝐶𝑐 −𝑚4(𝑐 − 𝜃𝑐𝐶)+ 

5. 𝑑𝑠
𝑑𝑡

= 𝑑2𝑐 + 𝑑𝑃𝑝 + 𝐼𝑁 − 𝑑𝑠𝑠 − µ𝑃𝑠 + (1 − 𝑒𝑛) · 𝑚𝑃
ℎ+𝑃

· 𝐶 𝑝
𝑃

+ 𝑚4(𝑐 − 𝜃𝑐𝐶)+ 

Here we set m2 = m4 and let m4 → +∞, that means when θcC − c > 0, 𝑐 < θcC, and 

m2(C − c
θc

)+  goes to positive infinity. 

When θcC − c < 0, 𝑐 > θcC, and m4(c − θcC)+ goes to positive infinity.  

If the starting initial point is  θcC − c > 0, dC
dt
→ −∞ and C decreases until θcC = c 

WhenθcC − c < 0, then dc
dt
→ −∞ and c decreases until θcC = c 

The system will stabilize only when c = θcC. 
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As m2 and  m4 go to positive infinity, the system will eliminate whatever is in excess - 

carbon or nutrient – immediately, to stabilize the system at  θcC = c. That means the 

nutrient of the system must be proportional to the carbon in the system with the ratio θc. 

So in the differential equations for c and C: en · mP
h+P

· c p
P
− dec − dCc  must be 

proportional to ec · mP
h+P

· C − deC − dCC . dec + dCc  is already proportional to 

deC + dCC. When the arrival ratio en · mP
h+P

· c p
P
 : ec · mP

h+P
· C >  θc , there is excess 

nutrient arriving, so the system will eliminate excess nutrient and the arrival rate of 

carbon remains the same. When en · mP
h+P

· c p
P

 : ec · mP
h+P

· C  <  θc , the system will 

eliminate excess carbon, and will drag down the carbon arrival rate to en · mP
h+P

· c p
P

/ θc. 

In order to satisfy these two situations simultaneously, the arrival rate of carbon 

ec · mP
h+P

· C  will change to ec · mP
h+P

· C · min( enp
ecθCP

, 1) , and correspondingly, the 

elimination of excess carbon, (1 − en) · mP
h+P

· C p
P

 , will change to ec · mP
h+P

· C · θc ·

( enp
ecPθc

− 1)+ 

  

      

The result in our new 4D Model: 

1. 𝑑𝑃
𝑑𝑡

= 𝑏𝑃 − 𝑙𝑃2 − 𝑚𝑃
ℎ+𝑃

· 𝐶 − 𝑑𝑝𝑃 

2. 𝑑𝐶
𝑑𝑡

= 𝑒𝑐 · 𝑚𝑃
ℎ+𝑃

· 𝐶 · 𝑚𝑖𝑛( 𝑒𝑛𝑝
𝑒𝑐𝜃𝐶𝑃

, 1) − (𝑑𝐶 + 𝑑𝑒)𝐶 

3. 𝑑𝑝
𝑑𝑡

= µ𝑃𝑠 − 𝑑𝑝𝑝 −
𝑝
𝑃

· 𝑚𝑃
ℎ+𝑃

· 𝐶 

4. 𝑑𝑠
𝑑𝑡

= 𝑑𝐶𝑐 + 𝑑𝑝𝑝 + 𝐼𝑁 − 𝑑𝑠𝑠 − µ𝑃𝑠 + (1 − 𝑒𝑛) · 𝑚𝑃
ℎ+𝑃

· 𝐶 𝑝
𝑃

 + 𝑒𝑐 · 𝑚𝑃
ℎ+𝑃

· 𝐶 · 𝜃𝑐 ·

( 𝑒𝑛𝑝
𝑒𝑐𝑃𝜃𝑐

− 1)+ 
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5.2 IN vs b bifurcation diagram and time series analysis 

 
IN vs b Bifurcation Diagram 

 
 
The IN vs b bifurcation diagram for the 4D system is similar with the bifurcation diagram 

of the 5D stoichiometric model when m2=m4 = 10. The first transcritical bifurcation is 

the first vertical line when b equal 0.1. While the upper parts of second transcritical and 

Hopf bifurcations are vertical lines (b=0.14167 & b=0.2083), their lower parts change to 

the curves numerically computed with AUTO[1]. The black consumer stoichiometric 

reference line occurs when enp
ecPθc

= 1, which makes min � enp
ecθCP

, 1� = 1 and ( enp
ecPθc

−

1)+ = 0. Exactly on that line, our new model is the same as the non-stoichiometric model 

despite the change from 5D to 4D. And that cutoff line is same as c:C=0.031 in the 5D 

model. The 4D model’s bifurcation diagram also has a bistable area between lower parts 

of the second transcritical and the Hopf transcritical bifurcations, bounded by a 

saddle-node of limit cycles curve and the Hopf curve. 

1
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The numerical methods we used here is the same as what we used in the 5D model. We 

computed the line of 𝑒𝑛𝑝
𝑒𝑐𝜃𝐶𝑃

= 1 on the IN vs b plane as a border line, then combined the 

bifurcation curves computed from software (below the black reference line) and 

bifurcation obtained through analytic work (above the black reference line) to make the 

whole bifurcation diagram. 

 

Time series analysis 

Producer and consumer 

 
Here the blue represents producer and red is for consumer, the first point is in no-life 

stage. There points of second row are picked in monoculture stage with different 

producer nutrient level. The third row represents different parameter points in the stable 

coexistence area and the fourth row represents different parameter regions in the periodic 

coexistence area. The parameter for the final row 11a&11b are picked from point 11 in 

the bistability area. 
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Producer nutrient 

 
The second set of time series is for producer stoichiometry which is similar with 5D 

model when m2 = m4 = 10. The only difference is that the middle black lines are for 
enp
ecPθc

 exactly equals 1, we just add it here for reference. We can observe among periodic 

points, some cross stoichiometric classification lines while some do not. 11a and 11b are 

from point 11 in the bistability area. One approaches a periodic solution and the other 

approaches coexistence equilibrium 
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5.3 Varying Elimination Rates 

In order to provide another way to corroborate the process of developing 4D model in 

theoretical part, we managed to compute a series of IN vs b bifurcation diagrams of 5D 

model with different value of m2 and m4. We can observe the change of IN vs b 

bifurcation diagram with m2 and m4 increasing. 

       

 
 

When m2 = m4 = 10 , IN vs b bifurcation diagrams of 5D stoichiometric model 

( m2 = m4 = 10 ) and 4D model are almost the same. Further increase of 

m2and m4  results in almost no change in the corresponding bifurcation diagrams. This 

result is consistent with our model reduction as we allowed m2and m4  to approach 

infinity when developing our 4D model.  
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Second, since the elimination rate is increasing, we can see that the lower part of the 

bifurcation diagram (below the diagonal blue consumer stoichiometry reference line) 

changes from a vertical line to a sloping curve. At some value of m2 and m4, the second 

transcritical bifurcation curve ceases to reach the b axis anymore.  At a later value of 

m2and m4 the Hopf bifurcation curve also misses the b axis. As the second transcritical 

bifurcation curve (yellow) changes to a curve heading to the right, it will leave a 

monoculture region near the b axis., The low producer stoichiometry classification level 

becomes a horizontal line which extends to the right. 

 

 In general, when one starts from the 5D stoichiometric model with small m2and m4, 

the IN vs b bifurcation diagram is close to the 5D non-stoichiometric bifurcation diagram 

(m2 = m4=0), and as m2and m4 increases, the IN vs b bifurcation diagram approaches 

the 4D bifurcation diagram. 
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6 Ecological Implications 

6.1 Experimental Design 

The bifurcation diagram is also useful for practical experiments. For example, if we 

control the birth rate at 0.18 and increase the input of nutrient step by step. At initial time 

when we set IN equals 0, the system is in monoculture stage with low producer nutrient 

which is shown on the bifurcation diagram (m2 = m4 = 10). When we start to increase 

the input of nutrient, it’s still in monoculture stage but changed to medium producer 

nutrient level. With the increase of input of nutrient, the experiment goes through stable 

coexistence and periodic coexistence. The interesting part of this experiment is that after 

it enters the area of periodic coexistence, it will cross the “jump” part of Hopf bifurcation 

which is along nutrient cut off line of consumer and then back to stable coexistence. 

Finally, it will continue move up to high producer nutrient with monoculture behavior. 

 

6.2 Time Series Observation 

In IN vs b plane (m2=m4 = 10), points 10 and 12 are the most interesting because p:P 

oscillates between being above and below the standard consumer c:C. That means that 

along the stable limit cycle, the consumer must alternatively eliminate carbon (when p:P > 

standard c:C) and nutrient (when p:P > standard c:C). Therefore, at different points on the 

limit cycle the consumer is either adding nutrient to the sediment or causing carbon to be 

added to the sediment. 
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7   Model Limitations and Future Work  

There are, of course, many limitations due to the model’s simplifying assumptions. Some 

future work may be needed. Here we mention two of them 

 
1. First, when computing our IN vs b bifurcation diagrams and related time series, we 

didn’t eliminate excess producer nutrient. Though that part does not appear to be an 

important factor influencing the bifurcation diagram, it would be interesting to see 

how the bifurcation diagrams change when we put excess producer nutrient in it. 

 
2. Second, we noticed that in the periodic coexistence stage, some points keep 

crossing producer and consumer nutrient cutoff line and some not. We could 

investigate the border line in the bifurcation diagram between these two kinds of 

behaviors. 
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8 Summary 

The model developed and studied in this paper is a model of one producer and one 

consumer, altered to model the stoichiometric effects of food quality. Stoichiometric 

limitation is modeled by restricting the conversion efficiency from producer to consumer 

when the food quality is low. 

 

The main goal of our analysis has been to perform a bifurcation analysis to study 

enrichment. We located four primary bifurcations: TC1, TC2, Hopf, and a saddle-node of 

limit cycles. We computed nutrient to carbon ratios of the producer and consumer in 

different regions of the bifurcation diagram. We performed time series analysis on a 

representative point of each region to explain the classifications from our bifurcation 

diagrams. We observed the phenomenon of bistability, and periodic orbits along which 

the stoichiometric classification changes. We also observed that as the elimination rate 

increases, the behavior of the stoichiometric elimination model approaches the behavior 

of a lower dimensional model with a minimum function for its biomass conversion. 

Similar minimum functions have been used in previous studies.  

 

In summary, the behavior of producer and consumer model is quite different when 

introducing stoichiometric elimination.   
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