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Abstract

To explore the connection between the analytic and the nonanalytic complex dy-

namics, this paper studied a special case of the singularly perturbed quadratic map:

fβ,t(z) = z2 + t
β

z2
+ (1− t) β

z2

which can transit from nonanalytic to analytic by varying t from 0 to 1. Other variables

involved in this map are the dynamic variable z ∈ C and the main parameter β ∈ R.

Our investigation shows that this transition map has much richer behaviors than the end

point cases. The parameter space can be no longer subdivided into only four or three

regions as shown in the studies by Devaney and Bozyk respectively. Correspondingly,

in the dynamic plane, there also appear several new intermediate cases among which we

identified two transitions: a connected case where the filled Julia set is connected and

a disconnected case where the filled Julia set consists of infinitely many components.

This paper also pointed out that fβ,t(z) is semiconjugate to the four symbols shift map

for the disconnected case. This semiconjugacy provides a way to largely understand the

dynamical behaviors for the non escape points. Further study shows that the critical

set plays an important role in the construction of the filled Julia set. Therefore, the

transition of the critical set and its image set are also discussed in this paper. At the

end, we presented two sets of conjectures for the bounded critical orbits and the escape

critical orbits for future study.
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Chapter 1

Introduction

1.1 Background and Research Goals

The start of complex dynamics can trace back to 100 years ago[1], as Gaston Julia and

Pierre Fatou won the 1918 Grand Prize. Their main contributions were introducing

the normal family theory developed by Paul Montel into complex dynamics research.

This powerful tool provides a new viewpoint of the iteration procedure and therefore

divides the whole dynamic space into two categories. One is the so-called Julia set and

the other is the Fatou set. Intuitively, the Fatou set are all the points whose behaviors

are regular, or the points on which the iteration function family constitutes a normal

family[2]. The Julia set consists of the points whose behaviors are irregular. Obviously,

the Julia set is the complement of the Fatou set. This fundamental division turns out

to be very useful and insightful to understand the global behaviors of a complex map.

However, after Julia and Fatou solved the open question for the Grand Prize, there

was little progress in this area until the late 1970s, when Benoit Mandelbrot[3] generated

a fractal in the parameter plane by using the emerging computer technology. This set

is now named the Mandelbrot set after its discoverer. These fractal pictures are so

beautiful and interesting that many mathematicians were attracted to work on this area.

Since then, much significant progress has been made, and the area has produced several

Fields medalists, including John Milnor[4], whose book serves as the main reference for

the classical complex dynamics in this paper.

Classical complex dynamics mainly talks about the general properties of complex

1
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one-dimensional rational maps. Complete understanding of rational maps is a chal-

lenging goal. Therefore, from 2002, Robert Devaney[5, 6] started to work on a special

category of rational maps, the singular perturbations of the quadratic family. These

maps have some behaviors similar to the well-known quadratic family but they also

have many special characteristics brought by the singular perturbation term, such as

the trap door, the Sierpinski carpet[7, 8, 9] structure and the McMullen domain[10].

(a) Julia set is a Cantor set (λ = 0.175) (b) Julia set is a Sierpinski carpet (λ =

0.03 − 0.03i)

(c) Julia set is a Cantor set of circles (λ =

0.007 which is in the McMullen domain)

(d) The λ parameter plane

Figure 1.1: The escape trichotomy for the map f(z) = z3 + λ
z3
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He also expanded his study scope from quadratic maps to higher degree maps.

z2 +
ε

z
→ z2 +

λ

z2
→ zn +

λ

zm

in which ε ∈ R+, λ ∈ C, m,n ∈ Z. Note that the right arrows in this expression just

mean the evolution of the iteration formulas.

Devaney’s research shows that the behavior of critical orbits can determine a sur-

prising amount of information about the iteration map. One such result is the escape

trichotomy[11]. See section 1.2 for notation and definitions.

Theorem. Let Fλ(z) = zn + λ
zn and suppose the orbits of the free critical points tend

to ∞

(1) If υλ lies in Bλ, the J(Fλ) is a Cantor set.

(2) If υλ lies in Tλ, the J(Fλ) is a Cantor set of concentric simple closed curves, each

one of which surrounds the origin. All λs belonging to this case constitute the so-

called McMullen domain.

(3) In all other cases, J(Fλ) is a connected set, and if F kλ (υλ) ∈ Tλ where k ≥ 1, then

J(Fλ) is a Sierpiński curve.

Fig 1.1 shows these three typical Julia sets and the corresponding parameter set.

Although Devaney’s research is excellent, his theorem can not be generalized to non-

analytic maps. Actually, many of the theorems from the classical complex dynamics will

fail for the nonanalytic case. One reason is because nonanalytic maps no longer have a

complex derivative and then have critical curves instead of isolated critical points, which

makes the mapping properties extremely complicated. Therefore, for the nonanalytic

case, people were trying to find out other tools to investigate this case and understand

its dynamical behaviors.

One early such trial was done by Bruce Peckham[12] in 1998. In this research, he

investigated the bifurcation properties of the map f(z) = z2 + C + αz and identified

the evolution of “Arnold tongues” from bulb tangency points in the Mandelbrot set as

α transitions from zero to nonzero.

Another related trial was on an angle-doubling map which has the iteration formula

f(z) = (1 − λ + λ|z|2)( z
|z|)

2 + c. This case was explored by Stefanie Hittmeyer, Bernd
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Krauskopf and Hinke Osinga[13] in 2015. The advantage of this map is that it can

go from the standard analytic quadratic map to nonanalytic angle-doubling map by

varying λ from 1 to 0.

(a) Filled Julia set is empty (β = 0.25) (b) Filled Julia set is an annulus (β =

0.08)

(c) Filled Julia set is a Cantor set of cir-

cles (β = −0.09 − 0.09i which is in the

McMullen domain)

(d) The β parameter plane

Figure 1.2: The different dynamical behaviors of the map f(z) = z3 + β
z3

In 2013, Brett Bozyk and Bruce Peckham[14] studied an even nicer nonanalytic it-

eration map f(z) = zn + β
zn . This formula has a very good property: the radius can

be decoupled from the angle (but the angle is still related to the radius). This property
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actually reduced the original map down to a one dimensional “radius” map. The three

different classes of filled Julia sets as well as the parameter plane for this family are

shown in fig 1.2.

Since the analytic and the nonanalytic perturbations have many different characters,

we are curious about what happens during the transition between these two cases.

Thus we developed a new iteration formula which enables the perturbation to go from

nonanalytic to analytic. Here is the function:

f(z) = zn + t
α

zd1
+ (1− t) β

zd2

where t is a real number from 0 to 1, n, d1, d2 are positive integer, α, β are parameters.

For simplicity, this paper will just focus on the case when α = β ∈ R and n = d1 =

d2 = 2

fβ,t(z) = z2 + t
β

z2
+ (1− t) β

z2
(1.1)

Note that fig 1.1 and 1.2 were for n = d1 = d2 = 3. This is similar to the figures for

n = d1 = d2 = 2 except that in the complex analytic case, there is no McMullen domain.

Therefore, our main goal in this paper is to find out how the dynamical behavior

of f changes as the map goes from analytic to nonanalytic, more specifically, as t goes

from 1 to 0. Further, we would like to find out the connection between these changes

and the critical set escape properties. These preliminary explorations will help us to

better understand the roles that the critial set plays on the dynamical behaviors.

Here are the arrangements and contents of each chapter.

• Chapter 2 briefly presents the dynamical behaviors of f restricted to the reals.

Research on this case turns out to be very useful in the more general case: z ∈ C.

• In Chapter 3 the critical set of f and its images are computed. We also found the

analytic expression of the critical set by using the “z − z coodinates”. Based on

this fact, the transition of the critical set and its images are also explored in this

chapter.

• Chapter 4 describes the filled Julia set of f and some of its connections with the
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critical set. Several preliminary results as well as conjectures are given in this

chapter.

• Chapter 5 summarizes this main points in this paper.

1.2 Definitions and Notation

Since the notation below and terminology keep appearing in this paper, we define these

terms first.

1. O+(z), O−(z): the images and preimages of z. These images and preimages

consititute the so called forward and backward orbits of z.

2. A(z): all points whose orbits go to z eventually. This is always called the basin

of attraction of z.

3. B(∞): the connected component of A(∞) containing ∞. This is always called

the immediate basin of attraction of ∞.

4. T (f): the preimage of B(∞) other than itself when 0 6∈ B(∞). This is the so-

called trap door which normally resides in a neighborhood of the singularity (at

z = 0).

5. C(f): this is the critical set of f(z) which has several different definitions. One

of these definitions, probably the most insightful one, is the set of points whose

local injective property fails. Although this definition is nice, it is actually hard

to use. So people also developed several equivalent definitions for different maps.

For instance, if f(z) is a complex rational map, then the critical points are defined

by {z ∈ C|f ′(z) = 0}. If f(x, y) is a two dimensional real map, the critical set

is defined by {(x, y) ∈ R2|Det(J) = 0} where Det(J) is the determinant of the

Jacobian matrix at this point. Since our map f(z) is nonanalytic, we use this last

definition. The critical set is also denoted by J0 referring to the Jacobian matrix.

6. V (f): the image of C(f), also denoted by J1.

7. Free critical points: all critial points other than 0 and ∞ are called free critical

points (∞ is always a critical point).
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8. Prepole: the preimages of 0.

9. K(f): all the points staying bounded. This is always called the filled Julia set.

10. J(f): the Julia set of f(z). There are also many different but equivalent definitions

for this set in the complex analytic case. For instance, the Julia set is all the points

on which f(z) is not normal, or the set consisting of the closure of all the repelling

periodic points. In our case, for simplicity, we use another equivalent definition:

Julia set is the boundary of the filled Julia set.

11. F (f): for complex analytic maps, the set on which f(z) is normal or the comple-

ment of the Julia set J(f). This is also called the Fatou set.

12. z− z coordinates: f(z) can be also interpreted as a map in R2 with the constraint

of z being the conjugate of z. This is the so-called z − z coordinates. By using

this coordinate system, f(z) can be written as fβ,t(z, z).

13. Complex analytic versus complex in z−z: the first term mainly refers to a complex

analytic map in the complex plane, while the second is just a convenient way of

expresssing a map in R2.



Chapter 2

Dynamics on the Real Axis

One benefit of the simplified iteration formula (1.1) is that when β is real, the real axis

is invariant. Further, when we restrict z on real axis, t can be cancelled. Let

z = x+ iy

z = x− iy

then y = 0 implies z = x and z = x. So

f(x) =x2 + t
β

x2
+ (1− t) β

x2

=x2 +
β

x2

(2.1)

which means the dynamical behavior of (1.1) on the real axis is not affected by t.

This nice property allows us to explore some one-dimensional real dynamics before fully

getting into the complex plane.

8
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Figure 2.1: Graph of xn+1 = x2n + 0.001
x2n

and the reference line xn+1 = xn

Figure 2.2: Orbit diagram of equation

(2.1) for real β

2.1 Fixed Points

Fig. 2.1 is the graph of the iteration function in (2.1) when β = 0.001. From this graph,

we find that there are two fixed points. They satisfy this equation

x4 − x3 + β == 0 (2.2)

Since it is hard to write down the analytic solutions of this equation, we will mainly

use numerical results to handle further computations. When β = 0.001, the two fixed

points are approximately

x1 = 0.103717, x2 = 0.998997

After finding the fixed points, naturally, we would like to know their stability. Therefore,

compute the derivative function first

f ′(x) = 2x− 2βx−3 (2.3)

Then plug these two fixed points into (2.3)

f ′(x1) ≈ −1.6 < −1, f ′(x2) ≈ 2 > 1

This means these two fixed points are both repelling.
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2.2 Bifurcation Points as β Varies

Plug (2.2) into (2.3)

f ′(x) = 4x− 2 (2.4)

This is the derivative at the fixed points. To solve for the transition between attracting

and repelling, we let (2.4) equal to 1 and −1 to find out the corresponding roots. Then

substitute these roots back to (2.2) to get the Saddle-Node bifurcation point and Period-

Doubling bifurcation point

Saddle node : b1 =
27

256
, P eriod doubling : b2 =

3

256
> 0.001

Since higher period bifurcations are hard to compute analytically, we used TBC software

(see appendix A) to explore the higher period orbits. It turned out the only attracting

cycle when β = 0.001 is 8. The full orbit diagram is shown in fig 2.2. Note that

this diagram is a full diagram although it seems truncated. More details about this

phenomenon can be found in [14] and in Devaney’s work [15].

2.3 More Discussion

From both Devaney’s and Bozyk’s work, n = 2 is a special case. For Devaney’s case

(analytic), the special part is that there is no McMullen domain in the parameter plane.

But for Bozyk’s case (nonanalytic), the special part is that the orbit diagram for real β

is no longer a “full family” (refer fig 2.2). It turns out that both of these characteristics

are determined by the critical orbit behavior, more specifically, whether the critical

orbit goes into the trap door or not. So in this section, we would like to verify these

characteristics just from the real axis.

At first, by letting function (2.3) equal to 0, we can find the critial points

C(f(x)) = ± 4
√
β

Then the start of the critical orbit can be computed

± 4
√
β → 2

√
β → 4β +

1

4
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We then define two functions s(x) and k(x)

s(x) =f(x)− x

=x2 +
β

x2
− x

=
x4 − x3 + β

x2

=
k(x)

x2

(2.5)

It is easy to see that when x > 0, s(x) and k(x) have the same signs. Actually, k(x)

represents the relationship between f(x) and the reference line. If k(x) > 0, f(x) is

above the reference line; if k(x) < 0, f(x) is below the reference line; if k(x) = 0, f(x)

is a fixed point. Based on this observation, evaluate k(4β+ 1
4) to decide if 4β+ 1

4 could

be above the reference line.

k(4β +
1

4
) = 256β4 − 6β2 +

β

2
− 3

256

Then plot k(4β + 1
4) respect to β.

0.02 0.04 0.06 0.08 0.10
beta

-0.010

-0.005

k

Figure 2.3: Plot of k(4β + 1
4) Figure 2.4: The right part of function

xn+1 = x2n + β
x2n

and the reference line

xn+1 = xn when β = 1
16

Therefore, when β > 1
16 , 4β + 1

4 is above the reference line. However, above the

reference line does not guarantee the escape of the critical point. Actually, in this case,

the critical points are on the left side of the reference line. This will force the critical

points to stay bounded (when 27
256 > β > 1

16) or escape directly (when β > 27
256 , all
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points on the real axis escape). As for the case 0 < β < 1
16 , the critical points also stay

bounded due to k < 0. Therefore, for all 0 < β < 27
256 , the critical point does not escape.

This is why n = 2 is a special case that there is no McMullen domain.



Chapter 3

Dynamics in the Plane

This chapter discusses the more broad dynamical behaviors of f(z) = z2+t β
z2

+(1−t) β
z2

on the complex plane. It turns out that the complex case yields much richer transition

phenomena. We will talk about two main examples: a connected case and a disconnected

case. But before doing that, we will discuss the critical set and the fixed points first.

3.1 Critical Set

The critical set is important because it can determine many fundamental structures of

the dynamic plane as well as the parameter plane. For a map of the real plane, the

critical set is defined by the set whose determinant of the corresponding Jacobian matrix

is equal to zero. If we rewrite (1.1) to separate its real part and imaginary part

f(x+ iy) = r(x, y) + i(x, y)I

The critical set is all the points that can make

det(J) =

∣∣∣∣∣
∂r(x,y)
∂x

∂r(x,y)
∂y

∂i(x,y)
∂x

∂i(x,y)
∂y

∣∣∣∣∣ = 0

However, we will use “z−z coordinates” where z = x+iy. It is much easier to compute.

The Jacobian matrix is

J =

[
∂f
∂z

∂f
∂z

∂f
∂z

∂f
∂z

]
=

[
2z − 2tβz−3 −2(1− t)βz−3

−2(1− t)βz−3 2z − 2tβz−3

]
(3.1)

13
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Therefore let the determinant of (3.1) equal to zero and we get

det(J) =
4

|z|6
(|z|8 − tβz4 − tβz4 − β2 + 2tβ2) = 0

Use x− y coordinates to substitute z − z coordinates. We get the critical curve

(x2 + y2)4 + 2tβ(x4 − 6x2y2 + y4)− β2 + 2tβ2 = 0 (3.2)

Use polar coordinates to simplify (3.2):

r8 − 2tβr4cos4θ − β2 + 2tβ2 = 0 (3.3)

or

r4 = β(tcos4θ ±
√
t2cos24θ − 2t+ 1) (3.4)

Equation (3.4) has an even nicer form for β complex as well. The Jacobian matrix

becomes

J =

[
2z − 2tβz−3 −2(1− t)βz−3

−2(1− t)βz−3 2z − 2tβz−3

]
(3.5)

Therefore the determinant is

det(J) = (|2z − 2tβz−3|)2 − (|2(1− t)βz−3|)2

By letting this determinent equal to zero, we can get

|2z − 2tβz−3| = |2(1− t)βz−3|

In further, it can be simplified by multiplying |z
3|
2 on both sides.

|z4 − tβ| = |(1− t)β| (3.6)

This nice form suggests that the fourth power of the critical point set C4(f) is actually

a circle with a radius |(1− t)β| and centered at tβ.

The transition of critical set and its image from nonanalytic to analytic case is shown

in Fig. 3.1
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(a) t = 0 (b) t = 0.47 (c) t = 0.5

(d) t = 0.6 (e) t = 0.9 (f) t = 1

Figure 3.1: Transition of C(f) and V (f) when β = 0.001. For figure (a)-(c) the outer

green curve is the C(f) and the inner sienna curve is the V (f). For figure (d)-(f), the

four outer “circles” are the C(f) and the two inner “triangles” are the V (f). Note in

figure (f), the four components of C(f) shrink into four points and V (f) in figure (e)

and (f) are too small to be visible (they are close to ±0.06).

3.1.1 Transition of the Critical Point Set J0

Since the critical set often plays an important role in the dynamical system, it is rea-

sonable to find out the transition of the critical set before exploring the transition of

the behavior of the full map. It turns out that the critical set experiences a topological

change when t = 0.5 (t goes from 0 to 1). This value does not depend on the parameter

β. It turns out that there are two topological changes during this procedure. The first

is the generation of the four cusps which happens at t = 2
√

3 − 3. The second is the
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separation of the critical images. This happens when t = 0.5.

From equation (3.3), the expression of the critical set is given in polar coordinate

r8 − 2tβr4cos4θ − β2 + 2tβ2 = 0 (3.7)

where θ is the angle and r is the radius.

Since (3.7) is in implicit form, we can solve for r4 to change it into an explicit form

r4 = β(tcos4θ ±
√
t2cos24θ − 2t+ 1) (3.8)

By observing Fig. 3.1, it is obvious that there is a topological change which separates

the single topological “circle” into four topological “circles”. This transition happens

when t = 0.5. Here is the computation. Based on the observation, when the single circle

shrinks and merges into a flower with four petals, the equation

θ = 0 (3.9)

generates another solution in the origin. So let θ = 0 and solve for r

r8 − 2tβr4 − β2 + 2tβ2 = 0

r4 = β(t±
√

(t2 − 2t+ 1))

= β(t± (1− t))

So one solution is always β, another solution is (2t− 1)β. Since r4 is non negative, the

second solution exists only when t ≥ 0.5. This corresponds the moment when the four

petals meet in the origin and generate the new root.

3.1.2 Transition of the Critical Value Set J1

By using polar coordinates, the iteration map can be written as

Re(zn+1) =
β + r4n
r2n

cos2θn (3.10)

Im(zn+1) =
β + r4n − 2βt

r2n
sin2θn (3.11)
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So substituting (3.8) into this function can get the image of the critical set. The tran-

sition of the critical image set J1 is shown in fig 3.2.

-0.06 -0.04 -0.02 0.02 0.04 0.06

-0.06

-0.04

-0.02
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0.04

0.06

(a) t = 0 (b) t = Tb

-0.05 0.05

-0.05

0.05

(c) t = 0.49

-0.3 -0.2 -0.1 0.1 0.2 0.3

-0.3

-0.2

-0.1

0.1

0.2

0.3

(d) t = 0.5

-0.05 0.05

-0.05

0.05

(e) t = 0.8 (f) t = 1

Figure 3.2: Transition of J1. Note that the green curves in figure (c) and (d) are the J0

From the figure, we can observe two topological changes of J1

1. As t goes from 0 to some bifurcation point Tb, the J1 shrinks from a circle to a

curve with four swallow tails. During this period, J1 is still a simple closed curve.

2. From Tb to 0.5, the four tips grow into eight cusps. During this time, J1 is no

longer a simply closed curve but a curve with four swallow tails. These four

swallow tails grow bigger and bigger. Finally, when t = 0.5, the two mid lines

merge and disappear. The closed curve separates into two parts which look like

triangles.
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3. After t = 0.5, the two triangles become smaller and smaller and become two points

at t = 1. These two points are exactly the two critical values for the analytic map

at t = 1.

Here is the computation of Tb. Since the necessary condition for a cusp is that the

tangent vector does not exist at this point. This is also equivalent to the tangent vector

being (0, 0). So we can just let

D(J1) =
−→
0

where D() is the derivative operator. In our case, either component of the tangent

vector being equal to 0 is enough for computing the cusp points. And restrict θ between

0 and π
4 to avoid the symmetric solutions. We then solve for points on J1 where

D(Re(J1)) = 0 (3.12)

0 ≤ θ ≤ π

4

Notice that equation (3.12) should have at least one solution due to the point on the

real axis. So if this equation has just one solution, then there is no cusp; if there are

three solutions, then there are two possible cusps. The bifurcation value Tb corresponds

the case that equation (3.12) has exactly two solutions.

The real part of J1 can be obtained by substituting (3.7) into (3.10). (3.7) can be

written as

cos4θ =
r8 − β2 + 2tβ2

2tβr4

Using the identity 2cos22θ − 1 = cos4θ, the real part of J1 can be written as

Re(J1) =
β + r4

r2

√
cos4θ + 1

2

Then combine these two equations and regard r2 as the parameter

dRe(J1)

dr2
= 0

⇒ R6 + tβR4 − tβ2R2 + (1− 2t)β3 = 0 (3.13)
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in which R = r2. (3.13) is a cubic equation in R2 = r4. So based on the cubic equation

formula, (3.13) has three real roots among which there is a multiple root if and only if

the discriminant

∆ = B2 − 4AC = 0

in which

A = tβ − 3tβ2

B = t2β3 − 9(1− 2t)β3

C = t2β4 − 3t(1− 2t)β4

After simplification, the discriminant becomes

∆ = −27β6(t− 1)2(t2 + 6t− 3) = 0

The only solution when 0 < t < 0.5 is Tb = 2
√

3− 3. It can be verified D(Im(J1)) = 0

at these points as well. These four points turn out to be swallow tail points each which

evolves into swallow tails with two nondegenerate cusps (refer to fig 3.2(c)). Note that

Tb does not depend on β.

3.2 Fixed Points

Among all the properties of a dynamical system, the distribution of the fixed points

probably is the first and the easiest one that people can find out. In this section, we

will try to find out the analytic expression of the fixed points. It turns out that there

is no such expression. However, we still got a relatively nice equation about the fixed

points which will be used in section 3.6.2.

To compute the fixed point, we prefer x−y coordinates instead of polar coordinates.

Therefore, f(z) can be expressed as

f(x, y) = f1(x, y) + f2(x, y)i (3.14)

where

f1(x, y) = x2 − y2 +
β(x2 − y2)
(x2 + y2)2

, f2(x, y) = 2xy − 2βxy(2t− 1)

(x2 + y2)2
(3.15)
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Thus, letting the real part be equal to x and the imaginary part be equal to y gives us

the equations of the fixed points. Note that in the imaginary equation, if y 6= 0, y can

be cancelled (otherwise it will reduce into the real case we have discussed in chapter 2).

f1(x, y) = x2 − y2 +
β(x2 − y2)
(x2 + y2)2

= x (3.16)

f2(x, y) = 2xy − 2βxy(2t− 1)

(x2 + y2)2
= y (3.17)

To handle this equation, we would like to isolate the term (x2+y2)2 from the second

equation and subsititute into the first one. This will give us

x

x2 − y2
=

4xt− 1

2x(2t− 1)

Keep isolating y2 and substitute back into the imaginary equation. This will give us a

6th degree univariate polynomial equation in x.

β(2t− 1)(4tx− 1)2 = 8t2x3(2x− 1)3 (3.18)

Apparently, there is no analytic solution for this equation. But this nice form can be

used to analyze the special fixed point. For instance, when t = 0.5, there are only two

roots for x: 0 and 0.5. And their multiplicity are both 3. When x = 0, equation (3.17)

forces y = 0 too. But (0, 0) is not a fixed point. Therefore, x = 0 is actually not a valid

root.

3.3 Two Different Transitions

3.3.1 A Connected Case: β = 0.001

Our goal is to understand the long term behaviors of dynamical system (1.1). First we

would like to observe the points that have bounded orbits versus unbounded orbits. We

used Matlab and Fraqtive to do this experiment. Fig. 3.3 are some graphs to show the

transition of bounded orbits as t varies and β is fixed at β = 0.001. Black are bounded

orbits and other colors are unbounded orbits. Note that if β = 0, the bounded orbits

are exactly the unit disk.
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(a) t = 0 (b) t = 0.2 (c) t = 0.4

(d) t = 0.5 (e) t = 0.9 (f) t = 1

Figure 3.3: Transition of the basin of attraction with β = 0.001 and t varying. All filled

Julia sets appear to be connected. (a) and (f) are known to have connected filled Julia

sets.

We can observe several structures in these figures.

1. The outside “circle”. This is a topological circle, not a geometric circle if t 6= 0.

Every point started outside this circle will escape to infinity.

2. There is one hole in the center. This is the so-called trap door. Every point in

this trap door will map to one point outside the outside circle. Thus the trap door

can be regarded as the “other” preimage of the escape region outside the outside

circle.

3. The boundary of the trap door is a geometric circle at t = 0. It is a topological

circle for 0 < t ≤ 1, but with four petals.

4. The orange dots inside the “circle” in (c)-(f) are preimages of the trap door. The
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outer circle of dots has twice as many as the consecutive inner circle of dots. This

is because when |z| is big (far away from the origin), the z2 term dominates. So

the iteration map basically is similar to z2, which double angles and decreases

radii inside the unit circle.

5. If we define “leaf” like in Fig. 3.3(d). Then all points in “leaves” will go to the

“first leaf” (indicated by blue ellipse) following a quasi angle-doubling pattern.

6. The interior of the “first leaf” is attracted to a period eight cycle on the real axis.

7. Combining the last two observations, all the interior points in the filled Julia set

K(f) appear to be attracted to this period eight cycle.

3.3.2 A Disconnected Case

This case mainly refers to the condition the positive real axis (denoted Ray(R+)) escap-

ing. Under this condition, there are many different cases which turns out much more

complicated than the connected case. Six of these cases are shown in fig 3.4.

From these figures, we can find out several interesting structures

1. All the kπ
4 rays escape. This is because all these rays will eventually map onto

Ray(R+). Note that this is true even for case 2 although it is not clear from the

figure.

2. There exists an escaping circle when t is greater than 0.5. This circle maps onto

the real axis and therefore escapes. We will explain this in following sections.

3. When t is close to 0, all orbits escape. This is different from the analytic case

which leaves a Cantor set bounded.

4. Cases (d) (e) and (f) have infinitely many components (we will prove this in section

3.6.) and it appears to be true for (b) and (c).
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(a) Case 1: All escape (t = 0) (b) Case 2: Rays escape(t =

0.2)

(c) Case 3: Unidentified case

1(t = 0.4)

(d) Case 4: Unidentified case

2(t = 0.6 and not all J0 es-

capes)

(e) Case 5: Infinitely many at-

tracting blobs(t = 0.9 and all

J0 escapes)

(f) Case 6: Cantor set(t = 1)

Figure 3.4: Transition of the basin of attraction with β = 0.11 and t varying. All

nonempty filled Julia sets appear to be disconnected

3.4 The Transition of the Parameter Plane

People are also interested in the structures of the parameter space. Here is a series of

pictures of the parameter plane when t varies from 0 to 1.

Note that in this picture, the parameter plane is the whole complex plane. This is

different from the basic setting in this paper in which β is a positive real number. We

did this way because it can show us why the two representative cases from section 3.3

are special under a more broad background. These two cases are labeled by blue dots

in fig 3.5. We will talk about them more in the following sections.
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(a) t = 0 (b) t = 0.2 (c) t = 0.4

(d) t = 0.6 (e) t = 0.8 (f) t = 1

Figure 3.5: Transition of the parameter plane β from non analytic to analytic. The β

values on the two blue dots are 0.001 and 0.11 respectively. Case (a) appears in Bozyk

& Peckham’s work[14] and case (f) appears in Devaney’s work[6]

3.5 The First Transition of a Connnected K(f)

In the β = 0.001 case, as t transits from 0.2 to 0.4, the Julia set changes from a disk

with just one circular trap door to a graph consisting of numerous “white blobs”. These

dots are believed to be the preimages of the trap door. However, we observed that these

dots do not appear one by one as t goes from 0 to 1, instead, they all appear at once at

a specific t value. So we want to find out this t as a bifurcation point.

It is easy to verify the white dots in fig 3.6 (b) are preimages of the trap door (Tt(f)).

Since no point can map inside the critical value circle in one iteration in forward time, if

there is no intersection between Tt(f) and Vt(f), there should be no preimage of the trap

door. So computing the t value of their first appearances is to compute the intersection

between the boundary of the trap door and the critical value set Vt(f) (image of the
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critical set Ct(f)). Fig. 3.7 illustrates the settings of this problem: the far curve from

the trap door is the critical set Pt, the closer curve is the critical value set Vt, the white

flower in the center is the trap door Tt.

(a) Before the bifurcation, there is just

one white dot in the center (t=0.2)

(b) After the bifurcation, there appears

numerous white dots immediately (t=0.4)

Figure 3.6: Trap door and its preimages for β = 0.001

Figure 3.7: Zoom-in view of figure

3.6(a): Trap door is totally inside

the critical value set V (f)

Figure 3.8: V (f) is tangent to the

boundary of the trap door T (f)

when t = 0.374749 (β = 0.001)
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From this figure, we can easily find out that the intersection point is the tangent

point of the Tt and Vt. So we just need to compute the value of the tip A and the

maximum point of Vt (by symmetric properties of f(z), see section 3.6.1). A = (0, x2)

is one of the preimages of B = (−x1, 0) and C = (x1, 0) is the fixed point. So the image

value of point B is determined by x1 = x21 + β
x21

−x1 = x22 + β
x22

(3.19)

Note in this equation set, we use the real part to compute the imaginary part of point

A. This is true because f(A) = B, f(B) = C and f(C) = C.

To solve equation (3.19), we can get the position of point A. So next step will be find

the top point of the Vt. This can be done by calculating the derivative of the imaginary

part of the Vt curve. The imaginary part of any f(zr,θ) is

image =
β + r4 − 2βt

r2
sin2θ (3.20)

The equation for the critical curve is

r4 = β(tcos4θ ±
√
t2cos24θ − 2t+ 1) (3.21)

or

cos4θ =
r8 − β2 + 2tβ2

2tβr4
(3.22)

Plug equation(3.22) into equation(3.20) by the identity

sin22θ + cos22θ = 1

We can get the expression of the imaginary part of the critical value set Vt. Then

compute the derivative with respect to r2

d(image)

dr2
= 0 (3.23)

By using Mathematica, the solution of equation(3.23) is

r2 =

√
β − βt± β

√
t2 + 6t− 3

2
(3.24)
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Then plug this solution back into equation(3.20) to get the maximum of Vt, denoted

pvt. Let this maximum equal to the value of x2 from equation(3.19).

pvt = x2

The solution of this equation is the bifurcation point of t. Since the symbolic expression

with respect to β is very complicated, we just compute one numerical example for

β = 0.001. The t value for the first bifurcation is t = 0.374749 (as shown in fig 3.8).

3.6 The Transition of a Disconnnected K(f)

3.6.1 The Investigation Tools

Before we talk about the structures of K(f), we would like to introduce the tools we

used in our investigation. These tools are just some topological properties from the map

itself therefore do not rely on the complex analytic condition.

1. Symmetric properties of f(z)

It is easy to verify these facts: 1) rotate 180: f(z) = f(−z); 2) rotate 90: f(iz) =

−f(z); 3) from 1 and 2: f2(iz) = f2(z); 4) conjugate respect to x and y axes:

f(z) = f(z), f(−z) = f(z); 5) combining properties above, the J(f) and K(f)

are symmetric with repect to the x axis, y axis and θ = π
4 + kπ

2 lines.

2. The dynamical behaviors on the real and imaginary axes are not affected by t

This is true because if we restrict f(z) on real, the map will become

f(x) = x2 +
β

x2

which is determined only by β. In further, because of f(z) = f(−z), the dynamical

behaviors on R− is the same as on R+. This is to say, if R+ escapes, R− also

escapes. If R+ has an invariant region, then R− also has a symmetric bounded

region (Note this region is not invariant because f(z) = f(−z)). We denote the

points on R+ as Ray(R+) and the points on R− as Ray(R−). So f(Ray(R−)) =

Ray(R+).

For the points on the imaginary axis, after one iteration, they will map to the real

axis. Therefore, the bounded region on the imaginary axis is a 90o rotation of the
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bounded region on the real axis. We denote the points on I+ as Ray(I+) and the

points on I− as Ray(I−). Thus

f2(Ray(I+)) = f(Ray(R−)) = Ray(R+)

f2(Ray(I−)) = f(Ray(R−)) = Ray(R+)

3. The points with an angle of π
4 + kπ

2 are mapped onto the imaginary axis

This property is pretty straight forward if we write f(z) into polar coordinate

Re(zn+1) =
β + r4n
r2n

cos2θn (3.25)

Im(zn+1) =
β + r4n − 2βt

r2n
sin2θn (3.26)

So from the real part equation, if θn = π
4 + kπ

2 , then Re(zn+1) is always equal to

0. This property shows that the rays with angles π
4 , 3π

4 , 5π
4 , 7π

4 are four preimages

of the imaginary axis. We denote these four rays as Ray(π4 ), Ray(3π4 ), Ray(5π4 ),

Ray(7π4 ). These rays can be called prepole rays because they go through the four

prepoles when t > 0.5.

4. When t > 0.5, the circle r = 4
√
β(2t− 1) is mapped onto the real axis

It is easy to check Im(zn+1) = 0 if we plug r = 4
√
β(2t− 1) into the iteration

formula (3.26). This shows that the image of the circle is a line segment of the

real axis. Notice that ( 4
√
β(2t− 1), 0) is also a point of the the critical set. So we

denote this circle as critical circle Circ

5. Combine 3 and 4, we have: 1) when t > 0.5, Circ and the four prepole rays have

four intersections. These four intersections are the four prepoles. 2) when t ≤ 0.5,

there is no prepole and the critical set merges into one closed curve

We will use these tools intensively in the following investigations. You will find that the

interaction of these rays and the critical set plays an important role in the construction

of K(f). Fig. 3.9 shows the geometry of these tools.
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(a) t < 0.5 (b) t > 0.5

Figure 3.9: Rays and the critical point set C(f)

3.6.2 Structure of J(f)

In this section, we will discuss some basic structures of the filled Julia set when the real

axis escapes. As shown in fig 3.4, this includes several different cases

Proposition. When t > 0.5 and Ray(R+) (β > 27
256) escapes, K(f) has infinitely

many components

Proof: To prove this proposition, we would like to implement the similar idea as

in the proof that J(f) is a Cantor set for z2 + c when the critical orbit escapes. That

is, trying to prove the statement by constructing the K(f). The only difference in this

proof is that we will use the preimages of Ray(R+) and the symmetric properties of the

map itself to construct the “escaping spines” that can isolate the components of K(f).

Here is the construction procedure.

Step 1: Construct the immediate escaping spines.

Based on our analysis in section 3.6.1, when t > 0.5, the basic setting of rays and

critical set are shown in fig 3.10. Z1, Z2, Z3 and Z4 are the four prepoles. The circle

going through these four prepoles and centered at origin is the so-called critical circle.

The four small elipse-like curves outside the critical circle are the four components

of the critical set C(f). From the computation in section 3.6.1, Cv = 4
√
β(2t− 1)
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and Cf = 4
√
β. So when t varies, Cf will stay fixed while Cv moves along the R+

axis. Also from above section, all the rays and the critical circle will eventually map

on Ray(R+). Therefore, if Ray(R+) escapes, then all these rays and circles will also

escape; if Ray(R+) stays bounded, then all these rays and circles will stay bounded.

Since Ray(R+) escapes in our case, all the prepole rays, the axis rays and the critical

circle also escape. This sketches the first structure of the “escaping spines”.

O
CfCv

Z1

Z2
Z3

Z4

Vv

Dv

Figure 3.10: The critical set and rays

when t > 0.5

O
Cv

Z1

Z2
Dv

C-1

D-1

Z-1

Figure 3.11: Step 2: preimages of the

escaping spine

As shown in fig 3.10, these “escaping spines” divide the complex plane into sixteen

separate regions. Since all these spines escape, the components of K(f) can only appear

inside each region. For simplicity, in following steps, we will just focus on the interior

of sector OCvZ1. If we can prove the proposition on this sector, then the conclusion on

the entire complex plane will be automatically guaranteed by the symmetry properties.

Step 2: Construct the escaping spines inside the sector OCvZ1 by finding the preim-

ages of the immediate escaping spines. Apparently, the preimages of the escaping spines

should also escape.

However, we still don’t know where to find these preimages. To do this, we should

first know the mapping property of sector OCvZ1 under the iteration formula f(z). This

can be done by both numerical experiment and analytic deduction. It turns out that
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the sector OCvZ1 will be mapped onto the entire fourth quadrant of the complex plane.

To make it precise, here are some statements about the map f(z) restricted on sector

OCvZ1.

1. f(z) maps the interior of sector OCvZ1 one to one and onto the fourth quadrant

of the complex plane

To verify this statement, just consider the equation (3.25) and equation (3.26).

When 0 < θn <
π
4 , both cos2θn and sin2θn are positive. When r < 4

√
β(2t− 1)

(inside the critical circle), β+r
4
n

r2n
is always positive but β+r4n−2βt

r2n
is negative. There-

fore, after one iteration, Re(zn+1) stay positive but Im(zn+1) becomes negative.

This corresponds the fourth quadrant.

However, being inside is not enough to say it is “onto” the fourth quadrant. So

we still need to show that the image of sector OCvZ1 actually covers the entire

fourth quadrant.

To do this, let us pick any point in the fourth quadrant, say P = x− yi, in which

both x and y are positive. Then let x be equal to equation (3.25) and −y be

equal to equation (3.26). The solution of this equation set should give us all the

preimages of point P .

β + r4

r2
cos2θ = x

β + r4 − 2βt

r2
sin2θ = −y

(3.27)

By using a trigonometric identity, we can eliminate the unknown θ first. So

equation (3.27) will become

(
r2x

β + r4
)2 + (

r2y

β + r4 − 2βt
)2 = 1 (3.28)

Obviously, this is a univariate rational equation in r. Note that the denominators

of the left two fractions will never be zero due to our restriction on the interior of

sector OCvZ1. Let’s denote this rational map by R(r)

R(r) = (
r2x

β + r4
)2 + (

r2y

β + r4 − 2βt
)2 − 1 (3.29)

Then it is easy to find

lim
r→0+

R(r) = −1
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lim
r→ 4
√
β(2t−1)

R(r) =∞

Therefore, because rational map is always continuous on its domain, there exists

at least one solution for the equation R(r) = 0 on the interval (0, 4
√
β(2t− 1)).

After we get the solution r, it is easy to find a solution for θ by solving

cos2θ =
r2x

β + r4

Notice that this equation always has one and only one solution between 0 and π
4

(cos2θ : (0, π4 )→ (0, 1) is monotonic).

Thus, combining all the analyses above, we can now say that f(z) maps the interior

points of sector OCvZ1 “onto” the entire fourth quadrant of the complex plane.

As for the one-to-one map, we just need to show that equation (3.28) has only one

solution in sector OCvZ1. This can be done by analyzing the monotonic property

of R(r). A good way to do this is to write R(r) as

R(r) =
x2

( β
r2

+ r2)2
+

y2

( (2t−1)β
r2

− r2)2
− 1 (3.30)

Then the problem is transformed into an easier one: analyzing the monotonic

property of the two denominators. It is easy to verify that both of the denomina-

tors are decreasing on the interval (0, 4
√
β(2t− 1)) (Note that 4

√
β(2t− 1) < 4

√
β).

Therefore, R(r) is increasing on the interval (0, 4
√
β(2t− 1)). Combining our pre-

vious conclusion, we can get immediately that R(r) = 0 has exactly one solution.

This completes the “one-to-one” part of this statement.

2. f(z) maps the boundary of sector OCvZ1 onto the R+ and I− axes. Specifically,

f(z) maps arc Z1Cv onto line segment OVv, line segment OCv onto the positive

real axis starting at point Vv (the image of Cv) and maps OZ1 onto ray Ray(I−)

These facts come directly from the properties in section 3.6.1.

3. For a continuous curve γ(φ) inside the fourth quadrant but outside the critical set,

there is exactly one preimage f−1(γ(φ)) in sector OCvZ1 and this preimage is also

a continuous curve
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The uniqueness of f−1(γ(φ)) can be obtained from the statement #1 immediately.

We just need show that f−1(γ(φ)) is also continuous.

O
CfCv

Z1

Z2
Z3

Z4

Vv

Figure 3.12: Curve γ(φ) and its preimage f−1(γ(φ))

Firstly, plug the curve γ(φ) = x(φ)−y(φ)i into the equation (3.28). This will give

us the relationship between r and φ.

(
r2x(φ)

β + r4
)2 + (

r2y(φ)

β + r4 − 2βt
)2 = 1 (3.31)

Then compute the right limit of r(φ) at any given point φp

(
(limφ→φ+p r(φ))2x(φp)

β + (limφ→φ+p r(φ))4
)2 + (

(limφ→φ+p r(φ))2y(φp)

β + (limφ→φ+p r(φ))4 − 2βt
)2 = 1 (3.32)

Notice that we use x(φp) and y(φp) instead of limφ→φ+p x(φ) and limφ→φ+p y(φ).

This is because x(φ) and y(φ) are continuous functions, limφ→φ+p x(φ) is actually

equal to x(φp) and limφ→φ+p x(φ) is equal to y(φp).

Using the same technique, we can get the similar equation of the left limit of r(φ)

at φp

(
(limφ→φ−p r(φ))2x(φp)

β + (limφ→φ−p r(φ))4
)2 + (

(limφ→φ−p r(φ))2y(φp)

β + (limφ→φ−p r(φ))4 − 2βt
)2 = 1 (3.33)
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These two equations have the same parameters but different unknowns. Therefore,

limφ→φ+p r(φ) and limφ→φ−p r(φ) are actually two solutions of the equation R(r) =

0. But from the conclusion in the first statement, this equation has only one

solution inside the sector OCvZ1. Therefore, the left limit has to be equal to the

right limit. This completes the continuity proof. This proof is shown in fig 3.12

Note that we don’t require that this curve is a Jordan curve. Our construction of

the escaping spine will also work even if it is self intersecting.

After clarifying the mapping properties of f(z) on sector OCvZ1, we now can con-

struct the escaping spine inside this sector by finding the preimages of the existing spines

in the fourth quadrant.

First, find the preimages of prepole Z2, originO and the critical points Cv, Dv. Based

on statements 1 and 2, the preimage of prepole Z2 should be inside sector OCvZ1, the

preimage of O is Z1, the preimage of Cv is on the arc CvZ1, the preimage of Dv is on

the line segment OZ1. They are denoted as Z−1, C−1 and D−1, which means the first

construction.

Correspondingly, the preimages of arc DvZ2, arc CvZ2, line segment OZ2 and the ray

starting from Z2 to infinity can be obtained immediately based on statement 3. Fig 3.11

shows these preimages. Note that we didn’t draw the critical set in this picture.

Step 3: Construct the escaping spines in sector ODvZ2 and OZ2Cv by symmetric

properties.

Based on the 90o rotational symmetry, the escaping spines in sector ODvZ2 can be

obtained immediately. Based on the conjugate property with respect to the x axis, we

can also get the escaping spines in sector OZ2Cv. These new points are denoted by

superscripts “r” and “c” to indicate that they are obtained by rotational and conjugate

symmetries. This step was shown in fig 3.13.

Step 4: Repeat step 2 and step 3 to find more preimages of the current escaping

spines.

This is to say, at first, using the inverse mapping properties (three statements above)

to find the preimages in sector OCvZ1 which will map to the new escaping spines in the

fourth quadrant. Then use the symmetric properties to generate more escaping spines

in the fourth quadrant. But be careful, for each stage, we can only refine two sections of

the current partition. For instance, since Z−1 maps to Z2 and C−1 maps to Cv, Z1Z−1
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will map to OZ2, Z−1C−1 will map to Z2Cv and C−1Z1 will map to OCv. This shows

that the section Z−1C−1Z1 actually maps to the whole sector OZ2Cv. Therefore, the

preimages of the new escaping spines in sector OZ2Cv should be only inside partition

Z−1C−1Z1. Similarly, the preimages of the escaping spines inside sector OZ2Dv should

be inside section D−1Z−1Z1. The new preimages are shown in fig 3.14.

O

Cv

Z1

Z2

Dv

C-1

D-1

Z-1

Z-1
c

r
Z-1

rD-1

Figure 3.13: Step 3: construct the new

escaping spines in the fourth quadrant

by using symmetric properties

O

Cv

Z1

Z2

Dv

C-1

D-1

Z-1

Z-1
c

r
Z-1

rD-1

Figure 3.14: Step 4: find the more

preimages in sector OCvZ1 by using

mapping properties

Note that in these figures, the escaping spines are not necessarily lines. We just use

it to represent curves although the Ray(π4 + kπ
2 ) are indeed geometric lines (see section

3.6.1).

Therefore, keep doing this construction, we will get a partition of sector OCvZ1.

And all the partition curves will eventually map onto the Ray(R+). Since Ray(R+)

escapes, all these partition curves will also escape.

So far, we have constructed a partition of sector OCvZ1 which consists of many

escaping spines. But we still don’t know if there is a component of J(f) inside each

isolated section. There could be nothing inside each section. Therefore, we still need to

show that there are at least infinitely many points in sector OCvZ1 that are isolated by

the escaping spines. The following proof mainly refers to fig 3.15
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O
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Z1

Z2

Dv
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-1F

-2F
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-2F
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r

c

Figure 3.15: The eventually fixed points in sector OCvZ1

We will use the eventually fixed points to show these infinitely many components.

So at first, pick a fixed point F in the fourth quadrant (There is always a fixed point in

the fourth quadrant given the conditions 0.5 < t and Ray(R+) escaping). For simplicity,

we assume F lies outside the sector OZ2Cv. We will show in the following proof that

the actual position of this fixed point does not matter because the image of the sector

OZ1Cv covers the entire fourth quadrant.

Then find the preimages of this fixed point and their symmetric points in the fourth

quadrant like in step 2 and step 3. Keep doing this procedure so that we can get

infinitely many eventually fixed points. Note that any two of these eventually fixed

points are distinct and disconnected with each others because they belongs to different

sections which are isolated by the escaping spines.

After finding these prefixed points, a binary representation map can be established.

The pattern of generating the prefixed points is shown in fig 3.16. We can label all the

points whose images were generated by conjugate symmetry as “0” and all the points

whose image was generated by rotational symmetry as “1”. Therefore, every prefixed

point in sector OZ1Cv corresponds a binary number between 0 and 1. For instance,

F r−2 corresponds number 0.1 and F cr−3 corresponds 0.01. This completes the “infinitely

many” components of K(f) proof.
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F F−1

F c−1 F c−2
F cc−2 F cc−3

F cr−2 F cr−3

F r−1 F r−2
F rc−2 F rc−3

F rr−2 F rr−3

Figure 3.16: The generation pattern of the prefixed points in sector OCvZ1

Since the proposition shows us that the number of J(f) components are infinitely

many, we naturally want to know if these components constitute a Cantor set. This is

reasonable because this set is a Cantor set [6] when t = 1. However, the computation

shows that J(f) is no longer a Cantor set for some combination of t and β.

Proposition. When t > 0.5 and Ray(R+) escapes, there exists a parameter region

NC such that when (t, β) ∈ NC, K(f) is no longer a Cantor set

Proof: If K(f) is a Cantor set, it is totally disconnected. This precludes any attract-

ing periodic orbits. Thus we just need to show that when (t, β) ∈ NC, the fixed points

of f(z) are actually attracting. This can be done by computing the determinant of the

Jacobian matrix. If the determinant is less than one, then the fixed point is attracting.

This trick can work because when Ray(R+) escapes, the fixed points are two pairs

of conjugate points. And the corresponding Jacobian matrix has two conjugate eigen-

values. Thus, the determinant of the Jacobian matrix is actually equal to the square of

the modulus of the eigenvalues. The determinant can be computed easily by

Det(J) = Det(

[
∂r(x,y)
∂x

∂r(x,y)
∂y

∂i(x,y)
∂x

∂i(x,y)
∂y

]
) (3.34)

This formula refers to equation (3.14).

Then we need to evaluate Det(J) at the fixed point. But from section 3.2, there is

no analytic solution for the fixed points. This means there should be no way to compute

Det(J) directly. However we could still prove the proposition by using the Intermediate

Value Theorem. Firstly, we observed that Det(J)(t, β) is a continuous function of t and

β if x and y are not equal to zero at the same time. Secondly, the Det(J) can be found
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easily when t = 0.5. From section 3.2, one fixed point is (0.5, yf (β)). Plug this point

into formula (3.34) and we can get a function Det(J)(0.5, β). Since this function is very

complicated, a numerical approximation is used here. The computation shows that

Det(J)(0.5, 0.11) = 0.973 < 1

Det(J)(0.5, 0.12) = 1.149 > 1

Since Det(J)(t, β) is continuous and we have already know that Det(J) > 1 (because

K(f) is a Cantor set, refer [6]) at t = 1, there should exists a critical combination (Tc, βc)

such that when β < βc and t > Tc, the fixed points are actually attracting. Thus K(f)

is no longer a Cantor set. The combination (Tc, βc) constitutes the boundary of region

NC.

Further investigation shows that f(z) is actually semiconjugate to the full shift on

4 symbols. Since the symbolic dynamics is well known, this semiconjugacy actually

provides us a way to largely understand the dynamical behaviors.

Theorem. When t > 0.5 and Ray(R+) escapes, the map f(z) is semiconjugate to

the full shift on 4 symbols

O
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Z1

Z2

Dv

Z3

Z4

E v

F v
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4

3

1
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3 2

1

1
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1

2 3

4

Cir1

Cir2

Figure 3.17: The mapping properties

for each sector and region
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Z3

Z4

E v B1

B2

A1

A2

Figure 3.18: The compact set in the

first quadrant

Proof: Based on the statements during the proof of the first proposition, sector

OCvZ1 maps onto the fourth quadrant. Using the same technique, we can prove that the
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region (denoted by region CvZ1) outside sector OCvZ1 in the first π
4 section (bounded by

Ray(0) and Ray(π4 )) also maps onto the first quadrant. The mappings for other sectors

and their outside regions can be obtained immediately by the symmetric properties.

These mapping properties are shown in figure 3.17. The number in each sector denotes

the quadrant it will cover after one iteration. One interesting fact shown by these

mappings is that the four fixed points can only appear inside region CvZ1, region CvZ2,

sector OZ4Fv and sector OZ3Dv because these are the only regions whose images cover

themselves.

Therefore, after one iteration, each quadrant covers the whole plane. Since f(z) ≈ z2

when z is big, we can always find a circle Cir1 outside which all points escape and

the preimage of this circle (denoted by Cir2) near the origin. And because Ray(R+)

escapes, we can find one curve A1B1 near the real axis and one curve A2B2 near the

imaginary axis that only the points between A1B1 and A2B2 in the first quadrant could

stay. Therefore, curve A1B1, curve A2B2, arc A1A2 and arc B1B2 enclose a compact set

(illustrated in figure 3.18 by red boundaries) which contains all the non escape points

in the first quadrant. Using the same technique, we can construct similar regions for

the rest three quadrants. Denote these four regions by four symbols R0, R1, R2 and

R3. Therefore, each orbit for the non escape points in the four quadrants corresponds

to a sequence in four symbols. And the iteration operation in the sequence space is a

shift map:

Λ
f−→ Λ

S ↓ S ↓
Σ −→

σ
Σ

(3.35)

where Λ consists of non escape points and the sequence space Σ is defined by

Σ = {(s0s1s2 . . . )|sj = 0, 1, 2, or3}

The shift map and the itinerary map are defined as follow

σ(s0s1s2 . . . ) = (s1s2s3 . . . )

S(z) = (s0s1s2 . . . ) where sj = i if f j(z) is in Ri

Thus, to show f and σ are semiconjugate, we need to prove (1) f , S and σ are

continuous (2) S ◦ f(z) = σ ◦ S(z) (3) S is onto but not one to one.
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The continuity of f is trivial by the formula itself. And the continuities of σ and S are

well-known (refer to [16]). The commutativity of diagram3.35 is quite straightforward.

Suppose z ∈ Λ has itinerary (s0s1s2 . . . ), then by definition

S ◦ f(z) = S(f(z)) = (s1s2 . . . ) = σ((s0s1s2 . . . )) = σ ◦ S(z)

S is a surjection because for any sequence in Σ, say (s0s1s2 . . . ), there exists a

sequence of nested compact sets

Rs0 ⊃ Rs0s1 ⊃ Rs0s1s2 ⊃ · · · ⊃ Rs0s1s2...

where Rs0s1s2...sn = {z ∈ Λ|z ∈ Rs0 , f(z) ∈ Rs1 , . . . , fn(z) ∈ Rsn}. Then by the theorem

of nested compact sets,
⋂
n≥0Rs0s1s2...sn is nonempty. But S is obviously not one to one

because figure 3.4(e) shows that all the points in one blob have the same itinerary.

This completes the semiconjugacy of f and σ. For t = 1 (analytic case), it is known

to be a conjugacy[6].

Corollary. When t > 0.5 and Ray(R+) escapes, K(f) actually has uncountable

infinitely components

Proof: Since f is semiconjugate to σ, Λ has at least as many components as Σ. If

we can show that for any two distinct points P and Q in Λ where S(P ) 6= S(Q), the

corresponding points in Λ are in disconnected components, then the statement is proved

automatically.

Suppose s = (s0s1 . . . ) ∈ Σ and t = (t0t1 . . . ) ∈ Σ are distinct and P, Q are two

points in Λ that S(P ) = s and S(Q) = t. Then s and t have to have at least one different

digit, say si 6= ti. This implies that f i(P ) ∈ Rsi and f i(Q) ∈ Rti are in different regions

(different regions are disconnected due to the escaping axes). Based on the fact that the

image of a connected set under a continuous map is also connected, if P and Q were in

the same component, then f i(P ) and f i(Q) would be in the same component. So P and

Q are in different components. Therefore, K(f) has at least as many components as the

points in Σ. And because Σ has uncountable points, K(f) has uncountable components.

3.7 Conjectures

Apparently, the above analysis is just a small part of the dynamical behaviors of f(z).

To fully understand this system, we should work more on other cases, especially those
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which have a profound connection with the distribution of the critical set. Therefore,

this section discusses the conjectures that we believe by solving them, we would probably

be able to reveal this relationship. These conjectures also serve as the future directions

of this research.

3.7.1 All Escape Quadrichotomy

For the iteration family fβ,t(z) = z2 + t β
z2

+ (1− t) β
z2

, it seems that K(f) has four cases

when the C(f) all escape.

Theorem. If all critical points C(f) lies in B(∞) and the critical set C(f) consists

of four mutually disjoint components, then K(f) has infinitely many components

We have proved a stronger version of this theorem in section 3.6.2. Figure 3.4(e)

shows this case.

Conjecture. If all critical points C(f) lie in B(∞) and the critical set C(f) consists

of one simply closed curve, then K(f) is empty

Figure 3.4(a) shows this case.

Conjecture. If all critical value set V (f) lie in the trap door and the critical set

C(f) consists of one simply closed curve, then K(f) is a Cantor set of circles

Conjecture. If all critical points C(f) lies in other preimages of B(∞), then K(f)

is a Sierpinski carpet

3.7.2 All Stay Bounded Dichotomy

It seems that there are only two cases when the C(f) all stay bounded.

Conjecture. if the critical set C(f) all stay bounded and consists of mutually

disjoint components, then K(f) is a connnected quasi Sierpinski carpet

Figure 3.3(e) shows this case.

Conjecture. if the critical set C(f) all stay bounded and consists of one simply

closed curve, then K(f) is an annulus

Figure 3.3(b) shows this case.



Chapter 4

Conclusion and Discussion

In this paper, we investigated a special map that can connect the nonanalytic and the

analytic singular perturbations of the quadratic map. The research shows that this map

has a much more complicated dynamical behavior than the two end point cases.

At first, the critical set is no longer separate points as long as the quadratic map is

perturbed by a nonanalytic term. Instead, each of these separate points evolves into a

closed curve. Then these separate curves merge into one simply closed curve at t = 0.5.

During this transition, the critical image set also goes from two separate triangles to

one closed curve with four swallow tails at the very start. These swallow tails then

disappear at Tb = 2
√

3− 3.

Secondly, the parameter plane cannot be subdivided into only four or three regions

as shown in Devaney’s and Bozyk’s studies. There appear to be more intermediate

cases:

1. As t varies from 0 to 1, the McMullen Domain disappears at t = 0.5.

2. As t varies from 0 to 1, the black strip in figure 3.5(a) shrinks and generates the

structure in figure 3.5(f) which was identified by Devaney.

3. As t varies from 0 to 1, the region whose corresponding filled Julia set is empty

becomes a region with a nonempty filled Julia set. This nonempty set becomes

the Cantor set when t = 1.

For each of these transitions in parameter space, the corresponding dynamic plane

42
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has even more complicated intermediate cases. We identified two of these special cases:

the connected one whose filled Julia set is connected and a disconnected case where the

filled Julia set is disconnected. The connected case shows that the appearence of the

escape blobs inside the annulus is from the intersection between the critical image set

and the boundary of the trap door. The disconnected case is presented by a series of

statements that claim the filled Julia set consists of infinitely many components and is

no longer a Cantor set for some special parameter combinations (t, β). This paper also

pointed out that f is semiconjugate to the four symbols shift map for the disconnected

case. This semiconjugacy provides a way to understand most of the dynamical behaviors

for the nonescape points.

Finally, based on the numerical experiments and analysis, we presented two sets of

conjectures: the bounded critical orbits and the escape critical orbits. Note that both of

them are very special cases. There are more cases that we cannot even get a conjecture.

We hope these conjectures could serve as the directions for our future study.
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Appendix A

Algorithms and Codes

During this research, we used several softwares to do our numerical experiments and

generate the figures in this paper. These software includes

1. fraqtive: an open source software by Micha l Mȩciński http://fraqtive.mimec.

org/

2. Matlab from MathWorks

3. Mathematica from Wolfram

4. tbc: an open source software by Prof. Bruce Peckham http://www.d.umn.edu/

~bpeckham/tbc_home.html

Here are some important codes for the computation in this paper

A.1 Iteration Function for “Fraqtive”

We modified this software to compute our formula. Therefore, the new iteration algo-

rithm is

template <Variant VARIANT >

static inline double calculate( double x, double y, double

cx, double cy, double exponent , int maxIterations )

{

46
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//this function calculates if one point on the

complex plane will escape before the allowed

iteration time

//the iteration formula is

//f(z)=z\^2+t*beta/(z\^n)+(1-t)beta/(zbar\^n)

// define the local variables

double zx = x;

double zy = y;

double lambda_x=cx; // parameter beta

double lambda_y=cy;

// double lambda_x =0.001;

// double lambda_y =0;

double power = parameter003;

double t=parameter001;

double radius_z;

double angle_z;

double radius_lambda=pow(pow(lambda_x ,2)+pow(

lambda_y ,2) ,0.5);

double angle_lambda=atan2(lambda_y ,lambda_x);

//use polar coordinate to compute next iteration

for ( int k = maxIterations; k > 0; k-- )

{

adjust <VARIANT >( zx , zy );

radius_z = pow(pow(zx ,2)+pow(zy ,2) ,0.5);

//if reach the BailoutRadius , then mark this

point as escape point

if ( radius_z >= BailoutRadius )
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return calculateResult( maxIterations , k,

radius_z , exponent );

angle_z=atan2(zy ,zx);

zx=pow(radius_z ,power)*cos(angle_z*power)+t

*( radius_lambda/pow(radius_z ,power))*cos(

angle_lambda -power*angle_z)+(1-t)*(

radius_lambda/pow(radius_z ,power))*cos(

angle_lambda+power*angle_z);

zy=pow(radius_z ,power)*sin(angle_z*power)+t

*( radius_lambda/pow(radius_z ,power))*sin(

angle_lambda -power*angle_z)+(1-t)*(

radius_lambda/pow(radius_z ,power))*sin(

angle_lambda+power*angle_z);

}

return 0.0;

}

This function is in ./src/generatorcore.cpp.

A.2 Matlab Code to Generate the Filled Julia Set

clear all;

t=0.353; %modify t here

beta =0.0625;%modify beta here

%**************** generate escape basin *****************

%define grid size

M=400;

N=400;
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x=linspace(-1,1,M);

y=linspace(-1,1,N);

%iteration

p=1;

for m=1:M

for n=1:N

iter =1;

rad=sqrt(x(m)^2+y(n)^2);

zx=x(m);

zy=y(n);

while rad <4&&iter <100

a1=zx^2-zy^2+ beta*(zx^2-zy^2) /((zx^2+zy^2) ^2);

a2=2*zx*zy -2* beta*zx*zy*(2*t-1) /((zx^2+zy^2) ^2);

zx=a1;

zy=a2;

iter=iter +1;

rad=sqrt(zx^2+zy^2);

end

if iter ==100

pt(p,1)=x(m);

pt(p,2)=y(n);

p=p+1;

end

end

end

set(gcf ,’position ’ ,[0 ,0,820 ,800]);

plot(pt(:,1),pt(:,2),’.’);hold on;

%generate critical set

theta=linspace (0,2*pi ,1000);
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radius=abs((beta*(t*cos (4* theta)+sqrt(t^2*( cos (4* theta))

.^2 -2*t+1))).^0.25);

criticalx=radius .*cos(theta);

criticaly=radius .*sin(theta);

plot(criticalx ,criticaly);hold on;

%generate image of critical set

for i=1:1000

zx=criticalx(i);

zy=criticaly(i);

criticalimagex(i)=zx^2-zy^2+ beta*(zx^2-zy^2) /((zx^2+zy^2) ^2)

;

criticalimagey(i)=2*zx*zy -2* beta*zx*zy*(2*t-1) /((zx^2+zy^2)

^2);

end

plot(criticalimagex ,criticalimagey);hold on;

%plot specific points

plot(criticalx (126) ,criticaly (126),’x’);hold on;

plot(criticalimagex (126),criticalimagey (126),’x’);hold on;

plot(criticalx (114) ,criticaly (114),’x’);hold on;

plot(criticalimagex (114),criticalimagey (114),’x’);hold on;

plot(criticalx (139) ,criticaly (139),’x’);hold on;

plot(criticalimagex (139),criticalimagey (139),’x’);hold on;

A.3 Mathematica Code to Compute the Det(J)(0.5, β)

real = x^2 - y^2 + beta (x^2 - y^2) /((x^2 + y^2) ^2);

image = 2 x*y - 2 beta*x*y (2 t - 1)/((x^2 + y^2)^2);

J = D[real , x]*D[image , y] - D[real , y]*D[image , x];

J5=J /. {t -> 0.5, x -> 0.5};
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Rs=Solve [(1/4 + y^2)^3 == beta (1/4 - y^2), y];

De=J5/.Rs [[1]]

De/.beta ->0.11

De/.beta ->0.12
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