
Lighting Arnold Flames:
Resonance in Doubly Forced Periodic Oscillators

Bruce B. Peckham† Ioannis G. Kevrekidis
Dept. of Mathematics and Statistics Dept. of Chem. Engineering
University of Minnesota, Duluth Princeton University
Duluth, Minnesota 55812 Princeton, NJ 08544
bpeckham@d.umn.edu yannis@arnold.princeton.edu

July 15, 2002

Abstract

We study doubly forced nonlinear planar oscillators:

ẋ = V(x) + α1W1(x, ω1t) + α2W2(x, ω2t),

whose forcing frequencies have a fixed rational ratio: ω1 = m
n ω2. After

some changes of parameter, we arrive at the form we study:

ẋ = V(x) + α{(2 − γ)W1(x,
m ω0

β
t) + (γ − 1)W2(x,

n ω0

β
t)}.

We assume ẋ = V(x) has an attracting limit cycle — the unforced pla-
nar oscillator — with frequency ω0, and the two forcing functions W1 and
W2 are period one in their second variables. We consider two parame-
ters as primary: β, an appropriate multiple of the forcing period, and α,
the forcing amplitude. The relative forcing amplitude γ ∈ [1, 2] is treated
as an auxiliary parameter. The dynamics are studied by considering the
stroboscopic maps induced by sampling the solutions of the differential
equations at time intervals equal to the period of forcing, T = β

ω0
. For

any fixed γ, these oscillators have a standard form of a periodically forced
oscillator, and thus exhibit the Arnold resonance tongues in the primary
parameter plane. The special forms at γ = 1 and γ = 2 can introduce
certain symmetries into the problem. One effect of these symmetries is to
provide a relatively natural example of oscillators with multiple attractors.
Such oscillators typically have interesting bifurcation features within corre-
sponding resonance regions — features we call “Arnold flames” because of
their flamelike appearance in the corresponding bifurcation diagrams. By
changing the auxiliary parameter γ we “melt” one singly forced oscillator
bifurcation diagram into another, and in the process we control certain of
these “intraresonance region” bifurcation features.
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1 Introduction

The motivation for the current bifurcation study originally comes from the setting
of periodically forced nonlinear planar oscillators. Such systems arise in many
contexts in science and engineering. Because the study of periodically forced
oscillators usually involves a reduction to maps of the plane (see Section 2 below),
results apply to the more general setting of bifurcations of families of maps of the
plane.

The basic model we study in this paper has several equivalent forms:

ẋ = V(x) + α1W1(x, ω1t) + α2W2(x, ω2t) (1)

ẋ = V(x) + α{(2 − γ)W1(x,m ω t) + (γ − 1)W2(x, n ω t)} (2)

ẋ = V(x) + α{(2 − γ)W1(x,
m ω0

β
t) + (γ − 1)W2(x,

n ω0

β
t)}. (3)

ẋ = V(x) + αŴγ(x,
ω0

β
t) (4)

The phase variable(s) x ∈ R2, time t ∈ R, and m and n are integers. When
α = 0 the corresponding autonomous differential equation is assumed to have
an attracting limit cycle, the “unforced oscillator,” whose (fixed) frequency we
denote ω0. The two forcing functions W1 and W2 are assumed to be periodic
with period one in their second variables. We shall consider the form in eq. (3)
as our primary doubly forced oscillator model. The parameter α ∈ [0,∞) is the
the forcing amplitude. We call the parameter β ∈ (0,∞) a “rotation parameter”
for reasons that we will explain below. The parameter γ ∈ [1, 2] is the relative
forcing amplitude.

The parameters in equations (1), (2), and (3) are related as follows: ω1 =
mω = m ω0

β
, ω2 = nω = n ω0

β
, α = α1+α2 (all three are nonnegative), γ = 1+ α2

α1+α2

(γ is arbitrary if α1 = α2 = 0). Equations (3) and (4) are seen to be equivalent
by defining

Ŵγ(x, t) = (2 − γ)W1(x,m t) + (γ − 1)W2(x, n t). (5)

We remark that if the ratio ω1

ω2

were fixed at an irrational number, this would
instead be a model for a quasiperiodically forced oscillator. Such models are
considered in, for example, in Glendinning et. al. [GFPS 2000]. See also ear-
lier papers of Baesens, Guckenheimer, Kim and MacKay [BGKM 1991a, BGKM
1991b] for work on three frequency systems (including an oscillator with two
periodic forcing terms). We do not consider quasiperiodic forcing here.

Motivated by previous studies of (singly) periodically forced oscillators, we
choose to consider the rotation parameter β and the forcing amplitude α as pri-
mary parameters, and the relative forcing frequency γ as an auxiliary parameter.
The unforced frequency ω0 is assumed to be fixed. The main question we address
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in this paper is how the traditional (β, α) parameter plane bifurcation diagram
for γ = 1 “melts” into the corresponding parameter plane bifurcation diagram
for γ = 2. The results, at least for the simplest nontrivial case (m = 1, n = 2)
are displayed in Figure 3. The primary features in these bifurcation diagrams are
“resonance regions” — regions of the parameter plane for which the corresponding
maps all have periodic orbits of a certain period (and rotation number). These
resonance regions, which have a characteristic shape depending on the associated
period, evolve from one characteristic shape into another. For example, the 1

1

region melts from a triangular shape at γ = 1 (labelled F(1,β,α) in Fig. 3) to an
ice cream cone shape at γ = 2 (labelled F(2,β,α) in Fig. 3). This evolution of reso-
nance regions includes the creation of “extra” bifurcation features which we call
“Arnold flames.” A more complete description of Figure 3 and an explanation of
the underlying mathematics is a major focus of this paper.

Note that if m and n are relatively prime and γ ∈ (1, 2), Ŵγ(x, t) in eq. (5) will
have been normalized to be period one in its second variable; thus, T = 1

ω
= β

ω0

is the forcing period. We will be studying the time T stroboscopic maps of the
flow of eq. (3). When γ = 1, however, the time period of forcing is T

m
, so the

time T stroboscopic map is nongeneric because it is the mth iterate of the time T
m

stroboscopic map. This “symmetry” of being the mth iterate of a map (assuming
m > 1) turns out to be exactly what we need to guarantee the existence of Arnold
flames when γ is increased from 1. A similar phenomenon occurs for γ near 2
whenever n > 1. More details are provided later in the paper.

The rest of the paper is organized as follows. Section 2 includes a summary of
relevant known results about singly forced oscillators, including the reduction to
circle maps for small forcing amplitude, and “Arnold flames” created directly from
circle maps. In Section 3 we perform a preliminary analysis of the doubly forced
oscillators. This allows us to better explain the numerical results – essentially
Fig. 3 – in Section 4. Part of the explanation involves looking at “resonance
surfaces” which have been extremely useful in past work [MP 1994] in studying
parameter plane resonance regions. We also describe the actual family we used
for computations. It is a caricature of the model of eq. (3) which uses a more
computationally efficient “impluse forcing” instead of periodic forcing in the form
of eq. (3).

In Section 5, we present results of numerical computations from a doubly
forced oscillator of the form of our model in eq. (3). In Section 6, we give a brief
analysis of both the small forcing amplitude “lower tips” of the resonance regions,
and the “upper tips” of the resonance regions near the Hopf bifurcation curve.
We focus on how the bifurcation diagram near the tips evolves as the relative
forcing amplitude γ is perturbed from 1 or from 2.

Software Remarks. All data for bifurcation curves and surfaces shown in the
Figures in this paper were computed using the software To Be Continued [P 1988-
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2001]. The regions for periods of 3 or higher in Fig. 3 were obtained by computing
the whole corresponding resonance surface and then projecting it to the param-
eter plane, rather than by computing the saddle-node curves that project to the
boundaries of these regions directly.

Computing the saddle-node curves in Fig. 6 required computation of the
stroboscopic map linearization. This was done by integrating the variational and
sensitivity equations for the original differential equation as in ODESSA [LK
1988].

Although not used directly, the authors acknowledge ideas and algorithms
used in the continuation software package AUTO [Do 1981, DK 1986 and 1994,
Tay 1990].

2 Background

2.1 Periodically Forced Oscillator Setting

A standard setting for studying periodically forced oscillators is the following:

ẋ = V(x) + αW(x, ωt) (6)

= V(x) + αW(x,
ω0

β
t) (7)

where the phase variable(s) x ∈ R2, the forcing amplitude α ∈ [0,∞), and
the forcing frequency ω ∈ (0,∞). When α = 0 (the unforced oscillator) the
corresponding autonomous differential equation is assumed to have an attracting
limit cycle C with fixed frequency ω0. For simplicity its basin of attraction is often
assumed to be the whole plane, excepting a repelling equilibrium point inside the
limit cycle. The forcing function W is assumed to be periodic – period one –
in its second variable. Eq. (7) shows the effect of replacing the original forcing
frequency parameter ω in eq. (6) with the “rotation parameter” β via β = ω0

ω
.

Why β is called a rotation parameter is explained in subsection 2.2 below.
Thus eq. (6) represents a two-parameter family — parameters α and ω —

of differential equations on the solid torus: (x, t) ∈ R2 × S. Similarly, eq. (7)
represents a two-parameter family — parameters β and α (the unforced frequency
ω0 is assumed to be fixed) — of differential equations on the solid torus. These
differential equations on the solid torus can be reduced to maps of the plane
by stroboscopically sampling the respective flows at time intervals equal to the
period of forcing, T = 1

ω
= β

ω0

. More precisely, let ψ(β,α)(ξ, t) be the solution of
the initial value problem ẋ = V(x) + αW(x, ω0

β
t), x(0) = ξ. The stroboscopic

maps of the plane are defined by

F(β,α)(ξ) ≡ ψ(β,α)(ξ,
β

ω0

). (8)
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For each parameter value, the map F(β,α) is a diffeomorphism of the plane and
is as smooth as the original equation (7), which, in this paper, is assumed to be
C∞.

2.2 Circle maps: small forcing amplitude

For small forcing amplitude, the state space can be further reduced because all the
interesting dynamics lies on an attracting invariant circle which persists from the
unforced limit cycle by assuming the limit cycle is normally hyperbolic. In this
case, the reduction leaves us with a two-parameter family of circle maps. Note
that at α = 0, the corresponding circle map is just the time T = 1

ω
= β

ω0

map of the
autonomous flow of ẋ = V(x). The attracting limit cycle of the autonomous flow
becomes an attracting invariant circle for the corresponding stroboscopic maps,
and especially when the original limit cycle is assumed to be globally attracting
(except for the repelling equilibrium for the autonomous flow which becomes a
repelling fixed point for the stroboscopic maps), all the important dynamics for
the stroboscopic maps will “live” on the invariant circles. As the forcing amplitude
α is increased away from zero, the invariant circles, assuming they were normally
hyperbolic at α = 0, persist. Thus, the study of periodically forced oscillators
can be reduced to the study of circle maps, at least for small forcing amplitude.

Arnold tongue resonance regions. The stroboscopic maps F(β,α) restricted
to the continuation of the invariant circle from the limit cycle C, and lifted to the
real line, have the form

F̃(β,α)(u) = u + 2πβ + αg(β,α)(u) (9)

where u ∈ R and g(β,α) is period 2π in u. Note that since the circle maps are
one-dimensional, we have dropped the boldface for the maps, and because it is
a lift, we have added the tilde. This form can be understood by returning to
eq. (7) and fixing the first primary parameter α at zero. We see that, since the
stroboscobic maps are defined as the time β

ω0

map of the autonomous flow, they
are conjugate to a rigid rotation with rotation number β. Thus the lifted circle
maps derived from eq. (7) are conjugate to maps in the form of eq. (9).

The most famous map in the form of eq. (9) is the Arnold Standard Circle
Map Family for which the forcing function g(β,α)(u) = sin(u). It is in this circle
map setting where wedge-shaped resonance regions — also called Arnold tongues
or resonance horns — are generically shown to open up from each rational point
on the β axis into the upper half of the parameter plane [Ar 1965, Ha 1984].
A portion of the now familiar Arnold tongue picture for the Standard Family
is shown in the (β, α) parameter plane in Fig. 1 (reproduced from [MP 1996]).
The “complete” small α bifurcation picture would require a resonance tongue
emanating from each rational β value on the α = 0 axis. This Arnold tongue
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picture is also the start of the bifurcation diagram for the periodically forced
oscillator maps – for small forcing amplitude. Compare the small α part of the
bifurcation diagrams in Fig. 3 with the (β, α) resonance regions in Fig. 1.

Resonance surfaces. Also illustrated in Fig. 1 are p/q surfaces which live in
the Cartesian product of the (lifted) phase variable u (where θ = u mod(2π))
and parameter variables β and α, and project to the parameter plane tongues.
The surfaces are defined as follows. First define a p/q resonance point as a
least-period-q point which satisfies F̃ q

(β,α)(u) = u + 2πp/q. The p/q resonance

surface, denoted Γp/q, is then defined as

Γp/q = {(u, β, α) : u is a p/q resonance point for F̃ q
(β,α)}. (10)

For example, from eq. (9), the 0/1 resonance surface in the figure is defined by
2πβ + αg(β,α)(u) = 0. Viewing the p

q
resonance region as a projection of the

p
q

resonance surface makes more obvious the appearance of the regions: the tip

of the region (tongue) is merely an artifact of the projection to the parameter
plane, and the saddle-node bifurcation curves that make up the boundary of
the resonance region in the parameter plane are merely the singularities of the
resonance surface with respect to projection of the surface to the parameter plane.
That is, the saddle-nodes are the folds in the resonance surfaces. The p

q
resonance

region itself is the set of parameter values for which the corresponding map has
a period-q point with rotation number p

q
.

2.3 Periodically forced oscillator maps: beyond small forc-
ing amplitude

In order to analyze behavior at higher forcing amplitudes, circle maps are no
longer adequate. This is because the invariant circles which are guaranteed to
persist for small values of α may (and typically do) “break” for higher values of
α. It is therefore necessary to revert to studying either the full flow of eq. (7) or
the associated stroboscopic maps of the plane F(β,α) defined in eq. (8).

Continuation from small forcing amplitude and closing of resonance
regions. The breakdown of the invariant circles, however, does not affect the
existence of the periodic orbits which originally (for small forcing amplitude) lived
on the circles. In particular, the saddle-node curves whose projection to the pa-
rameter plane determined the boundaries of the Arnold tongues for small forcing
amplitude (see Fig. 1) can be numerically continued in a straightforward manner
to higher forcing amplitude α. The notion of a resonance region in the parameter
plane, except for the period-one case, also generalizes from the circle map to the
planar map setting. Fixed-point regions differ because a fixed point exists for all
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parameter values; this omnipresent fixed point can be thought of as the continu-
ation of the repelling fixed point corresponding to the repelling equilibrium point
inside the original unforced oscillator limit cycle. Consequently, we will use the
term “fixed-point resonance region” to denote a region where the corresponding
maps have more than one fixed point. The saddle-node continuation for many
different examples [KT 1979, KAS 1986, AMKA 1986, SDCM 1988, VR 1989,
P 1990, MP 1995] suggests all resonance regions for periods greater than one
eventually “close” when the forcing amplitude α becomes sufficiently large.

This resonance region “closing” for forced oscillators is quite different from
the high forcing amplitude behavior for the circle maps of the form of eq. (9),
whose periodic orbits persist for arbitrarily large values of the forcing amplitude
α. In the context of the corresponding stroboscopic maps, this means that for
high enough forcing, the maps have a globally attracting fixed point; any other
resonance behavior must have terminated at some lower forcing amplitude. The
assumption that this observation is true, specifically that the components of sets
of periodic points other than fixed points are bounded in the four-dimensional
cartesian product of phase and parameter spaces, is sufficient to prove that res-
onance regions generically “terminate” with a Hopf bifurcation [P 1990]. This
explains the prominence of the (high α) Hopf bifurcation curve in periodically
forced oscillator bifurcation diagrams. Typical such bifurcation diagrams, with
only a few of the resonance regions shown, are the diagrams in Fig. 3 which are
labelled by f(1,β1,α) and f(2,β2,α).

The shape of a typical period-q resonance region. Although generic res-
onance regions for all periods (even including period one) “open” (at low forcing
amplitude) in a qualitatively similar wedge, they “close” (at the Hopf bifurca-
tion) in a manner that varies greatly, depending on the associated period. The
differences are largely explained by, or at least consistent with, the normal forms
theory associated with p

q
resonant Hopf bifurcations: Hopf bifucations with

an additional requirement that the eigenvalues at the bifurcation are e±2πi p

q [Ar
1977, Ar 1983, Bo 1976, Ta 1974]. The normal forms theory guarantees that,
generically, all resonance regions for periods of five or greater, classified as weak
resonance cases, will close in a cusp.

In the strong resonance cases (q ≤ 4), resonance region “closing” depends on
the period. More specifically, period-one resonance regions typically have two
“upper” cusps near the Hopf bifurcation curve, giving the period-one saddle-node
set a triangular shape. Period-two regions close with period-two saddle-nodes
connecting with a period-doubling circle, giving the full period-two region an ice
cream cone shape. Period-three regions close with a rounded top; the full period-
three region thus has an inverted teardrop shape. Period-four resonance regions
can close either with a rounded top like period-three horns or with a tip like
period-five horns. These strong resonance closing phenomena are all consistent
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with the numerical studies referred to above as well as the local analysis of Arnold
[Ar 1977] and Takens [Ta 1974]. See also Baesens [Ba 1987] and Gambaudo [Ga
1985] for work related to resonance region closings. There are, of course, variations
on these basic phenomena, but the point is that the period of a resonance region
is usually easy to deduce from its shape (all periods ≥ 5 being grouped together).

2.3.1 Resonance surfaces

Just as the resonance regions for circle maps are better understood as projections
to the parameter plane of resonance surfaces in the phase × parameter space
(Fig. 1), so also are these resonance regions for the periodically forced oscillator
maps better understood in the same manner. For q ≥ 2, a p

q
resonance surface

is defined analogously to a p
q

resonance surface for the circle maps (eq. (10)), but

the definition is more involved. We first define the least-period-q surface Γ(q)
as

Γ(q) = {(x, β, α) : x is a least − period−q point for Fq
(β,α)}. (11)

Next we define Γp/q as the connected component of Γ(q) which includes C×{ p
q
}×

{0} (recall that C was the unforced oscillator in the phase space). Finally, we can
define the p

q
resonance surface as

Γp/q ≡ the topological closure of Γp/q. (12)

The p

q
resonance region is then defined to be the projection to the parameter

plane of the p
q

resonance surface. It can be shown, using a generalization of the
rotation number for circle maps to self rotation number for maps of the plane
[P 1990], that, if q ≥ 2, all points on a p

q
resonance surface have self rotation

number p
q
. Consequently, there is a distinct p/q resonance surface for each distinct

p/q with q ≥ 2. The fixed-point surface does not have this “constant rotation
number” property, so a p1/1 surface and a p2/1 surface could actually be the
same surface. In fact, the families we have studied have a single component
of the fixed-point surface: the continuation of the fixed-point surface from each
unforced oscillator C×{ j

1
},×{0} for each integer j connects with the continuation

of the part of the fixed point surface corresponding to the repelling fixed point
inside the unforced oscillator. Consequently, we define a j

1
resonance region as

the region of the (β, α) parameter plane which corresponds to maps having more
than one fixed point and includes the point ( j

1
, 0).

Displaying a p
q

resonance surface and its projection to a p
q

resonance region is
more complicated than in the circle map setting of Fig. 1: the phase × parameter
space is now four-dimensional. It is still, however, more informative than merely
displaying the resonance regions themselves. This was performed and explained
in detail for a specific family in previous work [MP 1994]. In that paper, we
numerically verified that the 1

5
surface is a topological disk in the four-dimensional



8

phase × parameter space. The topological disk is most obvious in a projection
to a three-dimensional space which includes the phase plane.

Since we are more interested in this paper in the projection to the parame-
ter plane, prefer a projection from four to three dimensions which includes the
parameter plane. Unfortunately, choosing either one of the phase variables as
the third variable leads to false self intersections due only to the projection from
four to three dimensions. We can, however, show a projection to the parameter
plane and one phase variable which has no self intersections by displaying only
a “fundamental sector” of the 1

5
surface. That is, we display a sector on which

each 1
5

orbit is represented. We do so schematically in Fig. 5. The lowest of the
four surfaces (γ = 1) can be thought of as the singly forced oscillator representa-
tive. The front and back edges of the surface are identified because corresponding
points lie on the same period-5 orbit. This turns the surface into a topological
cone. The boundary of the cone is the unforced oscillator at α = 0. The tip of the
cone is a 1

5
resonant Hopf bifurcation point. The saddle-node bifurcation curves

are seen to project to the boundaries of the 1
5

resonance region. To compare this
surface with the resonance surfaces for the circle maps in Fig. 1, we would need to
identify the top edge of each surface in Fig. 1 to a point. This is analogous to the
oversimplified, but still useful, idea that the circle on which the circle maps are
defined shrinks to a point at α = 1; the 1

5
orbits for the forced oscillators collapse

to a fixed point at a Hopf bifurcation point.
The typical picture for any resonance surface of period five or greater is similar.

The surfaces for the strong resonance cases, however, are more difficult to describe.
See McGehee and Peckham [MP 1994] for more details.

2.4 Arnold flames for circle maps.

We now return briefly to the circle map setting of eq. (9). We also restrict α to
be small enough so that the corresponding maps are diffeomorphisms. For the
Standard Family, this means α < 1. For general circle maps with lifts of the form
of eq. (9), the division of the circle map parameter plane into resonance regions is
not necessarily the complete bifurcation story. For some families (but not for the
Standard Family) it is possible for some maps inside the same resonance region
to be topologically non-equivalent. The easiest way for such maps to be non-
equivalent is for one map to have a single pair of attracting-repelling periodic
orbits, and another to have two such pairs. Saddle-node bifurcation curves would
typically divide the resonance region into subregions. The number of periodic
orbits of the given period would be the same in each subregion. Fourier series
analysis shows that these extra orbits can be created by adjusting the relative
magnitudes of certain Fourier coefficients in the Fourier series for the forcing
function g(β,α)(θ).

This simple observation led to the construction of a multitude of bifurcation
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features interior to resonance regions: swallowtails, flames, and interchanging of
curve segments which marked the boundary of resonance regions [MP 1996]. One
such bifurcation diagram, called a “single flame,” is shown in Fig. 2. Note that for
parameter values inside the flame there are four fixed points, while for parameter
values outside the flame but inside the tongue, there are two fixed points. The
saddle-nodes corresponding to the flame form a smooth boundary in the full phase
× parameter space, but project to the parameter plane with a cusp which is the
upper tip of the flame.

2.5 Arnold flames for periodically forced oscillator maps.

We emphasize that the examples in McGehee and Peckham [MP 1996] were all
created by manipulating Fourier series in the circle map setting. By reversing the
reduction process mentioned above: flows on the solid torus to maps of the plane
to circle maps, the circle map phenomena presented were known to be possible
for periodically forced oscillators, as well.

The connection between the original differential equations (eq. (7) ) and the
Fourier series coefficients for the corresponding circle map, however, is not so obvi-
ous. This paper extends the understanding of intraresonance region phenomena
from circle maps to periodically forced oscillator maps in two significant ways.
The first is that we work in this paper directly with the periodically forced os-
cillator (equation (7) or (3) ) rather than with the Fourier series of the reduced
circle maps. The second is that extra orbits are created in parts of resonance
regions “far away” from the zero forcing amplitude. Since the invariant circles
are guaranteed to exist only for small forcing amplitude, the regions of parame-
ter space considered in this paper cannot be treated by reducing to circle maps.
For such parameter values the Fourier series techniques of McGehee and Peckham
[MP 1996], which assume the existence of a circle map, are not directly applicable.
Doubly forced oscillators also provide a natural setting in which intraresonance
region bifurcation features not only occur, but also can be created and somewhat
controlled directly from the differential equations.

See also Broer, Simó and Tatjer [BST 1998] for a study of a wealth of dynamcal
phenomena, including intraresonance region bifurcation features, for a family of
maps of the annulus they call the ”fattened Arnold family.”

3 Doubly Forced Oscillators

3.1 Preliminary analysis

We now return to the analysis of the doubly forced oscillator, copied from eq. (3)
in the introduction:
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ẋ = V(x) + α{(2 − γ)W1(x,
m ω0

β
t) + (γ − 1)W2(x,

n ω0

β
t)}.

Notation. Following the notation introduced in Section 2, we let Ψ(γ,β,α)(ξ, t) be
the flow of eq. (3) satisfying the initial condition x(0) = ξ. That is, Ψ(γ,β,α)(ξ, 0) =
ξ. Note that, if m and n are relatively prime, since W1 and W2 were assumed
to be period one in their second variable, the time period of forcing for γ ∈ (1, 2)
is β

ω0

, but for γ = 1 it is β
m ω0

and for γ = 2 it is β
n ω0

. Consequently we introduce

parameters β1 = β
m

and β2 = β
n

and define the following stroboscopic maps:

F(γ,β,α)(x) = Ψ(γ,β,α)(x,
β

ω0

), γ ∈ [1, 2], (13)

f(1,β1,α)(x) = Ψ(1,mβ1,α)(x,
β1

ω0

) = Ψ(1,β,α)(x,
β

mω0

), (14)

f(2,β2,α)(x) = Ψ(2,nβ2,α)(x,
β2

ω0

) = Ψ(2,β,α)(x,
β

nω0

). (15)

The maps f(1,β1,α) and f(2,β2,α) are “merely” singly forced oscillators and as such
constitute the “well known” part of our bifurcation scenario. More specifically, the
two-parameter bifurcation diagrams for f(1,β,α) and f(2,β,α) in Fig. 3 are relatively
well understood.

The parameters β, β1, and β2 are defined so that they are the rotation num-
bers of F(γ,β,0), f(1,β1,0), and f(2,β2,0), respectively, when restricted to their invariant
circles. Thus we think of β (β1, β2, resp.) as rotation parameters, even though
the rotation number of corresponding maps is guaranteed to match the rotation
parameter only for zero forcing amplitude. In general, we will use no subscript
when discussing variables associated with F(γ,β,α), subscript 1 when discussing
variables associated with f(1,β1,α), and subscript 2 when discussing quantities asso-
ciated with f(2,β2,α), We will be most interested in periodic orbits for the respective
maps; their periods will be denoted q, q1 and q2; their rotation numbers will be
denoted p

q
, p1

q1

, and p2

q2

, respectively.
The main question can now be restated: “How do the bifurcation diagrams for

F(γ,β,α) change as γ is varied?” As we shall see in the next sections, an oversimpli-
fied answer is that the bifurcation diagram for F(γ,β,α) “melts” from the bifurcation
diagram for f(1,β1,α) into the bifurcation diagram for f(2,β2,α) as γ increases from one
to two. The same is true for the corresponding resonance surfaces. What makes
this melt interesting is that a p1

q1

= p
mq

region for f(1,β0,α) melts into a p2

q2

= p
nq

region for f(2,β1,α) via a p
q

region for F(γ,β,α). Note that while the period of a p
q

region is q, the period of a p
mq

region or a p
nq

region is the respective denominator

only after cancelling any common factors between p and m (p and n, respectively).
This melt is most interesting when the periods of the p

mq
, p

q
, and p

nq
regions are

not all the same — even more so when any of the periods is less than five. This
is explained more fully below.
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Symmetry breaking near extreme values of γ: γ = 1 and γ = 2. We will
first consider the simplest nontrivial example: m = 1 and n = 2. That is, the
doubly forced oscillator of eq. (3) has the more specific form:

ẋ = V(x) + α{(2 − γ)W1(x,
1 ω0

β
t) + (γ − 1)W2(x,

2 ω0

β
t)}.

Since m = 1, there is no symmetry breaking near γ = 1, but since n > 1, there
is a symmetry breaking as γ is perturbed away from γ = 2. So we will focus
on γ near 2. From the definitions of the stoboscopic maps F(2,β,α) and f(2,β2,α)

in eqs. (13) and (15), and the definition of β2 as β2 = β/2, it can be seen that
F(2,2β2,α) = f2

(2,β2,α). This clearly makes the rotation number of F(2,2β2,α) equal to
twice the rotation number of f(2,β2,α). This also causes the period of any periodic
orbit with an even period q2 for f(2,β2,α) to have period q = q2/2 for F(2,2β2,α). A
point with odd period for f(2,β2,α), however, will still have the same period for its
second iterate, F(2,2β2,α). We combine these two cases by saying that a period-q2

point for f(2,β2,α) is a period- q2

gcd(2,q2)
point for F(2,2β2,α). The consequence is that

the two-parameter bifurcation diagrams: in (β2, α) for f(2,β2,α) and in (β, α) for
F(2,β,α)), are identical. One needs only make the correspondences just stated: β
corresponds to 2β2, and period-q coresponds to period- q2

gcd(2,q2))
. See the labelling

in Fig. 3.
The “symmetry” of being a second iterate of another map at γ = 2 forces

“extra” orbits in the resonance regions for F(2,2β2,α) corresponding to even periods
for f(2,β2,α). This in turn leads to the existence of “flames” in the bifurcation
diagram for F(γ,β,α) when γ is sufficiently close to 2. To explain this phenomenon,
let us first assume that the parameter plane bifurcation diagram for f(2,β2,α) is both
“typical” and “simple.” Being typical means we assume that its resonance regions
all appear as one would expect: triangles for period-one regions, ice cream cones
for period-two regions, inverted teardrops for period-three regions, and points
(cusps or wedges) at the top and bottom for period-five and higher regions. Being
simple means the maps in any p2

q2

resonance region all have the minimum number

of period-q2 orbits. For weak resonances (q2 ≥ 5), this means there exist exactly
two period-q2 orbits on the interior of the p2

q2

region; they coalesce to a single
saddle-node orbit for parameter values on the boundary of the p2

q2

region. For

strong resonances (q2 ≤ 4), the analogous statement is more difficult to make.
The exceptions to the “exactly two orbit” condition are as follows. Period-4
regions may and period-3 regions generically do have a single interior parameter
value (the resonant Hopf bifurcation point) where one of the two periodic orbits
coalesces to a fixed point. Period-2 regions have subregions (inside the period-
doubling circle) where only one of the two orbits still persists. Recall that period-1
regions are complicated by the continuation of the fixed point corresponding to
the repelling equilibrium of the unforced oscillator. Thus, we will call a fixed
point region simple if it has three fixed points for parameter values in its interior
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(including one fixed point which continues to parameter values outside it).
As a consequence of our “typical and simple” assumptions, there are no period-

q2 saddle-node curves interior to any p2

q2

region. That is, the resonance regions have
no flames. The resonance regions shown for f(2,β2,α) in Fig. 3 are all typical and
simple. Consider, for example, the 1

4
resonance region in the (β2, α) bifurcation

diagram for f(2,β2,α) in Fig. 3. Being typical and simple, it has exactly two period-4
orbits, and therefore exactly 8 period-4 points, for every parameter value on the
interior of the resonance region. In the bifurcation diagram for its second iterate,
F(2,β,α), the 2 period-4 orbits with rotation number 1

4
turn into 4 period-2 orbits

with rotation number 1
2
. Thus f(2,β2,α) has an extra pair of rotation number 1

2

orbits. By continuity, the extra orbits will persist at least for some parameter
values in the interior of the 1

2
region as γ is decreased from 2. On the other

hand, since the bifurcation diagram for F(1,β,α) is exactly the same as the typical
and simple bifurcation diagram for f(1,β1,α), it cannot have the extra two period-2
orbits that F(2,β,α) has. So, the extra orbits must disappear as γ decreases from
2 to 1. This combination guarantees that the bifurcation diagrams for F(γ,β,α)

must have intraresonance bifurcation curves in its 1
2

resonance regions, at least
for γ ∈ (2 − δ, 2), for some δ > 0. The evolution of 1

2
intraresonance region

is partially illustrated in Fig. 3. See especially the flame in the enlargement in
Fig. 4. Further explanation follows in subsection 4.2.

Remark: The 1
2

region for f(1,β1,α) in Fig. 3 has a slight complication which
prevents it from being simple: the upper right-hand side of the cone extends into
the ice cream. The complication is not atypical or degenerate, merely not the
simplest possible case. It is of special interest to the authors because it implies
the existence of a codimension-three bifurcation point – a period-doubling with
two higher order degeneracies [PK 1991] for some γ between 1.7 and 1.0.

General values of m and n. Guided by the special case of m = 1 and n = 2
explained above, we now state the analogous results for general values of m and
n. The symmetries at the γ = 1 and γ = 2 endpoints are due to the fact that
F(1,β,α) = fm

(1,β/m,α) and F(2,β,α) = fn
(2,β/n,α). Thus, the rotation number for any

orbit under F(1,β,α) is m times the rotation number for the corresponding orbit
under f(1, β

m
,α), so the (β, α) bifurcation diagram for F(1,β,α) is identical to the

(β1, α) bifurcation diagram for f(1,β,α), except for the parameter change β = mβ1.
Period-q1 points with rotation number p1

q1

for f(1,β1,α) become for F(1,mβ1,α) period-

q points (q = q1

gcd(m,q1)
) with rotation number p

q
(p chosen so that p

q
= mp1

q1

). The

symmetries at γ = 1 will force p
q

regions for F(1,β,α) to have gcd(m, q1) total pairs

of p
q

orbits (gcd(m, q1) − 1 extra pairs of orbits). These extra orbits will lead to
intraresonance regions features in the p

q
region for γ sufficiently close to 1.

Similarly, the rotation numbers for F(2,β,α) are all n times the corresponding
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rotation numbers for f(2, β

n
,α), so the (β, α) bifurcation diagram for F(2,β,α) is identi-

cal to the (β2, α) bifurcation diagram for f(2,β,α), except for the parameter change
β = nβ2. Period-q2 points with rotation number p2

q2

for f(2,β,α) become for F(2,nβ2,α)

period-q points (q = q2

gcd(n,q2)
) with rotation number p

q
(p chosen so that p

q
= np2

q2

).

The symmetries at γ = 2 will force p
q

regions for F(2,β,α) to have gcd(n, q2) total

pairs of p
q

orbits (gcd(n, q2) − 1 extra pairs of orbits). These extra orbits will be
lead to intraresonance region features in the p

q
region for γ sufficiently close to 2.

In summary, we see that a p
q

resonance region for F(γ,β,α) melts from a period-
q1 shape into a period-q2 shape as γ increases from 1 to 2. In the process of this
transformation, intraresonance region features – flames – will exist near γ = 1
whenever gcd(m, q1) > 1, and near γ = 2 whenever gcd(n, q2) > 1. Assuming
that the parameter plane bifurcation diagrams for f(1,β1,α) and f(2,β2,α) are both
“typical” and “simple,” the number of flames for γ near 1 will be gcd(m, q1)− 1,
and the number of flames for γ near 2 will be gcd(n, q2)− 1. Further explanation
of the evolution of the flames is included in Sections 4 and 6.

4 Numerical results

We now present the numerical results which illuminate and corroborate many of
the ideas presented in the previous sections. In later sections we will return to
the analysis, especially to study the behavior at the zero forcing tips of resonance
regions, and at the Hopf bifurcation curve where the resonance regions close.

We first describe the actual maps on which we performed our numerical study.

4.1 DFO Caricature

Because of the computational effort necessary in numerically integrating the dif-
ferential equations in the form of eq. (3), and because of the lack of explicit
derivatives, we have done the majority of our numerical work instead on a carica-
ture of a doubly forced oscillator. The main goal in constructing the caricature is
to directly obtain a family of maps which has the properties of the stroboscopic
maps which were defined as the the time- 1

ω
(recall 1

ω
= β

ω0

) maps of the differential
equations of eq. (3).

Periodically forced oscillator caricature. Since the doubly forced oscillator
caricature, labelled F(γ,β,α) below, is a generalization of an “impulse forcing”
caricature previously used [P 1990, MP 1994, MP 1995, P 2000] for singly forced
oscillators, we begin with a short review of the singly forced caricature, labelled
F̂(β,α), taken from McGehee and Peckham [MP 1994]. More details are included
in that reference.



14

We define the family of maps F̂(β,α) by the composition

F̂(β,α) ≡ gα ◦ hβ,1

where the two maps gα and hβ,t are defined as follows. For β ∈ R, the map hβ,t

is taken to be the time t flow of the following planar vector field, written here in
polar coordinates.

ṙ = k
r(1 − r2)

1 + r2
,

θ̇ = 2πβ +
1 − r2

1 + r2
. (16)

For α ∈ [0, 1), the map gα is defined by

gα(z) = (1 − α)(z − 1) + 1.

where z is a complex number used as a coordinate on R2. Note that g0 is the
identity map, while, for 0 < α < 1, the map gα is a linear contraction toward
z = 1. This type of caricature is often labelled a periodically forced oscillator
with impulse forcing. The flow of the vector field is given a “kick” or “impulse”
every “second” (once every unit of dimensionless time).

The form of eq. (16) has been chosen primarily to have two properties. First,
it has an explicit analytic solution, which allows efficient computation of hβ,t.
Second, it has the unit circle as an attracting limit cycle, which constitutes the
unforced oscillator. The function hβ,1, and therefore also F̂(β,0), being the time
one flow of eq. (16), will have the unit circle as an attracting invariant circle on
which the map is a rigid rotation with rotation number β. For small but positive
α, an attracting invariant circle for F̂(β,α) persists, but it is distorted from the
original unit circle. For α close to 1, the invariant circle and, indeed, all periodic
orbits, have disappeared and there remains only an attracting fixed point near
z = 1.

The function gα is the forcing function; α is the forcing amplitude. Using the
time 1 flow of eq. (16) to define hβ,1 is analogous to fixing the forcing frequency
at one. Note that in experimental situations, the rotation parameter β, defined
above as β = ω0

ω
, is usually controlled by varying the forcing frequency ω, which

would have resulted in using hβ, 1

ω
instead of hβ,1. We choose instead to fix the

forcing frequency ω at one, which makes ω0 = β. In other words, we control
the rotation parameter β by varying the unforced oscillator frequency ω0 instead
of the forcing frequency ω. This parameter selection has the advantage that,
restricted to its invariant circle, the maps have the circle map form of eq. (9).

Doubly forced oscillator caricature. It is now only a slight modification to
obtain a caricature for a doubly forced oscillator from the forced oscillator carica-
ture just described. We merely “kick” the oscillator at two different frequencies.
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Each frequency has its own amplitude associated with it. For the simple case
with m = 1 and n = 2, the caricature takes the form:

F(γ,β,α) ≡ gα2
◦ gα1

◦ hβ, 1
2

◦ gα2
◦ hβ, 1

2

, (17)

where α1 = α(2 − γ), α2 = α(γ − 1), and γ ∈ [1, 2]. To be consistent with the
notation we already used for the doubly forced oscillators in eqs. (13) – (15), we
define f(1,β1,α) = gα ◦ hβ1,1 and f(2,β2,α) = gα ◦ h2β2, 1

2

. Then F(1,β,α) = f(1,β,α), but

F(2,β,α) = f2
(2, β

2
,α)

.

Similar caricatures are formed for more general m
n

by interrupting the time
one flow of eq. (16) with “kicks” of amplitude α1 = α(2 − γ) every 1

m
seconds,

and of amplitude α2 = α(γ − 1) every 1
n

seconds. At time 1 we arbitrarily choose
to kick with magnitude α1 before the kick of magnitude α2.

Remark: Note that f(1,β1,α) and f(2,β2,α) are not equal in our caricature, even
though W1 = W2 in the theoretical setting of eq. (3) would imply f(1,β1,α) =
f(2,β2,α), using the definitions of eqs. (13) – (15). This disadvantage, however,
is only aesthetic, and not significant in terms of our results. Given the choice
between the aesthetics of a true model, and the ease of computation of the cari-
cature, we have chosen the caricature’s ease of computation.

4.2 Parameter plane bifurcation diagrams

Figure 3 shows (β, α) parameter plane bifurcation diagrams for eq. (17) for a
sequence of auxiliary parameter γ values. As noted in the “Periodically forced
oscillator maps” paragraph of Section 2, we expect the bifurcation diagrams to
have distinctive shapes according to their period: triangular for period one, ice
cream cone for period two, rounded top for period three, rounded or wedge top
for period four, and cusped top for periods greater than five. This is the generic
case, in the absence of any symmetry.

The 1/1 resonance region. It has the characteristic triangular shape of a
period one resonance region at γ = 1, but develops a flame sometime before
γ = 1.7. The size of the flame grows as γ increases. The number of fixed points
in various subregions is indicated in the enlargement of Fig. 4. This shows the
extra pair of fixed points that exist inside the flame. The fixed point that exists
outside the triangle and outside the flame is the continuation from α = 0 of the
repelling fixed point at the origin. As γ increases beyond 1.9, the flame continues
to grow and becomes part of the ice cream cone shape, characteristic of a period-
two region, by γ = 2. The number of fixed points at γ = 2 corresponds to the
number of period-2 points inside a simple period-two region plus one extra point
for the continuation of the repelling fixed point. The top cusp becomes less and
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less prominent, finally smoothing out at γ = 2. Note also that the period doubling
circle PD1 for f(2,β,α) is a pitchfork circle PF1 for the second iterate, F(2,β,α). The
symmetry of the pitchfork is broken as γ decreases from 2, leaving in its place the
saddle-node bifurcation curve SN1.

The 1/2 region. It has the ice cream cone shape of a period-two region at
γ = 1. As γ increases from one, the period doubling circle, which is the ice cream
part of the ice cream cone, shrinks. Simultaneously, a flame is born sometime
between γ = 1.7 and γ = 1.9. See the enlargement in Fig. 4: an extra pair of
period-2 orbits (four period-2 points) exists for parameter values inside the flame.
The flame continues to grow inside the resonance region while the period doubling
circle and the whole resonance region shrink. Finally, at γ = 2, the flame and the
outside of the region have merged. In the process the circle has shrunk to the tip
point at the top of the resonance region; the upper tip of the flame simultaneously
arrives at this point as well. The shape at γ = 2 is characteristic of a period-four
region.

The 3
4
region. The region evolves from a period-four shape at γ = 1 to a period-

eight shape at γ = 2. (The period-four and period-eight shapes are distinguishable
only by the higher order contact at the upper (Hopf) tip. In general, the period-
eight region is thinner than a period-four region.) Somewhere between γ = 1.9
and γ = 2 a flame appears inside the resonance region. This flame grows as
γ increases, finally merging with the outside edge of the resonance region as γ
reaches two. Simultaneously, the upper tip of the flame arrives at the upper tip
of the region, and the lower tip of the flame arrives at the lower tip of the region.
The number of period-4 orbits inside the region has gone from 2 at γ = 1 to 4 at
γ = 2.

The 2
1

and 2
3

regions. No significant changes in the shape of the resonance
regions, or in the number of orbits which exist, occur as γ varies between one
and two. The former all are characteristic triangles, and the latter, although not
very visible in the figure, remain characteristic of period-three regions — all with
rounded tops.

Other p
q

regions. In general, a p
q

region changes from a p
q

shape into a p
2q

shape
as γ increases from 1 to 2. If 2 divides p, no qualitative change need result: p

2q

and p
q

both correspond to period q. If 2 does not divide p, then the change is
from a period-2q region into a period-q region, and a flame will necessarily exist
near γ = 2. This is consistent with the statements made at the end of Section 3.
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4.3 Resonance surfaces

As with the singly forced oscillator studies, the parameter plane bifurcation dia-
grams can be much better understood when viewed as projections to the param-
eter plane of periodic point surfaces in the four-dimensional phase × parameter
space. Because the actual resonance regions for the weak resonance case are so
narrow, we choose to illustrate with a schematic diagram instead (but still for
the m = 1, n = 2 case). A sequence of 1

5
resonance surfaces with corresponding

saddle-node curves is displayed in Fig. 5. The surfaces should also be compared
to the “flame” from the circle map setting in Fig. 2. (The definitions of resonance
surface and resonance region, as well as a description of the orbit identification
which was used in displaying the sequence of surfaces, were given earlier in subsec-
tion 2.3.1.) At γ = 1 the simplest form of a 1

5
resonance surface and region exist.

As γ increases, an extra fold in the surface develops and grows; this projects to
the flame in the region. The edges of the extra fold exactly line up with the edges
of the “original” fold, both projecting to the region boundary at γ = 2. Since
we have portrayed orbits rather than points in the 1

5
surfaces of Fig. 5, the figure

would be qualitatively identical for any p
q

surface with q ≥ 5 and odd. Although
the strong resonance surfaces, especially for q = 1 or 2, are quite different from
the weak resonance surfaces, the flames in these special cases can still be viewed
as projections of more natural folds in the corresponding resonance surfaces.

5 A True Doubly Periodically Forced Oscillator

Although we believe that the caricature on which we performed most of our nu-
merical experiments is sufficient to illustrate our results, we provide corroboration
in this section using a “true” doubly periodically forced oscillator.

Our example is the periodically forced Brusselator, a useful caricature of a
homogeneous, autocatalytic kinetic scheme capable of self oscillations, which has
repeatedly served as the main illustrative example for both the relevant phe-
nomenology [KT 79] as well as various computer assisted approaches to peri-
odically forced oscillator dynamics [KSA 1986, KAS 1986]. Periodic focing of
chemical processes, as a means to obtain better average performance (selectivity,
reactivity) compared to steady state operation is a subject with a long history,
which is particularly interesting again today in the context of the so-called reverse-
flow reactors (see Bailey [Ba 1973] for one of the first reviews of the subject).

The relevant single-frequency doubly-forced equations, exactly in the form of
eq. (2), are

ẋ = A + x2y − Bx − x + α[(2 − γ) cos(2πωt) + (γ − 1) cos(4πωt)] (18)

ẏ = Bx − x2y

We choose the same “base case” of A = 0.4, B = 1.2 as in earlier singly forced
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studies [KT 1979, AMKA 1986]. For these parameter values, the autonomous
(α = 0) oscillator frequency is ω0 = 0.3750375. By making the same parameter
change as suggested in the introduction, β = ω0/ω, and computed the 1/1 reso-
nance region for several fixed values of the relative forcing amplitude parameter,
γ. We show in Fig. 6 the result for γ = 1.7. This figure should be compared
to the caricature results for the 1/1 region of Fig. 3 for the γ = 1.9 case. The
flame which was guaranteed to exist at γ = 2 is still present at γ = 1.7. There
are some differences between the two figures which are worth pointing out. The
flame in the Brusselator example extends to the zero forcing amplitude tip of the
resonance region, but doesn’t in the caricature. (See Remark 2 at the end of
Section 6.1.) Also the cusp at the top of the flame in the caricature is instead on
the triangular saddle-node curve (here triangular plus the extra cusp). From nu-
merical continuations not presented here, we know that as γ is further decreased
from 1.7, the size of the flame will decrease, and the flame and triangular region
will interact, leaving by γ = 1 a triangular region with no extra cusp, and no
flame.

6 Local symmetry breaking analysis

The majority of this paper has dealt with explaining what happens to resonance
surfaces and corresponding bifurcation diagrams as our auxiliary parameter γ is
varied. In this section, we use a combination of local analysis and Fourier series
to analyze the local symmetry breaking at the two resonance region tips. More
specifically, we have already explained in Section 3 why F(2,β,α) being the nth

iterate of f(2, β

n
,α) causes extra orbits to exist throughout a p

q
resonance region at

γ = 2 whenever gcd(n, q2) > 1. We now describe what happens near the two tips
asa γ is perturbed from two.

Proposition 6.1 The following behavior is generic for the (β, α) parameter plane
bifurcation diagram for the stroboscopic families, F(γ,β,α), defined in eq. (13) via
the doubly forced oscillator in the form of eq. (3):

1. Flames persist in the α = 0 tip of any p
q

resonance region with q2 = q ·

gcd(n, q2) as γ is decreased from 2 whenever gcd(n, q2) > 1. That is, given
any p

q
, there exist δγ > 0 and δα > 0 such that for γ ∈ [2, 2 − δγ) the

subregion of the p
q

resonance region in the (β, α) parameter plane for which
the corresponding maps have more than two period-q orbits intersects the
α = α0 line for any α0 ∈ (0, δα).

2. Flames do not persist in the Hopf tip of any p
q

resonance region with q2 =

q ·gcd(n, q2) > q ≥ 5 as γ is decreased from 2. That is, given any p
q
, and any

γ sufficiently close to, but not equal to 2, the subregion of the p
q

resonance
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region in the (β, α) parameter plane for which the corresponding maps have
more than two period-q orbits (restricting, if necessary to a neighborhood of
the p/q resonant Hopf point in the phase space) does not extend to the p/q
Hopf point at the tip of the p/q resonance region.

Analogous results hold for γ near 1.

Similar statements are true for the strong resonance cases (q < 5), but the
justification requires a division into may cases, each of which is substantial to
analyze. But in general, if q2 = kq, there are k − 1 flames in the p

q
resonance

region for F(γ,β,α) for γ sufficiently close to 2.
The first claim is justified using Fourier series analysis since the forced oscilla-

tor maps can be reduced to circle maps for small forcing amplitude. The second
claim is justified using local normal forms analysis in the neighborhood (of phase
× parameter space) of a p

q
Hopf point. We will assume for convenience that the

original differential equation (eq.(3)) is C∞ in all of its variables and parameters.
This implies that the corresponding stroboscopic maps F(γ,β,α) and f(2,β,α) are also
C∞.

6.1 Small forcing analysis. (Proof of Proposition 6.1, Part
1.)

As in the singly forced oscillator setting described in Section 2, the original un-
forced oscillator limit cycle C in the doubly forced oscillator setting persists as
an invariant circle for the stroboscopic maps F(γ,β,α) as the forcing amplitude α is
increased from zero. We label this perturbed invariant circle C(γ,β,α). It is guaran-
teed to exist for α sufficiently small. Analgous to our notation in subsection 2.2,
we denote the lift of the circle maps obtained by restricting F(γ,β,α) to C(γ,β,α) by

F̃(γ,β,α). As noted in subsection 2.2, because the maps at α = 0 are all conjugate
to a rigid rotation with rotation number β, and by calling the conjugate map by
the same name, we can assume that F̃(γ,β,α) has the following form:

F̃(γ,β,α) : u 7→ u + 2πβ + αG(γ,β,α)(u) (19)

where u ∈ R1, and G is periodic with period 2π. Note that G(γ,β,α)(u) is defined

by
∂F̃(γ,β,α)(u)

∂α
.

A p
q

point (p
q

reduced) is defined by

F̃ q
(γ,β,α)(u) = u + 2πp (20)

A p
q

point will be a period-q point with rotation number p
q

for the associated circle
map.
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Lemma 6.2 For k ≥ 1, F̃ k
(γ,β,α)(u) = u + k2πβ + α

∑k−1
j=0 G(γ,β,α)(F̃

j
(γ,β,α)(u)).

Proof Straightforward computation using eq. (19) and induction. �

Lemma 6.2 allows us to rewrite the condition for a p
q
-point in eq. (20) as a

zero of H(γ, β, α, u), where

H(γ, β, α, u) = F̃ q
(γ,β,α)(u)−u−2πp = 2πq(β−

p

q
)+α

q−1∑

j=0

G(γ,β,α)(F̃
j
(γ,β,α)(u)) (21)

We note that H(γ, p
q
, 0, u) = 0 for all γ and u, and

∂H

∂β
(γ, β, 0, u) = 2πq for all γ,

β and u. So we can use the implicit function theorem to solve H(γ, p
q
, 0, u) = 0

for β near α = 0 to obtain:

β(γ, α, u) = β(γ, 0, u) + α
∂β

∂α
(γ, 0, u) + O(α2)

=
p

q
−

α

2πq
(
∂H

∂α
(γ,

p

q
, 0, u) + O(α))

=
p

q
−

α

2πq
(
∂H

∂α
(2,

p

q
, 0, u) + O(γ − 2, α)) (22)

To complete the proof, our task is to show that, for γ fixed sufficiently close
to 2, and α fixed sufficiently close to 0 (but not equal to zero), β(γ, α, u) takes
on some value more than 2q times for u ∈ [0, 2π). We do this by showing that
∂H
∂α

(2, p
q
, 0, u) (generically) has this “2q value” property, and then, by the form

of eq. (22) and continuity in γ and α, the property also holds for β(γ, α, u) for
γ and α sufficiently close to 0 and 2, respectively. The heueristic reason that
∂H
∂α

(2, p
q
, 0, u) has the property is because of the symmetry at γ = 2: its values,

being associated with orbits of period-q2, where q2 = q ·gcd(n, q2), come in groups
of q2. Since the orbits themselves come in pairs (an attracting and a repelling),
there will be values of ∂H

∂α
(2, p

q
, 0, u) that are taken on 2q2 times. The formal

computation of ∂H
∂α

(2, p
q
, 0, u) follows.

By the same assumptions we used to obtain the form of F̃(γ,β,α) in eq. (19) we

can assume the form of f̃(2,β,α), the lift of f(2,β,α) restricted to the corresponding
invariant circle, to be

f̃(γ,β2,α) : u 7→ u + 2πβ2 + αg(2,β2,α)(u) (23)

where g(2,β2,α) is some period-2π function. Recalling that β2 = β
n

and that
F(2,β,α) = fn

(2, β

n
,α)

, Lemma 6.2 now implies

H(2, β, α, u) = f̃nq

(2, β

n
,α)

(u) − u − 2πp = 2πnq(
β − p

q

n
) + α

nq−1∑

j=0

g(2, β

n
,α)(f̃

j

(2, β

n
,α)

(u)).
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Since g(2,β2,α)(u) is period 2π in u, it can be expressed in a Fourier series as

g(2,β2,α)(u) =
∞∑

l=−∞

cl(2, β2, α)eilu.

So we can compute

∂H

∂α
(2,

p

q
, 0, u) =

nq−1∑

j=0

g(2, p

nq
,0)(f̃

j
(2, p

nq
,0)(u))

=
nq−1∑

j=0

∞∑

l=−∞

cl(2,
p

nq
, 0)eil(u+2πj p

nq
)

=
nq−1∑

j=0

∞∑

l=−∞

cl(2,
p

nq
, 0)e

il(u+2πj
p2

q2
)
, since

p

nq
=

p2

q2

=
∞∑

l=−∞

clq2
(2,

p2

q2

, 0)nqeilq2u. (24)

The last equality is obtained by switching the order of summation and noting

that
∑nq−1

j=0 e
il2πj

p2

q2 is nq for l a multiple of q2 and 0 otherwise. This last form for
∂H
∂α

(2, p
q
, 0, u) also shows that, being invariant to translations in u by multiples of

2π
q2

, ∂H
∂α

(2, p
q
, 0, u) takes on the same value for q2 values of u at a time. Furthermore,

by continuity, for any values it takes on strictly between its global maximum and
minimum (each of which must also be taken on at least q2 times), it must take
on the same value for 2q2 values of u at a time. (Think of sin(q2u), which takes
on every value in the interval (1,−1) 2q2 times for u ∈ [0, 2π), but takes on
its maximum and minumum only q2 times.) Our generic condition that must
be satisfied to have a value strictly between the global maximum and minimum
of ∂H

∂α
(2, p

q
, 0, u0) is that ∂H

∂α
(2, p

q
, 0, u0) not be constant. That is, at least one

coefficient clq2
(2, p2

q2

, 0) with l 6= 0 must be nonzero. This completes the proof.

Remarks.

1. The separation condition. The proposition just proved shows that we
expect flames to persist in the α = 0 tip of a resonance region as γ is
perturbed from 2. On the other hand, the flame could separate from the
α = 0 tip for α values “farther” away from 2. Our computations in the
above proof give us a condition which must be satisfied at a specific value
of γ where the separation takes place. In the simplest case, the function
∂H
∂α

(γ, p
q
, 0, u) needs to go from having q2 maximum points and q2 minimum

points at γ = 2 to having q of each. The only way for a smooth periodic
function to lose local extrema is to pass through a value (of γ) for which
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there is an extremum which is also an inflection point. So the condition
(necessary, but not sufficient) for a flame to separate at γ = γs is to have a
point us for which S ′(us) = 0 and S ′′(us) = 0, where S(u) = ∂H

∂α
(γs,

p
q
, 0, u).

Of course certain nondegeneracy conditions must also be satisfied, and when
there are multiple flames, each flame must go through such a condition to
separate, but we do not deal with these details here.

2. Nongenericity of our doubly forced oscillator caricature. We note
that, while Proposition 6.1 holds (as far as we can tell) for the Brusselator
example, part 1 of our Proposition does not hold for our doubly forced
oscillator caricature. So our caricature example is actually nongeneric. None
of the flames pictured in Fig. 3 for any γ < 2 extend into the zero forcing
amplitude tip of the corresponding resonance region. On the other hand, the
flame for the Brusselator example in Fig. 6 still extends into the zero forcing
amplitude region of the 1/1 resonance region when γ has been decreased all
the way from 2 to 1.7.

We argue, however, that the caricature (eq. (17)) we used in this paper
as our primary numerical example, is still representative of the behavior
of typical physical system models, even though it is nongeneric in this one
specific feature. Furthermore, the nongenericity (having an infinity of van-
ishing Fourier series coefficients) is certainly quite typical of examples of
periodically forced oscillators that arise as models of physical systems. The
standard circle map family, for example, with forcing function g(u) = sin(u),
has only one nonzero coefficient in its expansion. Similarly, in our caricature,
the map f̃(2,β2,0) (f(2,β2,0) restricted to the invariant circle) is the standard
map to first order terms in α [Mc 1992]. In this “standard map case,” all
the coefficients clq2

(2, p2

q2

, 0) in eq. (24) vanish whenever q2 > 1, so all the

terms are O(α(γ − 2) + α2). At γ = 2, all terms must be O(α2). (This im-
plies that the associated Arnold tongue has sides that are tangent at α = 0;
that is, the tongues are cusps, not the generic wedges that open at a finite
angle.) After perturbing γ from 2, however, terms of order αO(γ − 2) could
dominate the terms which are O(α2). That is, the small α behavior at γ = 2
does not necessarily persist when γ is decreased from 2. Thus the flames in
our caricature are allowed to (and numerically do) separate from the α = 0
tip of the respective p

q
resonance region as soon as γ has any value less than

2. For related examples using Fourier series analysis, see Hall [Ha 1984],
McGehee and Peckham [MP 1996], and Broer, Simó and Tatjer [BST 1998].
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6.2 Hopf bifurcation analysis (Proof of Proposition 6.1,
Part 2.)

In this section we provide a brief explanation of how the symmetry breaking causes
the flame(s) which extends to the (upper) Hopf tip of the p

q
resonance region for

F(2,β,α) to separate from the Hopf tip of the p
q

resonance region for F(γ,β,α) when γ
is decreased from 2. Recall that we are considering γ as an auxiliary parameter,
so the resonance regions all live in the (β, α) parameter plane for fixed values of
γ. The “no flame” explanation is essentially a direct result of the analysis of a
resonant Hopf bifurcation point [Ar 1977, Ar 1983, Ta 1974] where it is shown that
generically (avoiding the low order resonance cases with q ≤ 4), for parameter
values interior to the p/q resonance region, and sufficiently close to its Hopf tip,
the corresponding maps have exactly two period-q orbits: one saddle and one
node. Our maps fail to satisfy the generic condition at γ = 2, but are assumed to
satisfy the condition for γ near 2. Since flames require the existence of “extra”
period-q orbits, we have the following scenario. When γ = 2, there are n − 1
flames; they are, however, not visible in the paramter plane bifurcation diagram
because the symmetry that guarantees their existence (F(2,β,α) is the nth iterate
of f(2, β

n
,α)) also gurantees that saddle-node sides of the flames will all project to

the the saddle-node sides of the resonance region (as in the F(2,β,α) part of Fig. 5).
As γ is perturbed from two, since the flames can no longer (generically) extend
to the Hopf tip, the n − 1 flame tips must pull away from the Hopf tip and into
the interior of the resonance region. At this point they are visible in a parameter
plane bifurcation diagram (as in the F(2−,β,α) part of Fig. 5).

A sketch of the argument follows below. We note that in the references of the
previous paragraph, the authors work directly with equivariant vector fields. The
connection to the map case is drawn by showing that the qth iterate of the maps
are, up to arbitrarily high order, conjugate to time-one maps of these equivariant
vector fields. We choose a more direct approach, working with the maps them-
selves. The calculations are quite similar to arguments presented elsewhere [PFK
1995]. That paper contains more details than we include here. It was a study of
a degeneracy in a p

q
resonant Hopf bifurcation, but included as well computations

for the nondegenerate case. It is the nondegenerate case we use in this paper.
A singularity theory approach such as in Peckham and Kevrekidis [PK 1991] or
more specifically for the Hopf bifurcation as in Broer and Golubitsky [BG 2002]
could also have been used here.

Sketch of proof. Rewrite F(γ,β,α) in normal form by perfoming the following
changes of variables. Translate the unique local fixed point to the origin. Change
the phase variable to complex “(z, z)” coordinates (where z is the complex con-
jugate of z): x = (x1, x2) → x1 + ix2 = z. Eliminate all “low order” nonresonant
terms. The linear term cannot be eliminated. Other resonant terms which cannot
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be eliminated are divided into two groups: those that are independent of the angle
of z after factoring out z (the zjzj−1 terms for j = 2, 3, · · ·) and those that aren’t.
It turns out that it is important to keep the lowest order terms in each group.
The lowest “theta independent” term is the z2z term. The lowest order “theta
dependent” term is the zq−1 term when γ < 2, but it is the zq2−1 term when γ = 2.
(Recall that F(2,β,α) is the nth iterate of f(2, β

n
,α). This means that the lowest order

theta dependent term for f(2, β

n
,α) is the zq2−1 term. It is a (straightforward, but

nontrivial) computation that the lowest order theta dependent term for F(2,β,α) is
also the zq2−1 term.)

Next, we change parameters from (γ, β, α) to (γ, ρ, φ) where ρ(γ, β, α) and
φ(γ, β, α) are defined by requiring the eigenvalue of the (unique) fixed point for
F(γ,β,α) to be e2πip/qρeiφ. Note that this makes the point (ρ, φ) = (0, 0) the Hopf
tip of the p/q resonance region in the “new” parameter plane for each fixed γ
near 2. Our first generic assumption is that this parameter change is nonsingular
at (γ, ρ, φ) = (2, 0, 0).

Thus, we can assume the map F(γ,β,α) has the following (normal) form:

F(γ,ρ,φ)(z) = e2πi p

q eρ(γ)+iφ(γ)(z + Aγ(ρ, φ)z2z + · · ·

+ (γ − 2)B̃γ(ρ, φ)zq−1 + · · · + Bγ(ρ, φ)zq2−1 + · · ·).

We have factored out the eigenvalue of the fixed point for computational conve-
nience in the steps that follow. We have also taken out the factor of (γ − 2) from
the zq−1 term since the symmetry makes it a nonresonant term, and thus zero
in normal form, at γ = 2. Our critical generic assumption is that the coefficient
B̃2(0, 0) is nonzero.

At this point, we need only solve Fq
(γ,ρ,φ)(z) − z = 0 for period-q points and

interpret the results. There are two cases: γ = 2 for which we can ignore the zq−1

term, and γ < 2, for which we can ignore the zq2−1 term. Each case separately
comes out of the “standard” analysis of the nondegenerate resonant Hopf bifurca-
tion referred to above. By computing Fq

(γ,ρ,φ)(z)−z, changing to polar coordinates

via z = reiθ, dividing by r to eliminate the fixed-point solutions, expanding in
terms of the small parameters ρ and φ and powers of γ − 2, we use the implicit
function theorem to obtain the least-period-q points as

ρ+iφ = −A2(0, 0)r
2−· · ·−(γ−2)B̃2(0, 0)r

q−2e−qiθ−· · ·−B2(0, 0)r
q2−2e−q2iθ−· · · .

All omitted terms are dominated by terms written above, in powers of r and γ−2.
We assume that the coefficients That all three coefficients A2(0, 0) and B2(0, 0)
are nonzero. These two nonzero coefficients, along with the above-mentioned
assumptions that B̃2(0, 0) is nonzero and that the parameter change from (γ, β, α)
to (γ, ρ, φ) is nonsingular are our generic assumptions.

We now interpret the least-period-q solution. For any γ < 2 we see that
the term (γ − 2)B̃γ(0, 0)r

q−2e−qiθ dominates the term Bγ(0, 0)r
q2−2e−q2iθ for r
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sufficiently small. Since we are restricting ourselves to the weak resonance cases,
the Ar2 term dominates all other terms. It can then be seen that (neglecting
higher order terms) the projection to the (ρ, φ) parameter plane of the period-q
solution set of ρ + iφ = −Aγ(0, 0)r

2 − ((γ − 2)B̃γ(0, 0)r
q−2e−qiθ covers a cusp-

shaped resonance region. By fixing r sufficiently small and varying θ from 0 to
2π, a circle in this resonance region is swept out and covered q times. Since each
time around the circle corresponds to once back and forth across the resonance
region, and each passage across the resonance region corresponds to a different
p
q

point, there are 2q distinct period-q points, corresponding to 2 orbits, for each

(ρ, φ) in the interior of the resonance region and near the cusp. A similar argument
gives 2q2 = 2nq > 2q solutions if γ = 2. Therefore, generically, flames extend to
the Hopf tip of a p/q resonance region at γ = 2, but no flames persist all the way
to the Hopf point for 1 << γ < 2. This completes the sketch of the proof.
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8 Figure Captions

1. Resonance surfaces for the Standard Family: θ 7→ θ + 2πβ + α sin(θ). See
eq. (10) for the definition of the resonance surfaces which live in the cartesian
product of the phase (variable θ) and parameter (variables β and α) spaces.
The projection to the (β, α) parameter plane gives the familiar “Arnold
tongue” picture. Figure reproduced from McGehee and Peckham [MP 1996].

2. An “Arnold flame” in a fixed-point resonace region for the map θ 7→ θ +
2πβ + α((0.1 + 0.9h(α2)) sin(θ) + (0.9− 0.9h(α2)) sin(2θ)

2
where h(x) is a C∞

function which increases from zero to one as x increases from zero to one.
Compare with the flame for F(2−,β,α) in Fig. 5. Figure reproduced from
McGehee and Peckham [MP 1996].

3. Resonance region melt in the (β, α) parameter plane as a function of the
relative forcing parameter γ. The (β, α) bifurcation diagram for the strobo-
scopic maps F(γ,β,α) (m = 1, n = 2 in eq. (3)) evolves from the bifurcation
diagram for f(1,β1,α) (without rescaling since m = 1) to the bifurcation di-
agram for f(2,β2,α) (with the rescaling β = 2β2) as γ increases from 1 to 2.
Flames are guaranteed to exist in every p/q resonance region with p odd
and γ sufficiently close to 2, and are expected to disappear for γ sufficiently
close to 1. Flames are visible here in the 1/1 region for γ = 1.9 and 1.7,
and in the 1/2 region for γ = 1.9. Abbreviations for bifurcation curves: SN:
saddle-node, PD: period doubling, H: Hopf. Subscripts denote the primary
period of the bifurcating orbit.

4. Enlargement of the flames in the 1/1 and 1/2 resonance regions for F(1.9,β,α)

in Fig. 3. The numbers indicate the number of orbits present for maps corre-
sponding to parameters in each region (period-two orbits on the left, fixed
points on the right). An extra pair of orbits exists for parameter values
inside the flames. Abbreviations for bifurcation curves: SN: saddle-node,
PD: period doubling, H: Hopf. For codimension-two bifurcation points:
TB: Takens-Bogdanov (double +1 eigenvalues), DNO: Double Negative One
eigenvalues, DPD: Degenerate Period Doubling (with one higher order de-
generacy), C: cusp. Subscripts denote the primary period of the bifurcating
orbit.

5. Schematic 1
5

resonance surface melt as a function of the relative forcing pa-
rameter γ for the stroboscopic maps of eq. (13). Projection to the (x1, β, α)
space from the four-dimensional phase × parameter space. Further projec-
tion to the parameter plane is shown on the back face of the bounding boxes.
The colors of the saddle-node curves on the surfaces corresond to the colors
of their projections to the parameter plane. Insets show more clearly the
projection to the parameter plane of the two flames. The resonance surface
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evolves from the “singly folded” surface at γ = 1 to the “doubly folded”
surface at γ = 2. Flames are guaranteed to exist for γ sufficiently close to
2, and are expected to disappear for γ sufficiently close to 1. See Section
2.3.1 for surface definitions, and Section 4.3 for further description.

6. Flame in the 1/1 resonance region in the (β, α) parameter plane for the
stroboscopic map of the doubly forced Brusselator of eq. (19). The relative
forcing parameter γ is 1.7. This figure should be compared to the 1/1
resonance region for the doubly forced caricature map, F(1.9,β,α), in Figure
1. As in Figure 1, both curves are fixed-point saddle-node curves. As γ
continues to decrease, the size of the flame will also decrease, disappearing
entirely before γ = 1.
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θ axis

α

α

β

β

1/3
0/1

1/2
2/3

1/1

Figure 1: Resonance surfaces for the Standard Family: θ 7→ θ + 2πβ + α sin(θ).
See eq. (10) for the definition of the resonance surfaces which live in the
cartesian product of the phase (variable θ) and parameter (variables β and
α) spaces. The projection to the (β, α) parameter plane gives the familiar
“Arnold tongue” picture. Figure reproduced from McGehee and Peckham
[MP 1996].
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α
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β
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θ

1

Figure 2: An “Arnold flame” in a fixed-point resonace region for the
map θ 7→ θ +2πβ +α((0.1+0.9h(α2)) sin(θ)+(0.9−0.9h(α2)) sin(2θ)

2
where h(x)

is a C∞ function which increases from zero to one as x increases from
zero to one. Compare with the flame for F(2−,β,α) in Fig. 5. Figure
reproduced from McGehee and Peckham [MP 1996].
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Figure 3: Resonance region melt in the (β, α) parameter plane as a func-
tion of the relative forcing parameter γ. The (β, α) bifurcation diagram
for the stroboscopic maps F(γ,β,α) (m = 1, n = 2 in eq. (3)) evolves from
the bifurcation diagram for f(1,β1,α) (without rescaling since m = 1) to
the bifurcation diagram for f(2,β2,α) (with the rescaling β = 2β2) as γ
increases from 1 to 2. Flames are guaranteed to exist in every p/q reso-
nance region with p odd and γ sufficiently close to 2, and are expected
to disappear for γ sufficiently close to 1. Flames are visible here in the
1/1 region for γ = 1.9 and 1.7, and in the 1/2 region for γ = 1.9. Abbre-
viations for bifurcation curves: SN: saddle-node, PD: period doubling,
H: Hopf. Subscripts denote the primary period of the bifurcating orbit.
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Figure 4: Enlargement of the flames in the 1/1 and 1/2 resonance regions
for F(1.9,β,α) in Fig. 3. The numbers indicate the number of orbits present
for maps corresponding to parameters in each region (period-two orbits on
the left, fixed points on the right). An extra pair of orbits exists for pa-
rameter values inside the flames. Abbreviations for bifurcation curves: SN:
saddle-node, PD: period doubling, H: Hopf. For codimension-two bifurca-
tion points: TB: Takens-Bogdanov (double +1 eigenvalues), DNO: Double
Negative One eigenvalues, DPD: Degenerate Period Doubling (with one
higher order degeneracy), C: cusp. Subscripts denote the primary period of
the bifurcating orbit.
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Figure 5: Schematic 1
5 resonance surface melt as a function of the relative

forcing parameter γ for the stroboscopic maps of eq. (13). Projection to the
(x1, β, α) space from the four-dimensional phase × parameter space. Further
projection to the parameter plane is shown on the back face of the bounding
boxes. The colors of the saddle-node curves on the surfaces corresond to the
colors of their projections to the parameter plane. Insets show more clearly
the projection to the parameter plane of the two flames. The resonance
surface evolves from the “singly folded” surface at γ = 1 to the “doubly
folded” surface at γ = 2. Flames are guaranteed to exist for γ sufficiently
close to 2, and are expected to disappear for γ sufficiently close to 1. See
Section 2.3.1 for surface definitions, and Section 4.3 for further description.
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1/1

Flame

β

Figure 6: Flame in the 1/1 resonance region in the (β, α) parameter plane
for the stroboscopic map of the doubly forced Brusselator of eq. (19). The
relative forcing parameter γ is 1.7. This figure should be compared to the 1/1
resonance region for the doubly forced caricature map, F(1.9,β,α), in Figure
1. As in Figure 1, both curves are fixed-point saddle-node curves. As γ
continues to decrease, the size of the flame will also decrease, disappearing
entirely before γ = 1.


