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Abstract. The set of Hopf bifurcations for a two-parameter family of maps is typically a curve
in the parameter plane. The side of the curve on which the invariant circle exists is further divided
by horn-shaped resonance regions, each region corresponding to maps having a periodic orbit of a
certain period. With the presence of a parametric degeneracy, the resonance regions sometimes take
the form of closed “bananas”, instead of open-ended horns. We investigate this local codimension-two
bifurcation, emphasizing resonance regions as projections to the parameter plane of surfaces in phase
X parameter space. We present scenarios where the degeneracy occurs “naturally”, and illustrate
them through an adaptive control application. We also discuss more global implications of the local
study.
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1. Introduction. When a fixed point for a map of R™,n > 2, has a complex
conjugate pair of eigenvalues on the unit circle, we expect it to undergo a Hopf (also
called Neimark—Sacker) bifurcation under perturbation. In a typical two-parameter
family containing such a point, there is a Hopf bifurcation curve in the parameter
plane which separates maps with an attracting fixed point from those with a repelling
fixed point. The change in stability of the fixed point across the Hopf curve is ac-
companied, except possibly near the “strong resonances”, by the birth of an invariant
topological circle from the fixed point. The side of the Hopf curve on which the in-
variant circle exists, as well as its stability, is determined by the relationship between
the parameters, the linear terms and some nonlinear terms in the family of maps.
Excepting again parameter values near strong resonances, it is known that all local
recurrence is restricted to the fixed point and to the invariant circle, when the latter
exists.

On the side of the Hopf curve without the invariant circle, all nearby maps are
locally topologically equivalent. On the side with the invariant curve, however, the
parameter space must be further subdivided because, restricted to the invariant circle,
we expect the rotation number of the maps, a topological invariant, to change with the
parameters. From circle map theory we know that the existence of a reduced rational
rotation number p/q implies the existence of at least one least-period-g orbit, so we
concentrate in this paper on determining the location in phase X parameter space
where periodic orbits of certain period exist. Such sets are called “period-gq resonance
surfaces”, or “p/q resonance surfaces” if we wish to identify the rotation number of the
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Fia. 1. Typical Hopf bifurcations: (a) Parameter plane without angular degeneracies (b) Pa-
rameter plane with two angular degeneracies (at Dy and D3 ) (c) Angle 8 of fized-point eigenvalue
vs. arc length s along the Hopf curve in (b).

period-q orbit. Their projections to parameter space are called “period-g resonance
regions”, or “p/q resonance regions”, or “(Arnold) resonance horns” if we wish to
suggest their shape. They are also called “phase locking regions” or “entrainment
regions”, both names having originated in the context of “Poincaré maps” of two
frequency flows on a torus; in this case, regions of constant frequency ratio for the
flow correspond to regions of existence of a certain periodic orbit for the map.

It is known that a period-g resonance region typically “opens out” from every
point on the Hopf curve for which the fixed point has an eigenvalue of ezWip/q,p/q
any rational with ¢ > 5, as suggested in Figure la. In order to ensure that a specific
resonance region opens in the horn-shaped manner suggested by that figure, several
nondegeneracy conditions must be satisfied. Some nondegeneracy conditions pertain
only to the phase variables, others include reference to the parameters as well. The
failure of any one of the nondegeneracy conditions to hold results in a “degenerate”
Hopf bifurcation. Of specific interest to us is the following nondegeneracy condition
with respect to the parameters: it is usually assumed that the argument of eigenvalues
of the fixed point varies monotonically along the Hopf curve. When the argument fails
to vary monotonically we say the Hopf bifurcation has an angular degeneracy. In
this case, the nearby Arnold resonance regions can appear locally in shapes such as
closed “bananas” rather than as the open horns of Figure la. Figure 1b suggests a
possible scenario for resonance regions near the Hopf bifurcation curve. The Hopf
points with angular degeneracies are at D;, a “banana” point, and at Dj, a “banana-
split” point.

To emphasize the non-monotonicity at the points with angular degeneracies, we
show in Figure lc the argument of one of the eigenvalues of the neutral fixed point
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as a function of arclength, s, along the Hopf bifurcation curve of Figure 1b. The
argument fails to vary monotonically through points D; and D;.

To be more precise, we make the following definition. Unless otherwise noted,
we assume throughout the paper that we are dealing with a k-parameter family of
functions F, : R? - R?,u € R*, which is C® as a function from R? x R* — R2.
We will be mostly interested in two-parameter families (k = 2).

Definition: Let F, be a family of smooth maps of the plane with the following
properties:
1. A map in the family has a fixed point:

Fuo(x0) = %o

2. The fixed point is “nonhyperbolic”, with complex conjugate eigenvalues on
the unit circle:

DF,,(xo) has eigenvalues et2miwo

where wo € R, but 2wg € Z to ensure that the eigenvalues in a neighborhood of the
bifurcation point are complex.
Then (xo, o) is a Hopf bifurcation point for the family F,.

The implicit function theorem guarantees that there exist unique fixed points
near xg for maps F, corresponding to parameter values pu near po. The fixed points
can be described by a C*® function x = x(u) satisfying x(po) = xo. The eigenval-
ues of the nearby fixed point x(u) can be written as Ay = Ayr(p) = Ap(x(p)) =
eP(m)Fi(2mwota(k))  This defines p(u) uniquely, and a(u) uniquely, once a choice of wo
has been fixed, as C* functions which must satisfy p(po) = 0, a(pe) = 0.

It is customary to study the Hopf bifurcation by making a change of parameters
to (p, ) from the original parameters p. This is possible whenever V,p(uo) and
V ua(po) are linearly independent vectors.

Definition: The point (xo, o) is a Hopf bifurcation point with a parametric
degeneracy if the vectors V,p(po) and V,a(po) are not linearly independent.

Definition: A Hopf bifurcation point satisfies the eigenvalue crossing condition

if
Vup(po) # 0

Definition: We say (xo, po) is @ Hopf bifurcation point with an angular de-
generacy for the family F, if it has a parametric degeneracy, but the eigenvalue
crossing condition is satisfied.

When the eigenvalue crossing condition is satisfied, as it generically is in two-
parameter families, the implicit function theorem guarantees the continuation of a
Hopf bifurcation curve through po in the parameter plane. If we express the Hopf
curve with arc length parametrization as p = p(s) with p(0) = po, it follows that
p(u(s)) = 0.

If we monitor the argument of the neutral eigenvalue of the fixed point along the
Hopf curve, we see that having an angular degeneracy is equivalent to d%a(p.(s)) ls=0 =
0. This is why we call the degeneracy an angular degeneracy. An angular degeneracy
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occurs either when V  a(uo) is nonzero but parallel to V ,p(po) or when V  o(po) = 0
(the latter being a nongeneric occurrence in two-parameter families).

We think of the Hopf bifurcation with an angular degeneracy as arising from
two possible scenarios in applications. The first is easier to explain and understand:
the “natural” parameters (u above) in an application are not related in a one-to-
one fashion to the “universal unfolding” parameters of the modulus and angle of the
eigenvalues of the associated fixed point for the corresponding map, or equivalent pa-
rameters such as p(p) and o(p) defined above. The lack of injectivity causes singular
points for the change of parameters from p to (p, ). Geometrically, we can think
of curves of singular points as places we need to “fold” the natural parameter plane
in order to place it on top of the corresponding points in the “universal” parameter
plane. When the Hopf curve crosses such a fold curve in the natural parameter plane,
we have an angular degeneracy. The description of the geometric “folding” of the
parameter space is further detailed in subsection 2.4.

The other general scenario where an angular degeneracy arises is along a curve
of “secondary” Hopf bifurcations in the two-dimensional parameter space. Although
locally the same as an angular degeneracy on a primary Hopf curve, this case cannot
be dismissed as merely an “unfortunate” choice of parameters because a “good” pa-
rameter choice is usually determined with respect to primary bifurcation phenomena.
One codimension-two bifurcation point, a “Chenciner” or “transcritical Hopf” point,
requires the existence of an infinity of angular degeneracies, each on its own secondary
Hopf curve inside its own resonance region. It was in studying bifurcations near a
Chenciner point, in fact, when we first became interested in the angular degeneracy
we describe in this paper [Mc, Jo]. We discuss this scenario in more detail in Section 3.
We also present in that section a model of a discrete—time adaptive control application
having a Chenciner point on a primary Hopf curve, a secondary Hopf curve connect-
ing two “Takens-Bogdanov” points on the boundaries of a primary resonance region,
an angular degeneracy on the secondary Hopf curve, and banana—shaped secondary
resonance regions.

The main areas of emphasis of the paper are determining a model, or normal form,
for a Hopf bifurcation with an angular degeneracy, investigating nearby resonance
surfaces and their projections to parameter space, relating this bifurcation information
for the model to the bifurcation picture for a generic two-parameter family of maps
with a Hopf bifurcation with an angular degeneracy, and describing situations in which
the angular degeneracy is expected to occur. The main result (Theorem 2.5 and its
corollary) is that the resonance regions near a generic Hopf bifurcation point with
an angular degeneracy “look” either like those near point D; or like those near point
D, in Figure 1b. We also discuss more global results about parameter space regions
where “banana” resonance regions are expected to appear.

The paper is organized as follows. In Section 2, we recall some basic results
about Hopf bifurcations, present the (known) Arnold theory for individual resonance
“horns” (with emphasis on the resonance surfaces and using variations on Arnold’s
proofs), present analogous results for resonance regions near an angular degeneracy,
and then consider the implications for the full bifurcation picture near an angular
degeneracy. In Section 3, we describe scenarios in which secondary Hopf bifurcations
with angular degeneracies are expected to occur, and present the adaptive control
model. We discuss global parameter space “bananas” in Section 4, and make final
comments in Section 5.

2. Local resonance regions near a Hopf bifurcation.
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2.1. Background. We begin by recalling some standard terminology and results
about Hopf bifurcations and normal forms.

Definition: A p/q resonant Hopf bifurcation point is a Hopf bifurcation point
having eigenvalues e*2""?/9 and rotation number of p/q around the fixed point for (an
appropriate lift of) the linearization of the map at the Hopf point. The fraction p/q
must be in lowest terms. If ¢ > 5, the bifurcation is said to be weakly resonant;
if 3 < ¢ < 4, it is said to be strongly resonant. (Sometimes ¢ = 1 and ¢ = 2 are
called strong resonances as well, although the eigenvalues for those cases are real.)

Note that, for a fixed choice of p/q, the p/q resonant Hopf bifurcation is a
codimension-two bifurcation — one parameter is needed to bring the norm of the
fixed-point eigenvalue to one, and the other parameter is needed to bring the argu-
ment of the fixed-point eigenvalue to the appropriate value of 27p/q.

THEOREM 2.1 (Normal form theorem). Let (Xo, o) be @ Hopf bifurcation point
for the k-parameter family of functions F, : R? —» R?, C*™ as a function from
R? x R* — R2. Then there exists a neighborhood of po in the parameter space for
which the original family can be converted by a polynomial change of variables into
the form

(1) f,(z) = /M) (3 4 A(p)2Z + ...+ B(u)z? ! + ...),

by identifying x € R? withz € C, a translation (1o bring the unique fized point at each
parameter value to the origin), and ¢ “near identity” polynomial change of variables.
A(p) = A1(p) + iA2(p) and B(p) = Bi(p) + t¢B2(p) are complez valued functions.
The omitted terms are all O(|z|?1Y), ezcept possibly for those of the form 2727 ~1,j > 3
which are O(|z|°). These “intermediate order” omitted terms are all invariant with
respect to rotations; the 29~ term is the lowest order term in the normal form which
is not invariant with respect to all rotations. The dependence of all the functions with
respect to u is C*°.

Proof. See any of [Ar], [GH], [Ru], for example. 0

THEOREM 2.2 (Hopf bifurcation theorem). Let F, : R? — R? be o family of
functions for which F : (u,x) — F,(x) is C®. Assume the eigenvalue crossing
condition holds at (xo, o) end that this point is not strongly resonant. Then

1. There is a unique fized point near xg for all maps near po in the parameter
space. A C®-smooth “Hopf bifurcation curve”, defined by the neutral linear stability
of the corresponding fized point, passes through the point (xq, po) in the parameter
plane. The fized point is stable on one side of the Hopf curve and unstable on the
other side.

2. If in the normal form of equation (1) Ai(po) s negative (positive), then
an attracting (repelling) invariant circle surrounding the fized point is born from the
fized point as the parameter crosses the Hopf bifurcation curve from the side with the
attracting fized point to the side with the repelling fized point (from the side with the
repelling fized point to the side with the attracting fized point). The smoothness of
the invariant circles can be guaranteed to be C" for any r < oo by suitably restricting
the parameter space neighborhood of ug. Local recurrent points are the fized point and
some points on the invariant circle, when the circle ezists.

Proof.
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1. The existence of a unique fixed point follows from the implicit function the-
orem. The stability follows from the Hartman-Grobman theorem.

2. See Ruelle’s textbook [Ru] for a proof of this part of the theorem using the
technique of graph transforms.
O

When A;(po) < 0, the Hopf bifurcation is called supercritical; when

A1(po) > 0, the bifurcation is called subcritical; when A;(po) = 0, the bifurca-
tion is called transcritical or a Chenciner point.

2.2. Individual nondegenerate resonance surfaces and regions (a la
Arnold). The Hopf bifurcation theorem implies that the bifurcation study would
be complete if we knew how to divide the parameter space on the side of the Hopf
curve with the invariant circle into topological equivalence classes. Consequently, we
begin by studying surfaces in phase x parameter space corresponding to periodic or-
bits of a certain period. We first present a nondegenerate two-parameter model for
investigating a “resonant” Hopf bifurcation in the neighborhood of a fixed point with
eigenvalues e¥2™?/4, We will locate all local period-q points in a family containing
such a resonant Hopf point. They will usually live on the invariant circle guaranteed
by the Hopf bifurcation theorem. Although the results in this subsection are not new
(cf. Arnold [Ar]), we include the subsection for several reasons: to emphasize the sur-
faces in phase x parameter space instead of just their projection to parameter space,
to highlight the differences between the nondegenerate and the degenerate cases, to
present some proofs which are slightly different from Arnold’s proofs, and to make
the paper more self-contained.

Arnold’s analysis begins by studying vector fields which are invariant with respect
to rotations of e2™?/4, He then shows that the ¢** iterates of maps such as the model
families in (2) and (3) below are, up to arbitrarily high order, “time-one” maps of
these “equivariant” vector fields. In contrast, we have chosen to work directly with
maps, and for ¢ > 5, although many of our arguments are suggested by his analysis,
especially for his ¢ = 4 case.

Our model family of maps near a p/q resonant Hopf bifurcation point is:

(2) £0,0)(2) = €7/ 1eP¥1%(z 1 A2’Z + Bz )

where p and a are small real parameters, z is a complex variable, z is its complex
conjugate, p and g are integers, and A = A; + 14, and B = B; + tB; are complex
constants with 4; # 0,B # 0. We consider only the local bifurcation for z,p,
near 0,0, and 0, respectively. Our justification for using this model is in the proof of
Corollary 2.4 below, where we show that a generic family near a p/q resonant Hopf
point can be changed into the form of equation (2) plus some “higher order” terms.

Properties of the (Nondegenerate) Resonant Hopf Model. For the family
defined by equation (2), which satisfies the hypotheses of the Hopf bifurcation theorem
if ¢ > 5, the fixed point z = 0 has eigenvalue efti(at+27p/q) (The corresponding
fixed point for the map in R2, obtained by identifying R? with C, has eigenvalues
ePti(a+2mp/9) ) The line p = 0, where the origin z = 0 changes from attracting (p < 0)
to repelling (p > 0), is a Hopf bifurcation curve. The argument of the eigenvalue is
monotonic along the Hopf curve. In fact, it equals a + 27p/q at (p,a) = (0,a).
(Contrast this with the degenerate model, where this monotonicity fails to hold, in
the next subsection.)
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F1Gg. 2. The nondegenerate Hopf model.

The local p/q resonance region, where period-q orbits exist, for equation (2), with
p/q = 1/5,A = —1 — 4, B = 1, is the horn-shaped region in Figure 2. All three
representative phase portraits are for the 5th iterate of the map. In phase portrait A,
the 5th iterates rotate counterclockwise on the (attracting) invariant circle; in C they
rotate clockwise; in B they move from saddles (x’s) toward nodes (filled circles).

More formally, we restate the following (known) theorem.

THEOREM 2.3. Assume the family £, o) is defined as in (2) and ¢ > 5. Then
there exists a closed neighborhood N of the origin in the phase x parameter space with
the following properties:

1. The set of least-period-q (p/q) points in N is topologically a punctured (closed)
disk. The puncture point is the origin — the p/q resonant Hopf bifurcation point which
is o fized point. The union of the least-period-q points and the fized point is a closed
disk.

2. If A1 # 0, then the projection of the least-period-q (p/q) points in N to the
parameter space is an (Arnold) resonance horn, emanating from the origin in the
parameter space, with both sides tangent to the vector (—A1,—Az). If, in addition,
B # 0, the horns have positive measure, and the order of tangency is %. The
parameter values near (p,a) = (0,0) for which the corresponding maps have period-q
orbit(s) near z = 0 are precisely those inside and on the boundary of the resonance
horn, excluding the tip of the horn, to which the p/q resonant Hopf point projects.

3. In the interior of this horn, there exists a pair of period-q (p/q) orbits, one
attracting and one repelling when restricted to the invariant circle. The two orbits meet
in a single saddle-node orbit on the boundaries of the horn (excluding the resonant
Hopf point itself).

Proof.

1. We determine all period-q points by looking at all solutions to f9(z) —z = 0
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which are not fixed points. Expanding in terms of the parameters p and o and the
modulus of z, solving for the parameters, and neglecting higher order terms leads to
the result.
2. Eliminate the phase variables from the expressions obtained for the proof of
the above item.
3. Follow arguments similar to those of Arnold [Ar].
Details are in the Appendix. d
COROLLARY 2.4. : Let F, : R?> — R? be a family of maps which satisfies the
hypotheses of the Hopf bifurcation theorem as stated in Section 2.1. Assume also
that (Xo, o) s ¢ p/q weakly resonant Hopf bifurcation point (defined also in Section
2.1), without ¢ parametric degeneracy (defined in the introduction). Then there is
a neighborhood of (xo, o) in the phase x parameter space in which the conclusions
of Theorem 2.3 will hold, where in item 2, A is replaced by A(po), B is replaced
by B(po), and the vector to which the resonance horn is tangent, is the vector that
—A(po) is mapped to by the linearization of the coordinate change from the (p, )
parameter space to the original u paremeter space.
Proof. Change variables to bring the original equation into the form of equation
(2) plus some higher order terms. Details are in the Appendix. d

2.3. Resonance surfaces and regions near an angular degeneracy. Our
model family of maps having least-period-g points near an angular degeneracy is:

(3) f(p,,,)(z) = ezWiw°ep+i(C1p+6272)(z + AzZ’z + Biq_l)

where p and 7 are real parameters, z is a complex variable, Z is its complex conjugate, g
is an integer, wq is a real constant, ¢; and ¢; # 0 are real constants, and 4 = 4; +14,
and B = Bj + tB; are complex constants. As before, we consider only the local
bifurcation for z, p, 7 near 0,0, and 0, respectively. The use of this model is justified
in 2.6.

As with the nondegenerate family in (2), this family has a Hopf bifurcation along
p = 0. This family is “degenerate” because the argument of the fixed-point eigenvalue,
27wo +c1p+c3 72, does not vary monotonically along the Hopf curve p = 0 as 7 passes
through zero. This causes a change in the appearance of the resonance regions, as we
now describe in 2.5.

THEOREM 2.5. [Properties of the Degenerate Hopf Model]: Assume the family
fo,r) is defined as in (3) and ¢ > 5. Assume Ay, ca, and Az — c1A; are all nonzero,
and wo # p/q, but is sufficiently close to p/q. Then, there is a closed neighborhood N
of the origin in the phase x parameter space with the following properties:

1. The set of least-period-q (p/q) points in N and the projection of this set to
the parameter space is described by one of four cases. If we define oo := 2w(wo—p/q),
then the four cases are determined by the signs of the three quantities Aq, %,
h"_"ifllm, as indicated respectively in the following list:

a. (-,—,+) or (+,+,-): A twice-punctured sphere which projects to ¢ “banana—
shaped” region with both tips on the Hopf line.

b. (+,-,+) or (-,+,-): Two disjoint punctured closed disks, each projecting to
disjoint resonance horns, each with its tip on the Hopf line (e “banana split”).

c. (-+,+)or(+,-,-): A closed cylinder which projects to o “thickened” parabolic
T€gLON.

d. (-,-,-) or (+,+,+): The empty set (projecting to the empty set).

and
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Fic. 3. Period-5 resonance regions near a Hopf point with an angular degeneracy. Computa-
tions were done using equation (8) with A = —1—4,B = 1,c; = —0.5, and (a) wop = 0.21,c5 = —1
(b) wo = 0.19,c5 = +1 (c) wop = 0.21,c5 = +1

The punctures, present in the first two cases, are p/q resonant Hopf poinis located at
(z,(p, 7)) = (0,(0,+£+/—aqo/c2)), and project to corresponding horn tips. If B # 0,
the parameter space horns have positive measure and have order of tangency % at
the tips. In all cases, the “centers” of the horns are pieces of parabolas to lowest order.
The parameter values near (p, 7) = (0, 0), for which the corresponding maps have least-
period-q (p/q) orbit(s) near z = 0, are precisely those inside and on the boundary of
the resonance region(s), exzcluding the resonant fized points which project to the horn
tips.

1. On the interior of this region(s), there ezists a pair of period-q (p/q) orbits,
one attracting and one repelling, when restricted to the invarient circle. The two
orbits meet in a single saddle-node orbit on the boundaries of the horn (excluding the
resonant Hopf point(s) itself).

Note: The terms in quotations are made more precise in the proof. Parameter space
projections of cases (a), (b), and (c) are illustrated in Figures 3a, 3b, 3c, respectively.

Proof.
1. The nondegenerate family of equation (2) and the degenerate family of equa-
tion (3) differ only in the appearance of their parameters: o has now been replaced by
ag+c1p+cam?. The proof is thus obtained by a (noninjective) change of parameters.
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Details are in the Appendix. See also the end of the next subsection, where with
the aid of Figure 4 we describe geometrically how the degenerate parameter space
“unfolds” onto the nondegenerate parameter space.

2. Same as the proof of item 3 in Theorem 2.3.
O

For the statement of the following corollary, we recall notation from the introduc-
tion: p(s) is an arclength parametrization of the Hopf curve which passes through
the bifurcation point at s = 0, and eP(#)+¥(2mweta(k)) are the eigenvalues of the cor-
responding fixed point along the Hopf curve.

COROLLARY 2.6. Let F, : R? — R? be a family of maps which satisfies the
hypotheses of the Hopf bifurcation theorem as stated in Section 2.1, including the
eigenvalue crossing condition. Assume that (X, po) is o Hopf bifurcation point with
an angular degeneracy (defined in the introduction), the eigenvalues of DF , (xo) are
et?miwo  the rotation number around xo of (a lift of) DF ,,(x0) is +wo, and wo # p/q
for g < 4 (not strongly resonant).

Assume also that and V,a(po) # 0. Thus V,p(po) and V,a(p) are nonzero

parallel vectors and :—sa(p(s)) = 0. Assume, however, that (1(15—22@(#(3)) # 0. Then for
any p/q sufficiently close to wq, there is a closed neighborhood N of (xq, po) in the
phase x parameter space inside which the set of period-q (p/q) points in N is described
by one of the four cases (a) - (d) enumerated in statement 1 of Theorem 2.5. The four
cases are determined in the same way as in Theorem 2.5, after putting the original
equation in its normal form up to O(|z|®) terms, changing parameters from p to (p, 7),
letting A = A(po), and writing the eigenvalue argument ¢(p, 7) = wo+c1p+cam +...,
a form justified in the proof.

Proof. This proof is similar to that of Corollary 2.4. We show that there is a
nonsingular change of coordinates which brings our original equation into the same
form as our model with an angular degeneracy except for higher order terms. Details
are in the Appendix. d

2.4. Discussion. Although the theorems and their corollaries in the previous
subsection stated results for only one p/q resonance surface at a time, there are some
relationships between nearby resonance surfaces we wish to point out.

First, for a p/q resonance horn away from an angular degeneracy, we recall from
Corollary 2.4 that the angle at which it meets the Hopf curve is determined by the
coefficient A(p) of the 22Z term in the normal form, where p is the parameter value
corresponding to a p/q resonant Hopf point. Since this coefficient varies smoothly
along the Hopf curve, the angles at which the various resonance horns meet the Hopf
curve will also vary smoothly along the Hopf curve. (No similar statement can be
made about the “B(u)” coefficient of the zZ~! term; it is not even the coefficient
of the same term in the normal form as we move from one resonant Hopf point to
another). This implies that along the Hopf curve for any family, the angle at which
a p/q resonance horn meets the Hopf curve varies smoothly as p/q varies. This is
even true if the B coefficient in the normal form near a particular p/gq resonant Hopf
point is zero; the order of tangency of the saddle-node curves for that particular p/q
resonance horn, however, would not be of order %.

A similar statement holds for the consistency in the shape of resonance regions
near an angular degeneracy. The “parabolas” which define the “centers” of the p/q
resonance regions (defined in the proof of Theorem 2.3), vary smoothly in p/q.

We also point out that, even though there are four distinct cases for individual
resonance regions, the collection of resonance surfaces and regions near a single Hopf
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bifurcation with an angular degeneracy has one of the following two forms:

a. Twice punctured disks which project to “bananas” for all p/q on one side of
wo; the empty set for all p/g on the other side of wq.

b. Pairs of punctured disks which project to “banana splits” for all p/q on one
side of wq; closed cylinders which project to thickened parabolas for all p/g on the
other side of wg.

Analytically, this is because the signs of the three quantities: A;, #2=¢14i

€A
A:‘_“ifllAl, determine the four cases; only the last quantity can change sign as p/q

is varied (via ag := 27(wo — p/q)).

The first case is illustrated schematically in Figure 1b near point D; and for the model
family below in Figure 4d;. The second case is illustrated schematically in Figure 1b
near point Dy and for the model family below in Figure 4d;. See also Figure 10,
described in the proof of Theorem 2.5 in the Appendix, for a further description of
how nearby resonance regions change as varying p/q causes og to change between
positive and negative.

MODEL FAMILY. To portray a bifurcation picture with more than one reso-
nance region near an angular degeneracy, we used the following family:

, and

(4) £(,r)(2) = €m0 ertileirteat ) (5 | 45?7 4 B! 4 C2%7)
with wo = 0.19,¢; = —0.5,4A = -1 — ¢, B = 1,C = 1,9 = 5. Figure 4d;, using
¢z = —1, shows two banana resonance regions; Figure 4dy, using ¢z = +1, shows a

banana split resonance region and two parabolic resonance regions.

The family of equation (4) is the same as the model degenerate family we began
with in Equation (3), except for the z3Z term. We made this alteration because the
family of equation (3) is invariant to rotations by 27p/q. This is fine for computing
the p/q resonance region, but not for any other resonance region. For example, if
p/q = 1/5, and we were computing the 1/6 resonance region, the invariance with
respect to rotations by 27 /5 would imply that period-6 orbits must appear in groups
of 5. Thus, a saddle-node birth of a pair of period-6 orbits would result in the birth
of 10 period-6 orbits, or 60 period-6 points. The z3Z term was chosen because it is of
high enough order so as not to affect the existence of the invariant circle, and because
it is not invariant to any rotations about the origin in phase space. Thus no unwanted
symmetries are present.

The Geometry of the parameter change or, “Theorem 2.3 to Theorem

2.5 in pictures”. Figures 4d; and 4d; can be thought of as having been created via
parameter space “surgeries” of a bifurcation diagram for a corresponding nondegen-
erate family. Specifically, if we start with the bifurcation diagram of Figure 4a for the
nondegenerate family f(, 4)(z) = et**(z + Az®z + Bz?~' 4 Cz°z), we can change it
into either Figure 4d; or 4d; with the coordinate change o = 2wwg 4 c1p+ co72. This
coordinate change, replacing o with 7, can be decomposed into the following three
coordinate changes, each having a simple geometric interpretation:

a. A shear to make the “singular line” perpendicular to the Hopf curve: a =
&+ c1p. (Figure 4a to 4b.)

b. “Unfolding a double cover of half of the nondegenerate parameter space:”
& 2nwg + c2|7|,c2 = £1. (Figure 4b to 4c; for c¢; = 1; Figure 4b to 4c; for
Cy = —1)

¢. Smooth at the fold lines: # = 7|7|. (Figure 4c; to 4d; or Figure 4cs to 4d;.)
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A rescaling would give the same picture as Figure 4d; for any negative ¢;, and
the same picture as Figure 4d; for any positive ¢;.

It is now easier to see why the nondegeneracy conditions of Theorem 2.5 are
necessary. The value of A; must be nonzero so that the resonance horns emerge
transverse to the Hopf curve. The expression A; — ¢; A1 must be nonzero to ensure

A

the resonance horns cross the fold line transversely (the horns emerge with slope i

and the slope of the fold line is ¢1). If c2 were zero, the fold might be even more
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Fic. 4. Relationship of the nondegenerate parameter space to the d.eqenerate one: (a)
£ p,0)(2) = €2TW0ePtia(z 4+ Az?7 + BzI~! + C2%7); (b) f(,,5)(2) = e?™woertilateir)(z + Az%7 +
Bzt + Cz3i),' (c) f(p,+)(z) - equiwoep+i(27rw0+c1p+c2|+|)(z + Az%7 + Bzd 1 + C’zai),' (d)
f(p,.,.)(z) = t-zZ"”;“’U(—3“""’;(61“"l":E"'Z)(z—I—AZZE—I—BEQ_l +C23%) In all figures, wo = 0.19,¢; = —0.5,4 =
—-1—-2,B=1,C =1,9 =5; tn c1 and dy, the constant coc = —1; in cs and dy, the constant cg = +1.

degenerate.

More general degenerate families could also be considered as geometric unfoldings
of a double cover of half a nondegenerate parameter space, but only to lowest order
terms. The model families behave better because they have constant coefficients A
and B; in a more general family these coefficients would depend on the parameters.

3. Angular Degeneracies on Secondary Hopf bifurcation curves. So far,
the only reason we have given for expecting a Hopf bifurcation with an angular de-
generacy is that the relationship between an application’s natural parameters and
the “universal” parameters, the modulus and argument of a fixed point’s eigenvalue,
could be nonhomeomorphic. We now describe some scenarios in which the angular
degeneracy is expected, or even guaranteed, to occur, even for the “best” choice of
parametrizations. They all involve secondary, rather than primary, Hopf bifurcations.
These scenarios, in fact, were the original motivation behind our study of a Hopf
bifurcation with an angular degeneracy which led to this paper.

3.1. Takens—Bogdanov points and secondary bifurcations. When a fixed
point of a family F, undergoes a (primary) Hopf bifurcation, one result can be the
birth of periodic orbits as the Hopf curve in the parameter plane is crossed. Period-
g resonance regions (horns), described throughout this paper, where period-q orbits
exist, emanate from a point on the primary Hopf curve where the eigenvalues of DF,
at the associated fixed point are located at a ¢** root of unity.
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The sides of a period-g resonance region are period-g saddle-node bifurcation
curves, characterized by having an eigenvalue of DF}, at one. As a saddle-node curve
is traced out in the parameter space, away from the primary Hopf bifurcation, the
second eigenvalue may vary. (For ¢ > 5 and parameter values near the primary Hopf
bifurcation, the second eigenvalue determines the local attraction or repulsion normal
to the invariant curve.) If the second eigenvalue also becomes equal to one, we gener-
ically have a double 1, or “Takens-Bogdanov” point [Bo,Ta]. One consequence of the
analysis of a generic Takens-Bogdanov point is the emergence of a (secondary) Hopf
curve from the Takens-Bogdanov point, tangent to the saddle-node and extending
tnto the primary resonance region. This secondary Hopf curve is characterized by
the existence of a period-q point where the eigenvalues of DF? are complex conju-
gate and on the unit circle. A (secondary) period-mg resonance horn, analogous to a
primary period-m resonance horn, will emanate from a point on the secondary Hopf
curve where DF} at the associated period-g point has an eigenvalue at an mt* root
of unity.

Only five possibilities exist for the global continuation of a Hopf curve in a two-
parameter family: (1) continuation in each direction terminates at a Takens-Bogdanov
point, (2) continuation in each direction terminates at a “double -1 point” [Ar, Tal,
(3) continuation in one direction terminates at a Takens-Bogdanov point, continua-
tion in the other direction terminates at a double -1 point, (4) continuation forms a
closed curve, or (5) continuation proceeds forever (in an unbounded parameter space).
Possibilities (1) and (2) imply the existence of local extrema for the argument of the
neutral eigenvalue along the Hopf curve. These local extrema are generically the Hopf
bifurcation points with angular degeneracies.

Several possible scenarios, all involving secondary Hopf bifurcations and most
involving Takens-Bogdanov points, are suggested in Figures ba—e. In Figures 5a—d,
we can assume the eigenvalue argument is zero at one of the Takens-Bogdanov points.
Continuity of this eigenvalue along the secondary Hopf bifurcation curve, coupled with
the assumed fact that no double -1 points are encountered along the way, implies that
the argument must return to zero at the other Takens-Bogdanov point. Thus the
argument (generically non-constant) must reach a maximum or minimum at least
once along the secondary Hopf curve. In Figure b5e, if by moving all the way around
the secondary Hopf curve also returns the secondary rotation number to its value at
the starting point, then relative extrema must exist. Thus, these scenarios will lead
to Hopf bifurcations with angular degeneracies.

Differences in the figures depend on which side of the horn the second Takens-
Bogdanov point appears, which side of the secondary Hopf bifurcation curve the
secondary invariant curves exist, and on which type of angular degeneracy is realized
(“banana” vs. “banana split”). Although there are no Takens-Bogdanov points in
Figure be, it could turn into Figure 5d by “expanding” the secondary Hopf circle
through a variation of an auxiliary parameter, for example, until the “top” angular
degeneracy “hit” the saddle-node curves bounding the resonance horn. Other similar
scenarios are also possible.

Figure 5a is an illustration of a pair of resonance horns which exist near a
“Chenciner” point [Ch] . A Chenciner point is yet another degenerate Hopf bifur-
cation point: the Hopf bifurcations change between supercritical and subcritical at
the Chenciner point. This is illustrated by the switch in the side of the primary Hopf
bifurcation curve to which the primary resonance horns grow. As part of his thesis,
Johnson [Jo] showed that there necessarily exist two Takens-Bogdanov points, one on
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each side of the primary resonance horn which “turns around”, and a secondary Hopf
curve which connects them. In this case, there must be a Hopf point with an angular
degeneracy along that secondary Hopf bifurcation curve. The adaptive control ap-
plication, which we describe next, has a bifurcation diagram with features similar to
Figure 5a.

3.2. The adaptive control application. Consider the problem of controlling
the linear, discrete-time, single-input, single-output (SISO), plant with unknown, con-
stant coefficients (see the 1984 textbook by Goodwin & Sin [GS]):

() y(t +1) = —ony(t) — ozy(t — 1) + Bou(t).
In designing the controller, a first-order model of (5) is assumed:
(6) 9(t +1) = ax(t)y(t) + Bu(t)

where —&; and B are estimates of the actual system parameters  and 8. Thus, two
sources of plant/reference-model error are introduced by the reference model: (1) the
use of a first-order model (since &z = 0, a3 becomes a measure of the plant/reference-
model order mismatch); (2) it is assumed that a good estimate of the gain of the
manipulated variable (8o) is known (thus, Bis a constant). The objective of the
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controller u(t) is to make the system follow the set point y*(t); inverting (6), the
control law
4+ 1) —ai(t)y(t
u(t):y (t+1) Aal( Jy(t)
B

is obtained. Choosing y*(t + 1) = constant # 0, it is possible to set y* = 1 without
loss of generality. The recursive identifier for a; is a scalar form of the projection
algorithm of Goodwin et al., 1980 [GRC]:

y(t) — 1

&a(t) = dalt = 1) +ylt 1)

Defining z(t + 1) = y(¢), the closed-loop system can be written as
2t +1) =y(t),
y(t +1) = —a1y(t) — a2z(t) +

¥
c+ y2(¢)

By s
5 (1 t)y(t)),

G(t +1) = éu(t) + (y(t+1)—1),

and after defining a = —e1, b = —ay, k = ,30/,3, and z = a — k&; the final form of
the map: G: R® — R3

T Y
y |- bz +k+ zy
k
z z—c+7;2(bm—|—k+zy—1)

is derived. The system is characterized by three parameters. The small and positive
constant ¢ pertains to the estimation algorithm chosen; it is used to prevent division by
zero in the estimator. In our calculations it was kept fixed at the representative value
of ¢ = 0.1. The second parameter, k, is a measure of the error in the assumption of
the value of the gain of the manipulated variable (k = 1 implies no error); and finally
b is a measure of the plant/reference-model-order mismatch (b = 0 implies no order
error).

Bifurcation analysis reveals a Hopf bifurcation locus for the period-1 fixed point
(it corresponds to the set point of the process) in the (k, b) parameter plane:

c+1
c+ 2

b= R =

Along the Hopf-bifurcation locus, two complex eigenvalues are located on the unit
circle (critical eigenvalues) while the third, real eigenvalue is given by:

c+1

A= —bp = .
1 L

Since A; lies well within the unit circle for our choice of ¢ = 0.1, the dynamics are
strongly contracting in the direction corresponding to A;. It is therefore expected that
the system will behave in a fashion similar to a map of the plane in the neighborhood
of the Hopf bifurcation. It can be easily shown that as k is varied along the Hopf-
bifurcation line, the critical eigenvalues start at (-1,-1) at & = 2.092857 and then move
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monotonically over the entire unit circle, approaching (1,1) as k — 0. As described,
for example, in Corollary 2.4, primary resonance horns are expected to emanate from
this line. This is confirmed in Figure 6a; the details of the local bifurcations at the tip
of the subcritical period-5 horn are shown in Figure 6b (Frouzakis et al., 1991 [FAK],
Frouzakis, 1992 [Fr]). The continuation calculations were performed using AUTO86
by E. Doedel [Do, DK] (and a real-time graphics interface for it by Dr. M. A. Taylor
in our group).

On each side of this period-5 horn we observe a Takens-Bogdanov point (two
eigenvalues of DG® at one); they are marked A and C in Figure 6b. As predicted
by the theory, we were able to compute the secondary Hopf bifurcation curve inside
the period-5 horn connecting the two Takens-Bogdanov points. Along this curve,
the two relevant eigenvalues of the corresponding period-5 orbit “start” with zero
argument (point A) and after reaching a maximum argument of about 63.8° on the
unit circle (point B — the angular degeneracy) they move back to zero argument at
point C (Figure 6c). Secondary resonance regions originate from this secondary Hopf
curve. Figure 7 shows the “banana-shaped” secondary resonance horns associated
with a 6% and 7** root of unity, when the eigenvalues are cos(r‘%r) + isin(%’r) and
cos(27") + isin(r"T’r) respectively. The 6** root of unity is crossed twice along the AC
curve (at points F and G) where (k,b) = (0.8369, —0.4725) and (0.8274, —0.48418)
respectively. Similarly, the period-7 resonance horn opens and closes at points D and E
on the AC curve, where (k, b) ~ (0.8366, —0.4645) and (0.8183, —0.48603) respectively.
We have numerically traced the boundaries of the period-6 and period-7 resonance
horns for G5 in Figure 7. (Period-6 (resp. 7) for G® means period 5 x 6 = 30 (resp.
5% 7 = 35) for the original map G.) These secondary resonance horns both “open”
and “close” on the secondary (i.e., period-5) Hopf bifurcation curve, suggesting that
point B is a “banana” point rather than a “banana split” point. We would need to
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compute higher order terms in the normal form on the center manifold, however, in
order to be sure.

We note that in other examples with an angular degeneracy on a secondary Hopf
curve the argument of the eigenvalue at the maximum point (that is, at the angular
degeneracy) is only a couple degrees instead of 63.8°, as it is here. This is why this
example was good for computing bananas: period 5 x 6 saddle-nodes are much easier
to compute than saddle-nodes of period 5 x 180.

4. Global bananas. All of our results to this point have been local in nature.
Banana regions or banana split/parabolic regions have been shown to exist in arbi-
trarily small neighborhoods of a Hopf bifurcation point with an angular degeneracy.
On the other hand, banana resonance regions seem to appear in our numerically
computed bifurcation diagrams even relatively far from angular degeneracies. For
example, the period-30 and 35 bananas of Figure 7 seem relatively far from the an-
gular degeneracy — far enough, at least so that their shapes would not be still called
parabolic. Also, in the schematic bifurcation diagrams of Figure 5, all the secondary
resonance regions are closed bananas, even in the case of Figure 5¢c, where the two
angular degeneracies are intended to be locally banana split points. It is even possible
that the saddle-node curves, which bound the primary resonance regions of Figure 5,
if continued beyond the point where the diagrams stop, could “end” at a second cusp
on another (or the same) primary Hopf bifurcation curve. We now give the following
global banana result, where the existence of one p/gq resonant Hopf point implies the
existence of another.

THEOREM 4.1. Let F be a C® function from R? x R? — R? which represents a
two-parameter family of diffeomorphisms of the plane. Assume

1. There is a Hopf bifurcation curve with a p/q resonant point, ¢ > 3, which
does not have an angular degeneracy.

2. The region of phase x parameter space where a p/q orbit exists is compact.
Then there must ezist another p/q resonant Hopf point somewhere in that compact
region of phase X parameter space. Both points are puncture points on the same
component of least-period-q points (i.e., the component of the p/q resonance surface)
in the phase x parameter space. (That is, the ezistence of one end of a banana implies
a second end must also exist.)

Proof. Theorem 2.3 tells us that the surface of period-gq points near the assumed
p/q resonant Hopf point is a punctured disk. The idea of the proof is to consider this
surface globally in the phase x parameter space. It can be shown that the closure
of the set of least-period-¢q points in phase X parameter space forms an orientable
topological two-manifold. (In the simplest case, this manifold would be a topological
sphere, but it might have some number of handles, as well). All points on this manifold
are least-period-g points under the map (x,u) — (F,(x), ), except possibly for
isolated fixed points such as the p/q resonant Hopf point projecting to the (first) tip
of the resonance horn (if ¢ > 5). The proof of the existence of the second fixed point
on the resonance surface emanating from the first p/q resonant Hopf point is almost
the same as the proof of Theorem 2 of [P2]. That theorem proves the existence of
a p/q Hopf point on a p/q surface that emanates not from a first p/q Hopf point,
but from “zero forcing amplitude” in a two-parameter family of maps of the plane
generated by return maps of a periodically forced planar oscillator. The p/q surface
for a forced oscillator “naturally” has an invariant circle as a boundary component;
the map restricted to this invariant circle is a rigid rotation by p/q. To convert our
situation to that of [P2], we need to replace the first p/q Hopf point with a boundary
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circle on which the map is a rotation by p/q. But this is easily done by “blowing
up” the p/q resonant Hopf point (extending the phase space in polar coordinates to
r = 0). The proof of the existence of the second p/q Hopf point then follows from
[P2]. 0

We next present a corollary which describes conditions under which a whole col-
lection of secondary global banana regions will exist.

COROLLARY 4.2. Let F, be a generic two-parameter family of diffeomorphisms
of R%. Assume

1. There is a p/q resonance surface in the phase X parameter space resuliing
from a (primary) p/q resonant Hopf bifurcation.

2. The p/q resonance surface includes two Takens-Bogdanov points for the gi"
iterate of the map; the two Takens—-Bogdanov points are connected by a secondary
Hopf bifurcation curve (also along the p/q resonance surface).

3. Along the secondary Hopf curve the argument of the neutral eigenvalue of
DFY, has a single local extremum, say 2mwo.

4. There is no other secondary Hopf curve on the p/q resonance surface.

5. All secondary periodic point surfaces emanating from the secondary Hopf
curve are contained in a compact region of phase X parameter space.

Then, for every m/n € (0,wq), the period-gn surface emanating out of the m/n
secondary Hopf point must connect to the period-gn resonance surface emanating from
the unique m/n Hopf point on the secondary Hopf curve on the other side of the local
extremum. (Thus, all resonance regions emanating from the secondary Hopf curve
are globally closed bananas.)

Proof. The hypotheses of Theorem 4.1 are satisfied for each m/n € (0,wq), so
a second m/n Hopf point must exist. The assumptions of a single local extremum
and no other secondary Hopf curves imply that there is only one “appropriate” point.
This point, therefore, is where the other end of the global banana must be. d
Note: It seems that all primary resonance horns near and on one side of a Chenciner
point on a Hopf bifurcation curve satisfy the hypotheses of Corollary 4.2. This would
give us an infinite collection of primary resonance horns, each having its own infinite
collection of global bananas.

5. Conclusions and Comments. Although the parametric degeneracy we stud-
ied in this paper was specifically along a Hopf bifurcation curve, any parametric de-
generacy (with respect to parameters in a universal unfolding of a local bifurcation)
can be thought of, in its simplest form, as merely a local “folding in half” of the degen-
erate parameter space, in order to map it to the universal (nondegenerate) parameter
space. We could, for example, have included the strongly resonant cases in Theorems
2.3 and 2.5 and their corollaries, even though the projections of the resonance surfaces
near the strongly resonant Hopf points to the (nondegenerate) parameter space are
not necessarily cusps.

It might be useful to write explicit conditions in terms of the original map to
determine (a) an angular degeneracy and (b) the type: banana vs. banana-split
(harder, since higher order terms are required). We found it much easier to verify
conditions of the theorem by numerically computing arguments of eigenvalues along
the Hopf curve, as we did for the adaptive control application to produce Figure 6c,
than by computing a normal form (especially when needing to use a center manifold).

We point out that the global results (Theorem 4.1 and Corollary 4.2) are very
much dependent on the phase space being two-dimensional. The fixed-point theorem
from [P2] quoted in the proof of Theorem C applies only in that setting. On the other
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hand, we expect local results in higher dimensions to be preserved by use of a center
manifold. Note that Corollary 4.2 does not exclude the possibility of “non-banana”
resonance regions which do not emanate from the secondary Hopf curve. For example,
if the local banana-split horn “partners” connect to form a global banana, we would
expect the local parabolic regions to also connect, forming global annuli, projections
of tori from the phase X parameter space. This scenario can be imagined by extending
the two p1/q1 horns in Figure 1b until they connect, forming a global banana; the
global pg/qo region would then likely be an annulus.

We caution our readers that knowing the complete structure of resonance regions
for a family of maps does not necessarily mean we have a complete bifurcation classifi-
cation, even locally in a neighborhood of a nondegenerate Hopf bifurcation point. We
do know that all maps on the side of the Hopf bifurcation curve without the invariant
circle, including all those on the curve itself, are locally topologically equivalent. We
also know that on the side with the invariant curve, the parameter space must be
divided at least into the following equivalence classes: the interiors of each resonance
region (circles in resonance), each boundary of each resonance region (circles in reso-
nance with saddle-node orbits), and curves “parallel” to the resonance regions along
which the corresponding maps restricted to the invariant circle are conjugate to a rigid
rotation with an irrational rotation number. What is missing is a guarantee that all
the maps in a given resonance region are equivalent. Corollary 2.4 comes close to giv-
ing this guarantee: the existence of a single attracting/repelling pair of periodic orbits
as stated in part 3 of Corollary 2.4 implies that all maps corresponding to parameter
values in the interior of a resonance horn and close enough to the tip are topologically
equivalent.This may not, however, imply that this uniqueness of equivalence classes
within a single resonance region can be extended to hold for all resonance regions in
a fixed neighborhood (not depending on p/q) of a Hopf bifurcation point. This is
why in Corollary 2.6, where we make a claim about the shapes of resonance regions
“for all p/q sufficiently close to wo”, we were unable to claim as we did in Theorem
2.3, Corollary 2.4, and Theorem 2.5, that there exists a single pair of period-g orbits
inside the corresponding p/q resonance region.

Even if a complete local classification could be established, no such claim could
ever be made about the global bananas being the complete bifurcation diagram. Check
[ACHM] for example, to see a variety of possible further subdivisions of a single res-
onance region into further equivalence classes. These further subdivisions are possi-
ble, in part, because away from the Hopf curve, as well as near strong resonances,
the invariant circle which is born in the Hopf bifurcation may break. This allows
non-uniqueness of rotation numbers which in turn allows resonance regions to over-
lap. Near strong resonances, in fact, they must overlap, because of global manifold
crossings which imply the existence of an infinite number of periodic orbits for fixed
parameter values.

There is an additional number of related questions we have not addressed in this
paper: (a) No upper bound is given on the number of resonant Hopf points which may
exist on a given two-manifold of period-q points; more than two could certainly exist.
We conjecture that Lefschetz index theory could be used to show that the fixed points
should generically come in pairs, having indices plus and minus one, respectively.
“Mutant” bananas, with 4 tips, for example, could easily be constructed by parameter
space surgery on a family having a banana with two tips! (b) Cusp points (saddle-
nodes with a higher order degeneracy — not to be confused with cusps at resonant
Hopf points) may also appear along the saddle-node boundaries of resonance regions.
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They usually appear in pairs, as well, such as on the left-hand side of the subcritical
period-5 resonance horn in Figure 6a. Work in progress further describes these pairs
of cusps [MP]. (c) Finally, finding examples that would exhibit all schematic scenarios
pictured in Figures 5a through 5e remains, to our knowledge, an open problem.

Acknowledgements. We are grateful to R. P. McGehee for helpful discussions
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6. Appendix: Proofs.

6.1. Proof of Theorem 2.3. As indicated in subsection 2.2, many of the argu-
ments in this section are adaptations of arguments which Arnold [Ar] uses for ¢ = 4.
We also note that the symmetry of equation (2) implies that f¢(z) = z is equivalent
to f(z) = e?™P/1z. The latter equation is easier to use for verifying property 1 of
Theorem 2.3, but more difficult to generalize to Corollary 2.4, where the symmetry is
not present. So we stick to solving f4(z) = z.

Property 1:
We start with the following lemmas.
LEMMA 6.1. Assume ¢ > 1 and

(7) f(z) = p(z + Az°z + ...+ Bz? 1 + ...)

where the omitted terms are all O(|z|?1!), ezcept for those of the form z/zi 1,3 <
j < L1 which are O(|z|%). Then

n—1 n—1
(8) 7(z) = u*(z + A [p**)2°2 + ... + B |u|**p*9)z ") + ...
k=0 k=0

where the omitted terms are all O(|z|?1Y), except for those of the form 277’ 1,3 <
j < L which are O(|2]%).

Proof. Direct calculation. d

LEMMA 6.2. Assume the C*, k> 2 family of C™ maps, f(p,a), 15 defined by

(9) fp,a)(2) = ez"rip/qep'l'm(z + A(p,@)2°z + ...+ B(p,a)z?" 1 + ...)

where the omitted terms are as in Lemma 6.1. Let A = A(0,0), B = B(0,0),z = re®®.
Assume A # 0,B # 0, and q¢ > 2. Then the least-period-q points near (p,o,z) =
(0,0,0) are given by the solutions of the equation:

(10) p+ia+Art 4+ 4+ Bri%e % 4 —=0,7£0

where the 0-independent omitted terms are O(r?, p?, a2, ap, pr?, ar?), and all other
omitted terms are O(r?, pr?=2% ar?=2).

Proof. Period-q points satisfy f¢(z) — z = 0. Use Lemma 6.1 to compute f?(z),
and expand A(p,a), B(p,a), p, pu? — 1,170 |ul?*, and 3170 |w|~2*Eke, with p =
e?™P/1ePtia to get power series in p and a. Then substitute z = re? and divide
through by gre*’. (Dividing by r eliminates only the origin, which is a fixed point.) It
can be shown (Proposition 3.2 in [CMY] or Theorem 1, Part A in [P2]) that solutions
to equation (10) can only have a least period of ¢ or 1. Since period-one points are
only at z = 0, then period-¢q points with r # 0 must be least period-g points. d
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Although we cannot solve (10) for the period-g points as a function of the param-
eters, we can solve for the parameters as a function of the phase variables r and 6.
By the implicit function theorem on (10), this is apparently:

(11) p+ia=—Ar? — . — Bri2e % _ |

By choosing r small enough, say less than ro, we can be sure that Ar? dominates all
omitted #-independent terms, and Br?~2e~9*® dominates all §-dependent terms.

For 0 < » < 70,0 < § < 27 equation (11) is an explicit parametrization of the
punctured disk which is the least-period-q surface. Adding r=0, corresponding to the
resonant Hopf point, fills in the puncture point in the disk. This completes the proof
of Property 1.

Property 2:

We now use equation (11) to determine the region in parameter space to which
this disk projects. Ignoring the omitted higher order terms, which are the same as
for equation (10) in the statement of Lemma 6.2, and, for now, the r?=2 term, we get
p+io = —Ar? + ..., or equating real and imaginary parts, respectively,

(12) p=—Airta=—Ayr?

Eliminating r gives:
(13) a=="p,—— >0
1 1

That is, to the lowest order terms in p and «, the parameter values for which period-g
points exist trace out a ray in the parameter space from the origin in the direction of
(—A1,—Az2) as 7 increases from 0.

If we now include the #-dependent term from equation (11), Br?=2e~%¢ we see
that for a fixed value of r, and letting 8 vary from 0 to 2=, a circle in the parameter
space is swept out (g times), having center at (p,a) = (—A;r?, —A,r?) and radius
|B|r?~2. When g > 5, sweeping out all such circles for small  covers a horn-shaped
region in the parameter space. See Figure 8 where we have drawn two such circles
and the corresponding horn for a resonance region. Since the distance from the origin
of these circles varies with 72 and the width of the horn varies with 72, the two
sides of the horn are tangent of order %.

This completes the proof of property 2 of Theorem 2.3, but as a heuristic comment,
we note that the terms on the right hand side of equation (11), including those not
explicitly written, can be separated into #—independent and #-dependent terms. If we
considered all #-independent terms, the analogue of equation (12) would be a semi-
infinite curve instead a straight ray. This curve we call the “center of the resonance
horn.” (This would be well defined if the equation were completely in normal form
— all non-resonant terms eliminated. This, however, would bring up the question
of convergence of an infinite sequence of coordinate changes. Our wish to avoid this
technicality is why these comments are merely heuristic.) The center of the resonance
horn is still, of course, tangent to the vector (—A;1, —A3) at the origin. Now adding
the Br?=2e~9% term will cause parameter space circles to be swept out as 6 varies
with r held fixed. The centers of the circles are on the center of the resonance horn.
Finally, including the higher order #-dependent terms will cause the circles which
are swept out as 6 varies to be slightly deformed. The horn sides are still tangent
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p/q

—
Fic. 8. “Sweeping out” the resonance horn

to (—A1,—A32) at the origin, and the order of tangency is still %. Thus the only
parameter values near (p,a) = (0,0) for which period-g points near z = 0 can exist
are inside and on the boundary of the described resonance horn in the parameter

space.

Property 3:

(As in Arnold [Ar] for g=4.) From the terms which do explicitly appear in equa-
tion (11), it is apparent that any point in the interior of the horn lies on exactly two
distinct circles, each circle corresponding to a different value of r and having its re-
spective center at (—A;r?, —Ayr?). See Figure 8 again. As 6 varies from 0 to 27, each
circle is traced out g times (in the negative angular direction). When included, the
higher order terms do not qualitatively affect this result. Thus there are g different
phase points which correspond to the same parameter value on the circle. In fact,
together these g phase points form one complete period-g orbit. Thus each parameter
value on the interior of the horn has two distinct period-g orbits for the associated
map. That one is a saddle and the other a node is verifiable using techniques similar
to those used by Arnold for ¢ = 4 (Section 357J in [Ar]).

6.2. Proof of Corollary 2.4. The normal form theorem assures us that the
original equation can be brought into the form of equation (1). We would like to
make a change of parameters from p to (p, @) where the relationship between them
has already been defined by equation (1). This is possible if the change of parameters,
which we will call h, is nonsingular at po. Equivalently, we must have the vectors
Vyua(po) and V,¢(po) being independent, which we do because we assumed the
absence of a parametric degeneracy.

This brings the equation into the form:

(14) £(,,0)(z) = €2"P/9eP+i%(z + A(h™(p,a))z’Z + ... + B(h~ (p,))z* " + ...)

Now we push through the conclusions and proofs of Theorem 2.3 using the family
of equation (14), which is a generalization of our model family of equation (2). The
Lemmas used to prove Theorem 2.3 were actually proved already in the more general
form of equation (14). Compare equation (14) with equation (6.2) in Lemma 6.2 in



A DEGENERATE HOPF BIFURCATION FOR MAPS 25

the Appendix, in particular. Since the results of Theorem 2.3 hold for equation (14),
both results of the corollary now follow directly the fact that the function h=! is a
nonsingular C* map from the (p, &) parameter plane to the p parameter plane.

6.3. Proof of item 1 of Theorem 2.5. Rewrite equation (3), replacing wq
with p/q + ag/2m:

(15) £(,r)(2) = 627rip/qep+i(ao+c1p+CzT2)(z + Az’z + Bz?Y)

This is the same as the equation for the nondegenerate Hopf bifurcation (equation
(2)), but with ag+c1p+ca7? replacing a. Since the nondegenerate analysis was valid
for o sufficiently small, the same analysis will hold for ag + ¢1p + ca72 sufficiently
small. We treat oo as a third parameter which is small if wg is sufficiently close to
p/q.) Therefore we first consider the five dimensional phase x parameter space, and
then obtain the theorem by restricting to an “e¢ = small constant” slice.

The least-period-q set, analogous to equation (10), becomes

(16) p+icg+eciptecami+ Ari 4. 4+ Britle 0 L = 0,7#£0

Thinking of this complex equation as two scalar equations, we see that the Jacobian
with respect to p and r? at (r%,6,p,7,a0) = (0,6,0,0,0) is Az — c;A;, which was
assumed to be nonzero. So we can solve locally for p and 72 as a function of 6,7,
and ag. This would seem to indicate the period-q surface is always locally a cylinder:
6 € S, 7 € an interval. But the circle swept out as 8 varies for a fixed value of 72
collapses to a point (a fixed point of the map) when r? = 0, and doesn’t exist if rZ < 0.
So we must determine the topology of the values of 7 which correspond to 72 > 0 and
r2 = 0. This is what we proceed to do.

By ignoring the 6 dependent terms for now, and eliminating r from equation
(16), we obtain an expression analogous to equation (13) for the “center” of our p/q
resonance horn to lowest order in the three small parameters p, 7, and ag: ao+c1p+

et = ﬁ—jp, —L;h > 0. This is equivalent to:
Ay — A A
(17) 2o A (p_ag L), £ >0
62A1 A2 — ClAl _Al

Treating a¢ as small, nonzero and fixed, we see that there are actually eight cases, all

pieces of parabolas, depending on the signs of Azc;zllAl, A:—oilAl’ and A;. We have
sketched the four cases assuming A; < 0 in Figure 9. The dashed lines are included
in the diagram merely for reference — they are the part of the parabola excluded by
—L;h > 0, which corresponds to the side of the Hopf curve without the invariant circle.
If A; were positive, we would get four similar cases, each a reflection across the 7 axis
of one of the Figure 9 cases. (It might be useful to compare Figure 9a with Figures
3a, 4d;, and the horns near D; in Figure 1b; Figure 9b with Figures 3b, 4d;, and the
horns near D; in Figure 1b; Figure 9¢ with Figures 3c, 4d;, and the horns near D,
in Figure 1b.)

We choose an appropriate neighborhood of phase X (p, 7) space by first restricting
(p, T, 20) to a small enough neighborhood of the origin so that the terms explicitly
written in equation (16) dominate the (higher order) unwritten terms. We can choose

this neighborhood as a cube with sides at p = +p,7 = £7,a0 = tag by making
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small enough choices for 5,7, and @g. In cases (a) and (b), we further restrict @g,
if necessary, so that /|ag/ca| < 7/2. This ensures that in an “aq = constant” slice
of our three-dimensional space, the banana “tips” on the 7 axis are included in the
neighborhood.

From Figure 9, it is now apparent that the center curve(s) can be parametrized
in the four respective cases (a), (b), (¢) and (d) by 7 €

(a) (7-,74)

(b) (-7, )U(ry,7)

(c) (=7,7)

(d) The empty set
where from equation (17), 74+ = ++/|ao/c2].

Reintroducing the #-dependent terms for § € [0,27) gives a parametrization of
the least-period-gq surface as the product of the appropriate set of the above four for 7
with the unit circle. The puncture points corresponding to 72 = 0 in cases (a) and (b)
are at 74. This gives us the twice punctured sphere for case (a), the two punctured
disks for case (b), the cylinder for case (c), and the empty set for case (d). Including
the neglected higher order terms does not change the topology of these sets.

For the projections to the (p, 7) parameter space, we fix 7 (g is already fixed)
and let @ vary from zero to 2w. This traces our a closed curve restricted to 7 =
constant in the parameter space. Unless the #-dependent terms all vanish (including
all higher order terms), the closed curve covers a positive length line segment which
provides the “thickening” of the respective center lines into regions and establishes
the shapes of the respective resonance regions. If the coefficient B # 0, the length of
the line segment varies with ¢~ 2 while the distance from the 7 axis varies with r2,
establishing the order of tangency at the tips.

For further illustration we have sketched the resonance regions in the three-
parameter space (p,T,ap) in Figure 10 for two distinct cases. The sign of 4; is
assumed to be negative in both cases; the sign of #42=S141 i5 agsumed to be positive

caAq
in the first case, negative in the second. The sign of the third quantity, ﬁ

determined by the sign of g, which is one of the parameters in the figure.

is

6.4. Proof of Corollary 2.6. Restrict to a neighborhood of (xo, o) in phase x
parameter space so that it contains no strongly resonant Hopf points. Choose a p/q
with the condition that there is a Hopf point in the restricted neighborhood with
eigenvalues e¥2™?/¢, Delete from this neighborhood any of the Hopf points with
eigenvalues eT?m™"/s with s < g. On this deleted, restricted neighborhood, we can
change variables to write the equations in the form of equation (1). This defines the
functions p(po) and @(po).

We define a change of parameters from p to (p,7) where p(p) is defined by
equation (1) and 7 is a linear variable with respect to the g parameter space in a
direction perpendicular to V,¢(po). This makes V,7(po) and V,é(po) independent
vectors and ensures that the parameter change is nonsingular, and therefore a local
C® diffeomorphism.

The normal form of equation (1) can now be rewritten as

(18) £,y (2) = 2Tz + A(p, 7)2°Z + ... + B(p, 7)27 1 + ...)

where the series expansion of ¢ is ¢(p, 7) = wo + c1p + ca7%+ higher order terms in p
and 7. The constant term is determined by the eigenvalues at the bifurcation point
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°

b. (-+.-)

C. ('1+v+) - d. (_1_1_)

Fiac. 9. “Centers” of resonance regions near a Hopf bifurcation with an angular degemeracy.

; Ay—c1 4, a4, ;
Labels are for the signs of Ay, AL and y sy respectively.

Lo; the 7 term is absent because of the angular degeneracy; ¢; is nonzero because
we assumed V ,(a(po)) # 0; ¢z is nonzero because we assumed that (Z—ia(u(s)) #0.
Except for the higher order terms in ¢(p, ), this family is the same as our model
degenerate family of equation (3). The proof of Theorem 2.5 still works for the family
in equation (18) because the higher order terms in the expansion of ¢ contribute only
to terms already considered as higher order in equation (16).

The fact that the change of parameters between (p, 7) and p is a local diffeomor-
phism and the fact that no period-g points can exist arbitrarily close to any of Hopf
points deleted from our neighborhood completes the proof.
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Fic. 10. Resonance regions in a three parameter space near a Hopf bifurcation with an angular

degeneracy. Labels are for the signs of Ay, 2;211‘41 and A:lfcllAl , respectively.
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