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Abstract
Periodically forced planar oscillators are often studied by varying

the two parameters of forcing amplitude and forcing frequency. For
low forcing amplitudes, the study of the essential oscillator dynam-
ics can be reduced to the study of families of circle maps. The pri-
mary features of the resulting parameter plane bifurcation diagrams
are “(Arnold) resonance horns” emanating from zero forcing ampli-
tude. Each horn is characterized by the existence of a periodic orbit
with a certain period and rotation number. In this paper we inves-
tigate divisions of these horns into subregions – different subregions
corresponding to maps having different numbers of periodic orbits.
The existence of subregions having more than the “usual” one pair of
attracting and repelling periodic orbits implies the existence of “extra
folds” in the corresponding surface of periodic points in the cartesian
product of the phase and parameter spaces. The existence of more
than one attracting and one repelling periodic orbit is shown to be
generic. For some of the families we create, the resulting parameter
plane bifurcation pictures appear in shapes we call “Arnold flames.”
Results apply both to circle maps and forced oscillator maps.

*A similar version of this paper will appear in the International Journal of
Bifurcation and Chaos.



1 Introduction

Periodically forced planar oscillators arise as models of phenomena in many
settings in science, engineering, and mathematics. By varying the forcing
amplitude and frequency, a two-parameter family of differential equations is
obtained. Such families are often studied by considering the two-parameter
family of maps of the plane generated by sampling the flow of the forced
oscillator differential equations at the time period of forcing. For small forcing
amplitudes, the study can be further reduced to a two-parameter family
of circle maps which are perturbations of rigid rotations of the circle. An
exposition of this reduction is in a previous paper [McGehee & Peckham,
1994]. We study such families in this paper; see Eq. (1) in Sec. 2.

Studies of such circle map families by Arnold [1983] and Hall [1984] indi-
cate the presence of (Arnold) resonance horns emanating from each rational
point on the zero forcing amplitude axis in the parameter plane. Each reso-
nance horn is characterized by the existence of a periodic orbit with a certain
(rational) rotation number. In the best-known example, the standard circle
map family (Example 1, Sec. 2.1), at least for small enough values of the
forcing amplitude, all maps corresponding to parameter values inside any one
p/q resonance horn have exactly two period-q orbits and are all topologically
conjugate. The two orbits come together in a period-q saddle-node bifurca-
tion at the boundaries of each resonance region. With the standard map, the
resonance horns, along with the curves “in between” them corresponding to
maps conjugate to a rigid rotation with an irrational rotation number, are
the complete bifurcation story.

It is quite possible, however, to have families of circle maps whose reso-
nance regions must be subdivided in order to respect topological equivalence.
(We use resonance “region” and resonance “horn” interchangeably, often pre-
ferring resonance horn when restricting to parameter values near the tip of
the full resonance region.) Such a subdivision is necessary when maps in the
same period-q resonance region do not all have the same number of period-q
orbits. The bifurcation phenomena associated with the birth and death of
these extra orbits are explored in this paper.

Perhaps the most familiar parameter plane feature (but not the simplest,
as we shall see) we study is the swallowtail. This feature is illustrated, for
example, in two-parameter families of maps of the plane studied by Schreiber,
Dolnik, Choc, and Marek [1988] and in a two-parameter family of maps of
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Figure 1: A schematic of the 3/4 resonance region from Fig. 3 of Schreiber,
et. al. [1988]. The resonance region is in the (T, A) parameter plane for a
family of maps of the plane generated by a planar flow with “impulse forcing.”
The T parameter can be thought of as controlling forcing frequency, the A
parameter as controlling forcing amplitude. Note especially the swallowtail
in the 3/4 resonance region.

Figure 2: (Reproduced from Fig. 6a of Frouzakis, et. al. [1991] with per-
mission from the authors.) The 1/5 resonance region in the (k, b) parameter
plane for a family of maps of R3. Note especially the swallowtail in the
resonance region.

R3 studied by Frouzakis, Adomitas and Kevrekidis [1991]. Parameter plane
bifurcation diagrams from those two papers are reproduced in our Figs. 1 and
2, respectively. The Schrieber, et. al. maps are intended to be a caricature
of maps of the plane generated by a periodically forced planar oscillator
family; the two parameters are analogous to forcing frequency and forcing
amplitude. We focus on their 3/4 resonance region. It has tips at either
“end” of the resonance region: one at the analogue of zero forcing amplitude
(A = 0) and the other at a Hopf bifurcation curve (the dash-dot line in Fig.
1). The complete resonance region provides a connection between the two
types of resonance horns; these two types are described in more detail in a
previous paper [Peckham, 1990]. The 1/5 resonance region we reproduced
from the Frouzakis, et. al. paper emanates from a Hopf bifurcation curve: the
straight dashed line in Fig. 2; no forced oscillator interpretation is intended.
In both bifurcation diagrams, the continuation of the saddle-node curves
which determine the boundary of the respective resonance regions results in
swallowtail regions inside those resonance regions. The two cusps on the tail
of each swallowtail are saddle-nodes with a higher order degeneracy; this cusp
is different from both the forced oscillator tip and from the Hopf bifurcation
tip.

Although not emphasized in either the Schrieber, et. al. paper or the
Frouzakis, et. al. paper, the maps corresponding to parameter values in-
side the swallowtail regions have four period-q orbits instead of just a single
attracting-repelling pair as in the rest of each period-q resonance region. Be-
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cause similar scenarios are present in the simpler setting of families of circle
maps, we discuss mainly circle maps in this paper. As suggested in Aronson,
McGehee, Kevrekidis, and Aris [1986], we study these scenarios by focusing
on the fixed- and periodic-point surfaces in the phase × parameter space in-
stead of just the resonance regions in the parameter space. Implications for
forced oscillators are discussed briefly toward the end of the paper in Sec. 5.

We encourage the reader to look ahead to Fig. 15 where we present
our two-parameter family of circle maps whose 0/1 fixed-point resonance
phenomena include a swallowtail. Illustrated are the “fixed-point resonance
surface” and its projection to the fixed-point “resonance horn.” The curves
on the fixed-point surface are along its folds (i.e., its singularities with re-
spect to projection to the parameter plane); dynamically, these folds are
saddle-node bifurcation curves. Note that when projecting to the parameter
plane, the saddle-node curves either mark the boundary of the fixed-point
resonance horn or the swallowtail region inside the horn. The fixed-point
surface projects 2:1 outside the swallowtail region, but 4:1 inside. In other
words, there is an “extra pair” of fixed points for maps corresponding to pa-
rameter values inside the swallowtail. This example will be explained further
toward the end of Sec. 2, after presenting some simpler examples which serve
as “building blocks” for the swallowtail example.

Most of the examples we present can be thought of as falling into one
of two broad classes: those with extra pairs of orbits “at” the zero forcing
amplitude horn tip, and those with extra pairs of orbits which are born only
away from the horn tip. The extra orbits in the swallowtail are away from
the horn tip and thus belong to the latter class. The existence of extra
orbits “at” the zero forcing amplitude tip of the a resonance region may be
surprising, especially to persons who are familiar with the “other” type of
Arnold resonance horns: those with resonance horns originating from a Hopf
bifurcation curve in a two-parameter plane of a family of maps of the plane.
Arnold [1982] shows using local normal forms that in such cases (at least
for periods greater than four) that maps corresponding to parameter values
inside the resonance horn and near the (tip generically have only one pair of
period-q orbits. Thus, bifurcation features are generically possible only away
from the Hopf tip of resonance regions.

In part, this paper discusses how to interpret features of a bifurcation
diagram for a given family of maps. More, however, the emphasis is on
generating families with desired bifurcation scenarios. In the process we
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discuss what bifurcation scenarios are possible for families of circle maps and
forced oscillator maps. In Sec. 2 we provide building blocks for bifurcation
scenarios and use them to generate families having bifurcation features such
as the swallowtail. In Sec. 3, we extend some of our constructions from the
fixed-point setting to the period-q setting for q ≥ 2. We show in Sec. 4 that
the existence of subdivisions in resonance regions is generic. Implications for
forced oscillators are discussed in Sec. 5.

The data for all surfaces and bifurcation curves shown in the figures in
this paper were computed using the authors’ continuation software [Peck-
ham, 1988-94]. Numerical data was then viewed using the three dimensional
viewing software, Geomview [Phillips et. al., 1993].

2 Families of Circle Maps

Consider the following family of maps of R1:

x → F(φ,α)(x) := x + φ + αg(φ,α)(x) (1)

where x, φ, and α are real, and

1. g(φ,α)(x) ∈ C1 as a function of φ, α and θ, and |dg(φ,α)

dx
| ≤ 1

2. g(φ,α)(x + 2π) = g(φ,α)(x)

3.
∫ 2π
0 g(φ,α)(x)dx = 0 for all φ and α.

If we let θ = x (mod 2π), and f(φ,α) = F(φ,α) (mod 2π), then F(φ,α) is a lift
of a two-parameter family of degree one circle maps. The maps are home-
omorphisms when 0 ≤ α ≤ 1. Such maps arise from periodically forced
planar oscillators as alluded to in the introduction. Because of the relation-
ship to periodically forced oscillators, we call the parameter α the forcing
amplitude; the parameter φ corresponds to the forcing frequency; g(φ,α) is
the forcing function. When g(φ,α)(x) = sin(x), the resulting map of Eq. (1) is
called the standard (circle map) family; see Example 1 in Sec. 2.1 below. We
are primarily interested in periodic orbits of f(φ,α), which are usually defined
in terms of the lift F(φ,α).
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Figure 3: Fixed points by graph. F(−0.4,0.9)(x) = x+(−0.4)+0.9((0.7 sin(2x)
2

+
0.3 sin(2π − h(.9)π

2
), where h(.9) = 0.972. The form of F is chosen to match

the form used later in the paper in Example 12.

Definition: The point (θ, φ, α) is a “p/q point” (that is, θ is a p/q point
for f(φ,α)) if θ := x (mod 2π) is a least-period-q point for f(φ,α) and

F q
(φ,α)(x) = x + 2πp (2)

Definition: The set of p/q points ∈ S1×R× [0,1) is “the p/q resonance
surface.” The projection of the p/q resonance surface to the parameter
plane is “the p/q resonance horn” or “the p/q resonance region.”

If θ is a p/q point for f(φ,α) with eigenvalue not equal to one (∂fq

∂θ
(θ, φ, α) 6=

1, where f(φ,α) is abbreviated by f), then the implicit function theorem guar-
antees local continuation of the p/q point in the (θ, φ, α) space as the param-
eters φ and α are varied. So we make another definition:

Definition: A p/q point (θ, φ, α) with ∂fq

∂θ
(θ, φ, α) = 1 is a “singular p/q

point.”

The most common singularities we encounter are the saddle-node bifurcation
(eigenvalue 1) and the cusp bifurcation (eigenvalue 1 and a higher order
degeneracy).

In this Section, we use forcing functions g(φ,α) which are all independent of
φ. Consequently, we will usually abbreviate g(φ,α) with gα for the rest of Sec.
2. We will return to the more general form in Sec. 3. In this case, changing
φ merely translates the circle map f(φ,α) and its lift F(φ,α). This makes the
fixed-point bifurcations especially easy to understand. As φ is increased,
fixed points are born at θ values corresponding to local maxima of gα; fixed
points die at θ values of local minima. Usually (if g

′
α = 0 and g

′′
α 6= 0) the

births and deaths of fixed points occur in saddle-node bifurcations.
This is illustrated in Fig. 3, where we show the graphs of y = x and

of F(φ,α)(x) = x + φ + αgα(x) for gα = 0.4 sin(x) + 0.6 sin(2x)
2

, with φ =
−0.5, α = 0.9. By the definition of a 0/1 point, such points correspond to
the intersections of the two curves. Increasing φ now translates up the graph
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of x + φ + αgα(x). New pairs of 0/1 fixed points are obviously “born” as φ
increases when the values of local maxima of αgα(x)+φ push through height
zero. Similarly, pairs of orbits coalesce and “die” as values of local minima
increase thru zero. In Fig. 3, one attracting-repelling pair of fixed points
has already been born; as φ continues to increase, a second pair will be born,
then a pair will die, and finally another pair will die, leaving no 0/1 fixed
points for any larger values of φ.

Restricted to α = constant, the 0/1 resonance region occupies a line seg-
ment from φ = −αM to φ = −αm where M and m are the global maximum
and global minimum, respectively, of gα(x). This follows directly from Eq.
(2). When gα is independent of α, the 0/1 resonance region is bounded by
the straight lines φ = −αM and φ = −αm. More generally, considering p/q
resonance regions for q’s other than one, Hall [1984] has shown that if g(φ,α) is
independent of φ and α then the p/q resonance horns generically open out of
each point (2πp/q, 0) on the φ axis as “wedges,” that is, the two sides of the
resonance regions have different slopes. He uses the Fourier series expansion
of g(x) to obtain his results. The issue of how many period-q orbits exist
inside the period-q horn is not addressed. Hall’s results apply to our more
general family because his results are local – the rate at which resonance
horns open near the zero forcing amplitude tip of the p/q resonance horn
depends only on the Fourier series for the single map g(p/q,0)(x).

In the following subsections, we present several example functions gα

which determine two-parameter families of circle maps via Eq. (1). The var-
ious gα’s are chosen to illustrate the variety of features that the corresponding
0/1 resonance surfaces and associated bifurcation diagrams can exhibit. We
start in Sec. 2.1 with several gα’s that are independent of α. We focus on
the number of p/q orbits existing for parameter values in a p/q resonance
region, not just whether or not a p/q orbit exists. In Secs. 2.2 through 2.6,
we use the features of the Sec. 2.1 examples to construct gα’s which do de-
pend on α and whose associated bifurcation diagrams consequently are more
“interesting.” See also Koslovsky [1991] for two similar examples. In Sec. 3
we extend these constructions to create similar features in resonance horns
for periodic orbits with periods greater than one.
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Figure 4: Example 1, the Standard Family: g(x) = sin(x). The 0/1 resonance
surface and its projection to the parameter plane.

2.1 Preliminary examples

All the gα’s in this subsection will be independent of α. The resulting
circle maps are defined Eq. (1). The independence of gα on α implies
the fixed-point (possibly degenerate) saddle-node curves are all of the form
{(θ, φ, α)|θ = θci

, φ = −Vci
α}, where θci

are the critical points of g, and
Vci

= g(θci
) are the corresponding critical values. This is because Eq. (1)

implies that the curves all satisfy F(−Vciα,α)(x) = x, and F
′
(−Vciα,α)(x) = 0.

The projection to the parameter plane of the two curves corresponding to
the global maximum and global minimum of g form the boundary of the 0/1
resonance region.

Example 1: The standard family. By setting

gα(x) = g(x) = G1(x) := sin(x)

in Eq. (1), we obtain the much studied “standard family of circle maps.”
We restrict α to 0 ≤ α < 1 to ensure our circle maps are homeomorphisms.
From Eq. (2), we see that the 0/1 resonance surface (of fixed points) is given
by φ = −α sin x; this projects to the 0/1 resonance horn |φ| ≤ α, 0 ≤ α < 1.
The singular 0/1 points are the 0/1 points with x = π/2 or 3π/2. These
(saddle-node) curves project to φ = ∓α in the parameter plane.

Figure 4 shows the 0/1 fixed-point surface and its projection to the pa-
rameter plane. The forcing amplitude α is restricted to [0, 1]; θ is restricted
to [0, 2π]; the parameter plane projection is shown at θ = 10. ”The shading
of the saddle-node curves is the same on both the surface and on the curves’
parameter plane projection. The dark straight line parallel to the θ axis is
a representative phase line. It is extended to the parameter plane projec-
tion to assist in identification of its parameter value. The phase portrait for
this line has two fixed points at the intersection points with the 0/1 surface.
Successive iterates march in the positive θ direction for starting θ values “in
front” of the surface ; iterates march in the negative θ direction for start-
ing points behind the surface. The two thin straight lines parallel to the θ
axis are included merely to aid in visualizing the projection to the parameter
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Figure 5: Example 1, the Standard Family: g(x) = sin(x). Several resonace
surfaces and their projections to the parameter plane.

plane. This same figure format is used throughout the paper for almost all
our subsequent examples.

To further place the context of our study we have included a more com-
plete picture of resonance surfaces and the resonance regions which are their
projections to the parameter space. In Fig. 5 are the 0/1, 1/3, 1/2, 2/3, and
1/1 resonance surfaces and corresponding projections. The parameter plane
bifurcation picture for this example is well known [Devaney, 1989]. It has
a resonance horn corresponding to each rational number. Each resonance
region, of course, has an associated resonance surface in the phase × pa-
rameter space. Since we are restricting α to [0, 1], the circle maps are all
homeomorphisms and uniqueness of rotation numbers implies that none of
the resonance regions may overlap. The following examples also have res-
onance regions corresponding to each rational number, but we are focusing
only on the 0/1 resonance surfaces and regions. As we shall see in Sec. 3.1,
all the features we create for a 0/1 resonance can be created for any p/q
resonance, as well.

Example 2: One pair of extra folds – coincident projections. Let

gα(x) = g(x) = G2,0(x) :=
sin(2x)

2
.

Analogous to the standard family, the fixed point surface is given by φ =
−α sin(2x)

2
; this projects to the 0/1 resonance horn |φ| ≤ α

2
, 0 ≤ α < 1. The

singular 0/1 points are the 0/1 points with x = π/4, 3π/4, 5π/4, or 7π/4. The
two light (saddle-node) curves correspond to the maxima of g(x), x = π/4
and 5π/4, and both project to φ = −α

2
in the parameter plane; The two dark

(saddle-node) curves correspond to the minima, x = π/4 and 5π/4, and
both project to φ = +α

2
in the parameter plane. See Fig. 6. As with the

standard map in Fig. 4, the dark straight line parallel to the θ axis is a
representative phase line. For this example, however, we have four instead
of two fixed points; two extra fixed points exist.

Example 3: One pair of extra folds – noncoincident projections.
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Figure 6: Example 2, Coincident projections: g(x) = sin(2x).

Figure 7: Example 3, Noncoincident projections: g(x) = 0.9 sin(2x)
2

+0.1 sin(x).

We now construct our first example having a resonance region which must
be further subdivided in order to respect topological equivalence. The subre-
gions within the resonance region are inequivalent because they have different
numbers of fixed points for the corresponding maps. In the previous exam-
ple, the fact that the two maxima of g(x) = sin(2x)

2
are equal-valued causes

the two corresponding saddle-node curves to project to the same parameter
space line. This line marks the left-hand side of the fixed point resonance
horn. The two equal-valued minima cause the other two saddle-node curves
to project to the right-hand side of the resonance region. To separate these
coincident projections, we perturb the previous example by letting

gα(x) = g(x) = G2,ε(x) := (1− ε)
sin(2x)

2
+ ε sin(x). (3)

where 0 ≤ ε < .5 in order to ensure that G2,ε(x) still has two local maxima
and two local minima. The surface of 0/1 points is given by φ = −αgα(x),
as in the previous two examples, but it is no longer trivial to solve analyti-
cally for the saddle-node curves in the phase × parameter space, or for their
projection to the parameter plane. These bifurcation curves are, however,
relatively easy to trace out numerically. The result for ε = 0.1 is Fig. 7; this
should be compared to Fig. 6, which is the unperturbed ε = 0 case. The two
outside saddle-node curves in the parameter plane denote the 0/1 resonance
horn boundaries, while the two inside curves separate the resonance horn
into the center region, in which there exist two attracting and two repelling
fixed points, and the two outside regions, where there exists only a single
attracting-repelling pair of fixed points.

Example 4: Multiple pairs of extra folds. The previous example can
easily be extended to obtain a resonance horn with 2n saddle-node curves by
choosing g to be a periodic function with n local maxima and n local minima.
The n maxima ensure the saddle-node births of n pairs of fixed points as φ
increases (for α ∈ (0, 1) fixed); the n minima ensure n saddle-node deaths.
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If the 2n maximum and minimum values are distinct, the 2n saddle-node
curves will project to distinct lines in the parameter plane. For example, to
obtain n− 1 extra pairs of folds, we could use

gα(x) = g(x) = Gn,ε(x) := (1− ε)
sin(nx)

n
+ ε sin(x + B̃) (4)

where where 0 < ε < .5 in order to ensure Gn,ε(x) has n local maxima and
n local minima and B̃ is chosen to ensure all the local extremum values are
distinct. This prevents curves which are distinct in the phase × parameter
space from having coincident projections to the parameter space.

Example 5: An infinity of folds. By choosing g to be a periodic function
with an infinite number of local maxima and minima, we obtain an example
with an infinite number of saddle-node curves inside the 0/1 resonance re-
gion. Such an example can have an infinite number of topological equivalence
classes inside the 0/1 resonance region, as well as parameter values with an
infinite number of fixed points without having any interval of fixed points.
We use the C∞ function

gα(x) = g(x) = G∞(x) :=
1

K
sin(

1

x
+ B̃)H(x/2π)

where H(x) is a C∞ function which is C∞ flat at x = 0 and x = 1 and positive
on (0, 1), B̃ is chosen so that the average value of sin( 1

x
+ B̃)H(x/2π) is zero

on [0, 2π], and K is the maximum derivative of sin(1/x + B̃)H(x/2π) on
[0, 2π]. Then G∞(x) satisfies the three forcing function conditions listed at
the beginning of Sec. 2. We choose H(x) to have the form

H(x) = 4h(x)h(1− x)

where h(x) is a C∞ function which is zero for x ≤ 0 and 1 for x ≥ 1, C∞ flat at
zero and one, and strictly monotonic on [0, 1]. (For computation throughout
this paper we use the C1 function h(x) = 3x2 − 2x3, for x ∈ [0, 1].) This
makes H(x) symmetric about x = .5 where it obtains its maximum value of
1. Sketches of h(x) and H(x), which are also used later in the paper, are
shown in Fig. 8.

No such analytic example exists since g having an infinite number of local
maxima or minima would force g′ to be identically zero. Since g is required
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Figure 8: Smooth bump functions h(x) and H(x).

to have average value zero (condition (3) at the beginning of Sec. 2), it must
therefore be identically zero as well. This would result in a 0/1 resonance
horn with “width” zero: Eq. (1) indicates that if φ = 0 every point would
be a 0/1 fixed point, but if φ 6= 0, no point would be a 0/1 fixed point.

2.2 Flames

We now move to examples using functions gα which actually depend on α.
We will use α ∈ [0, 1] as a “homotopy” parameter to trade off between,
for instance, the different g’s in the preliminary examples of the previous
section. More specifically, the examples in this subsection have the form
gα(x) = (1−α)g̃(x)+α sin(x+ B̃) where g̃ has multiple maxima and minima
as do Examples 2 through 5 from the previous subsection, and B̃ is chosen to
make sure the extremum values of gα(x) are distinct. As α increases from 0
to 1, all but a single max-min pair of singularities must disappear. The disap-
pearance generically occurs at cusps – the tips of the “flames” in the param-
eter space bifurcation diagrams. This is fairly immediate from Eq. (1) since
the disappearance of a max-min pair for gα implies that there is an x value,
say p, and an α value, say a, at which g

′
a(p) = 0, and g

′′
a(p) = 0; we expect

that generically g
′′′
a (p) 6= 0. These conditions and Eq. (1) imply that there

is a φ value, say φ0 such that F(φ0,a)(p) = p, F
′
(φ0,a)(p) = 1, F

′′
(φ0,a)(p) = 0, but

F
′′′
(φ0,a)(p) 6= 0, the generic conditions for a cusp bifurcation [Guckenheimer

& Holmes, 1982]. See Koslovsky [1991] for a fomal proof of the existence of
the cusp.

Example 6: Single Flame. To obtain a single flame inside the 0/1 reso-
nance horn, we define

gα(x) := (1− α)G2,ε(x) + α sin(x)

= (1− A(α))
sin(2x)

2
+ A(α) sin(x + B(α))

where A(α) = ε(1 − α) + α = ε + (1 − ε)α,B(α) = 0, G2,ε(x) has one extra
pair of folds, as defined in Eq. (3) above, and ε ∈ [0, 0.5). The second form
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Figure 9: Example 6, Single Flame: gα(x) = (1−A(α)) sin(2x)
2

+ A(α) sin(x),
where A(α) = 0.1 + 0.9α. (a) The evolution of gα(x) : α = 0.1, 0.5, 0.9. (b)
The 0/1 resonance surface and its projection to the parameter plane (with α
replaced by h(α2)).

Figure 10: Example 7, Double Flame: gα(x) = (1 − h(α)) sin(3x) +
h(α) sin(x + π

4
). The inset shows more clearly the double flame in the pro-

jection to the parameter plane.

of gα is given for comparison with other examples of the same form in Secs.
2.3 through 2.6; any family of that form can be viewed as a “path through
the (A,B) parameter space” as α changes. The (A,B) parameter space is
more fully described in Sec. 2.5 below.

Three snapshots of gα(x) are shown in Fig. 9a for α ∈ [0, 1]. Note the
four local extrema for α = 0.1 and only two local extrema for α = 0.9. The
resulting 0/1 resonance surfaces and bifurcation diagram are shown in Fig.
9b for ε = .1, but with α replaced by h(α2), both to smooth the bifurcation
pictures and to increase the size of the flame; recall the graph of h(x) in
Fig. 8. The α value of the cusp (the top tip of the flame) is the value which
separates the gα’s with two local maxima and two local minima from those
with a single maximum and a single minumum.

Example 7: Multiple Flames. More generally, to have n− 1 flames:

gα(x) := (1− α)Gn,ε(x) + α sin(x + B̃)

where B̃ is chosen as in the definition of Gn,ε(x) in Eq. (4) above to avoid
coincident projections to the phase plane fo distinct saddle-node curves.

See Fig. 10 for the 0/1 resonance surface and bifurcation diagram for a
double flame created by letting n = 3, ε = 0, and B̃ = π

4
; we also replaced

α with h(α) for visual enhancement. The inset at the lower right shows the
double flame parameter space projection more clearly.

Example 8: An infinity of Flames. Define

gα(x) := (1− α)G∞(x) + α sin(x))

12



Figure 11: Example 9, Center Fold: gα(x) = (1−A(α)) sin(2x)
2

+ A(α) sin(x),
where A(α) = 1− 0.7H(α).

where G∞ is the C∞ function with an infinite number of maxima and minima
described for the infinity of folds in Example 5 above.

2.3 Center folds

Flames in the previous section were created by ensuring that gα had “extra”
extrema for α near zero, but only a single maximum and single minimum
for α near one. If instead, as α increases from zero to one, we start with no
extra extrema, ensure that extra max-min pairs are born by α = 0.5, and
ensure that they die as α approaches one, we effectively “slide” the flame up
out of the bottom tip of the 0/1 resonance horn. Since such examples create
extra folds in the 0/1 resonance surface which project to the middle of the
0/1 resonance horn, we call them “center folds.” We create these examples
simply by replacing α in the Basic Flames section with 1−H(α), or any other
C∞ function that travels from 1 to 0 to 1 as α increases from 0 to 1. This
has the effect of weighting the sin(x + B) term heavily for values of α near
both zero and one, but weighting the “other” term, the one causing multiple
folds, for α near .5. Thus, as α increases from zero to one, all families start
with no extra folds, acquire extra folds, then lose all extra folds.

Example 9: Single Center Fold. Define

gα(x) := (H(α))G2,ε(x) + (1−H(α)) sin(x)

= (1− A(α))
sin(2x)

2
+ A(α) sin(x + B(α))

where A(α) = 1−(1−ε)H(α), B(α) = 0. As with the “single flame” example,
the second form of gα is for later comparison with other examples. See Fig.
11 for the center fold with ε = 0.3.

Example 10: Multiple Center Folds For n−1 extra pairs of folds, define

gα(x) := H(α)Gn,ε(x) + (1−H(α)) sin(x + B̃)
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Figure 12: Example 12, Left-side crossing: gα(x) = 0.7 sin(2x)
2

+ .3 sin(x+2π−
π
2
h(α)). (a) The evolution of gα(x) : α = 0.1, 0.5, 0.9. (b) The 0/1 resonance

surface and its projection to the parameter plane.

where B̃ is chosen to have the same value as in the definition of Gn,ε(x) in
Eq. (4) above.

Example 11: An infinity of Center Folds. Define

gα(x) := (H(α))G∞(x) + (1−H(α)) sin(x)

where G∞(x) was defined in Example 5 above.

2.4 Saddle-node crossings

The emphasis on all the examples presented to this point has been controlling
the births and deaths of extra pairs of fixed points. We now present some
examples for which we control the crossing of saddle-node curves for families
having extra pairs of orbits. The examples are constructed using the simple
idea that saddle-node curves cross when values of any two local extrema for
gα cross as α changes.

Example 12: A single left-side crossing. Define

gα(x) := (1− .3)
sin(2x)

2
+ .3 sin(x + B(α))

where B(α) = 2π − π
2
h(α). From the symmetry of the sine function, it

is apparent that when α = 0.5, gα(x) has two local maxima with equal
values. Thus, the “crossing” takes place at α = 0.5. This is corroborated
by the snapshots of gα(x) for α = 0.1, 0.5, 0.9 in Fig. 12a. Note that the
gobal maximum for gα(x) switches from one local maximum to the other as
α passes through 0.5. Figure 12b shows the 0/1 resonance surface and its
projection to the parameter plane.

Example 13: A “full twist” with one extra fold. Define

gα(x) := (1− ε)
sin(2x)

2
+ ε sin(x + B(α))

14



Figure 13: Example 13, Full twist: gα(x) = 0.7 sin(2x)
2

+.3 sin(x+2π−2πh(α)).

where B(α) = 2π − 2πh(α), ε ∈ (0, 0.5).
Since the two local maximum values are coincident at B(α) = π

4
and

5π
4

, and the two local minimum values are coincident at B(α) = 3π
4

and 7π
4

,
letting B(α) vary from zero to −2π, causes two left side saddle-node crossings
alternating with two right side saddle-node crossings. The result for ε = 0.3
is in Fig. 13.

Example 14: A “full twist” with n-1 extra folds. This is a slight
generalization of the previous example. Define

gα(x) := (1− ε)
sin(nx)

n
+ ε sin(x + B(α))

where B(α) = 2π − 2πh(α), ε ∈ (0, 0.5).

2.5 More complicated flames and folds

We now consider bifurcation diagrams created by controlling both the saddle-
node crossings and the birth/death of an extra pair of fixed points. We
use the following form which has already been used for the standard map,
coincident projection, noncoincident projection, single flame, single fold, left
side crossing, and full twist with one extra fold examples:

gα(x) =
(1− A(α))

2
sin(2x) + A(α) sin(x + B(α)) (5)

As A(α) and B(α) vary in Eq. (5), two types of changes are effected:

1. The number of relative extrema of gα changes from four (two maxima,
two minima) to two (one maximum, one minimum) as A(α) increases
from zero to one.

2. For A(α) sufficiently small to ensure gα has four relative extrema, the
values of the relative extrema cross as B(α) varies:

(a) The values of the two local maxima cross on the two line segments
with B = π/4 or 5π/4;
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Figure 14: (a) The two-mode parameter space: gα(x) = 1−A
2

sin(2x) +
A sin(x). (b) The path through this two-mode parameter space which corre-
sponds to the left edge swallowtail of Example 15.

Figure 15: Example 15, the left edge swallowtail: gα(x) = (1−A(α))
2

sin(2x) +
A(α) sin(x + B(α)), with A(α) = 1− .7H(α), and B(α) = 2π − π

2
h(α).

(b) The values of the two local minima cross on the two line segments
with B = 3π/4 or 7π/4.

Changes in features in the bifurcation diagram for the circle maps of Eq.
(1) are effected as the coefficients (A(α), B(α)) pass between the five regions
of (A,B) space of [0, 1]× S1 shown in the numerically computed Fig. 14.

When (A(α), B(α)) passes from the four-extrema region to the two-extrema
region (avoiding the four cusp points of Fig. 14a), the corresponding bifurca-
tion diagram for Eq. (1) has a cusp (a flame tip). When (A(α), B(α)) passes
across an equal maximum value line (on B = π/4 or 5π/4) the bifurcation
diagram for the circle map family of Eq. (1) has a crossing of saddle-node
curves on the left side of its 0/1 resonance region; similarly, a crossing of
minima of gα as α varies effects a right-side crossing of saddle-nodes.

Allowing both A(α) and B(α) to vary as α varies leads to bifurcation
diagrams having both saddle-node crossings and cusps. The path through
the (A(α), B(α)) space illustrated in Fig. 14b corresponds to Example 15
below, our left edge swallowtail example. The reader may wish to return to
Examples 1, 2, 3, 6, 9, 12 and 13 to identify each one’s corresponding path
through the (A,B) space of Fig. 14a.

Example 15: Left edge “swallowtail.” This example illustrates the
creation of the “swallowtail” feature mentioned in the introduction. This
motivating example for our study has been constructed by combining the
simple building blocks of birth/death of extra pairs of fixed points with a
crossing of left side saddle-node curves. We have used Eq. (5), with A(α) =
1− .7H(α), and B(α) = 2π − π

2
h(α). See Fig. 15.

Example 16: Make your own. Sketch a 0/1 resonance region bounded
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by saddle-node curves which use the following building block “moves” as α
is increased: increasing from two to four saddle-node curves at a downward
pointing cusp, decrease from four to two saddle-node curves at an upward
pointing cusp, crossing two lefthand saddle node curves (only when four
curves exist), and crossing two righthand saddle node curves (only when four
curves exist). Parametrize a path through the AB parameter space which
realizes these moves. Numerically compute the saddle-node curves to see
your bifurcation creation.

2.6 Discussion

The form of the forcing function in Eq. (5) really includes all bifurcation
diagrams attainable for any two-mode truncation of the Fourier series for
gα: A0(α) + A1(α) sin(x + B1(α)) + A2(α) sin(2x + B2(α)). This is because
A0(α) is zero due to the zero average value condition following Eq. (1),
B2(α) can be eliminated by a translation in θ, and A2(α) can be replaced

with (1−A1(α))
2

because it is only the relative size of A1(α) and A2(α) that
determines the number of relative extrema for gα. In general, bifurcations
attainable from an N -mode truncation can be thought of as paths through a
2N −2 dimensional parameter space. In this sense, the standard map family
is the only possibility for a one-mode truncation. Systematic generalizations
to determine all possible bifurcation diagrams with truncations at higher
higher modes are of course possible, but we choose only to include only a few
examples with higher modes.

3 Period-q Flames

3.1 Equivariant examples

All the bifurcation features described so far in the paper have been generated
for the 0/1 fixed-point resonance. It turns out that a slight modification
allows any of our fixed-point features to appear instead for any p/q resonance.
Recall that all our examples have lifts of the form of Eq. (1): F(φ,α)(x) :=

x + φ + αg(φ,α)(x). If we replace g(φ,α)(x) with
g(φ,α)(qx)

q
, we obtain a circle

map that is equivariant with respect to rotations by 2πp/q. (The division
by q is to preserve the condition that our forcing function have derivative
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bounded by one in absolute value; recall the conditions following Eq. (1).)
The lift becomes equivariant with respect to translations by 2πp/q; that is,
if F̃(φ,α)(x) := x + φ + α

q
g(φ,α)(qx), then F̃(φ,α)(x + 2πp

q
) = F̃(φ,α)(x) + 2πp

q
.

From this it follows fairly easily that if θ is a fixed point for F(φ,α) then

{x
q
, x

q
+ 2πp

q
, ..., x

q
+ 2πp(q−1)

q
, x

q
+ 2πp} is an orbit for F̃(φ

q
+ 2πp

q
,α). That is, the

orbit of θ = x
q

(mod 2π) under the circle map corresponding to lift F̃(φ
q
+ 2πp

q
,α)

is a p/q orbit. This correspondence between 0/1 points of the circle map
with lift F(φ,α) and p/q orbits with lift F̃(φ

q
+ 2πp

q
,α) turns out to be one-to-one

whenever the equivariant lift F(φ,α) is a homeomorphism; we can ensure F(φ,α)

is a homeomorphism by restricting α to be in [0, 1].
Consequently, all the least-period-q resonance regions for F̃ will have

exactly the same bifurcation features as the 0/1 resonance region for F . The
only difference is that the p/q resonance regions for F̃ will be contracted by
a factor of 1

q
in the horizontal (φ) direction. Thus any bifurcation feature

from Sec. 2 can be made to appear in any p/q resonance region.

3.2 General examples

Analytic studies of period-q bifurcation phenomena for q > 1 are much more
difficult for general lifts of circle maps of the form F(φ,α)(x) := x + φ +
αg(φ,α)(x) where g(φ,α)(x) lacks the special structure of the above subsection

which led to F (called F̃ in the above subsection) being equivariant. We
can, however, show that when the forcing amplitude α is small, only the
Fourier modes of g(φ,α) which are multiples of q affect whether or not “extra”
folds exist on a p/q resonance surface as it emanates from the circle (p

q
, 0, θ)

for θ ∈ [0, 2π) = S1 in the three-dimensional phase × parameter space.
Unfortunately, the analysis is to lowest order terms in α, so it guarantees
nothing about the number of extra folds for values of α away from zero.

The low forcing amplitude analysis is still of use to us in at least the fol-
lowing two contexts. First, we can combine it with some results from complex
dynamics to create examples with the guarantee that any extra folds that
exist on any p/q resonance surface will disappear as α increases sufficiently
close to α = 1; this will in turn guarantee the existence of flames in the cor-
responding p/q resonance regions. We present this construction following the
low forcing amplitude analysis. Second, the low forcing amplitude analysis
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helps us to show that the existence of extra folds on resonance surfaces is a
generic property of circle maps whose lifts are given by Eq. (1) and therefore
a generic property for periodically forced oscillator families. This program is
detailed in Sec. 4.

3.2.1 Low forcing amplitude analysis

We assume the starting point is the lifted circle map of Eq. (1). We use
subscripts on the x variable to indicate iterations:

xn+1 = F(φ,α)(xn) = xn + φ + αg(φ,α)(xn)

Straightforward computation leads to:

xn = x0 + nφ + α
n−1∑

k=0

g(φ,α)(xk)

Since the existence of a p/q point requires xq = x0 + 2πp, as in Eq. (2),
we require

qφ + α
q−1∑

k=0

g(φ,α)(xk) = 2πp (6)

To obtain a power series expansion around the parameter point (φ, α) =
(2πp

q
, 0), we replace the parameter φ with the small parameter ε via φ =

2πp
q

+ ε.

So Eq. (6) becomes

qε + α
q−1∑

k=0

g( 2πp
q

+ε,α)(xk) = 0 (7)

Using the Fourier expansion g( 2πp
q

+ε,α)(x) =
∑∞

n=−∞ cn(ε, α)einx, switching

the order of summation, noting that
∑q−1

k=0 e
ink2πp

q is q for n = mq and 0
otherwise, alters Eq. (7) to

qε + qα
∞∑

m=−∞
cmq(0, 0)eiqmx0 + O(α2, αε) = 0 (8)

By the implicit function theorem, Eq. (8) can be solved for ε as a function
of α and x0:
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ε = −α
∞∑

m=−∞
cmq(0, 0)eiqmx0 + O(α2) (9)

Hall [1984] used Eq. (9) to conclude that period-q resonance horns gener-
ically open as wedges, not cusps. That is, the sides of the resonance horns
are not tangent at the (φ, α) = (p/q, 0) tip. This follows from the generic
assumption that not all of the coefficients of form c±nq are zero. As pointed
out to us by Hall, the standard map, and all the examples of this paper for
which g(p/q,0)(x) has only a finite number of terms in its Fourier expansion,
are nongeneric in this sense: all coefficients of form c±nq are zero for all q’s
larger than the largest mode with nonzero coefficient in its Fourier expansion.
For the standard map, this nongenericity is manifested in every non-fixed-
point resonance horn: they all open as cusps, not wedges. This is consistent
with Fig. 5.

3.2.2 Flames in p/q resonance horns

We use Eq. (9) to interpret how many period-q orbits there are for various
parameter values. More specifically, if we fix α and vary x0 from zero to
2π, the projection to the (ε, α) parameter space travels back and forth in
the ε direction along a line segment. The endpoints of the line segment are
on the boundary of the p/q resonance horn in the parameter space. The
number of period-q points for any parameter value on this line segment is
equal to the number of times we pass through that parameter point as x0

varies from zero to 2π. The number of period-q orbits is the number of
period-q points divided by q. Except at ε parameter values (α is still fixed)
which correspond to critical values for ε as a function of x0 via Eq. (9), such
as at saddle-node orbits, the number of period-q orbits will be divisible by 2.
One attracting-repelling pair of orbits is the minimum possible number. Any
further pairs correspond to extra pairs of periodic orbits. (Note: There isn’t
a natural fixed pairing of attracting with repelling periodic orbits except for
orbits near a saddle-node bifurcation; the term pair is therefore being loosely
used.)

With this in mind, we note that, for α and ε small enough, there will be
n−1 extra pairs of p/q orbits if g(φ,α) has a Fourier series at (φ, α) = (p/q, 0)
for which coefficients c±nq sufficiently dominate the coefficients c±mq,m 6= n.
If g(φ,α) is independent of φ, then the small α part of all p/q resonance regions
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may be studied at once since the Fourier series for g(p/q,0) is the same for all
p/q. For example, if g(φ,α)(x) = sin(6x), the fixed point surface will have
5 extra fixed point pairs (6 total pairs) resulting in 10 extra folds (12 total
folds) on the p/1 surfaces; the period-two surface will have 2 extra period-2
orbits resulting in 8 extra folds on the p/2 surfaces; the period-three surface
will have one extra pair of orbits resulting in 6 extra folds on the p/3 surfaces;
and the period-6 surfaces will have no extra fold pairs.

The consequence of the above discussion is that we can control the number
of extra orbits near the (p/q, 0) tip of the p/q resonance horn. Unfortunately,
since the period-q analysis was “local,” it says nothing about controlling the
number of pairs of orbits which exist for higher values of α. We can, however,
obtain some control by utilizing some results from complex dynamics. The
following lemma was communicated to us by R. L. Devaney, N. Fagella and
G. R. Hall; the first published version we are aware of (with essentially the
same proof) appears in Yakobson [1985].

Lemma : Let f(φ,α) be the standard family: f(φ,α)(θ) = θ + φ + α sin(θ).
Then for any fixed values of φ and α with α ∈ [0, 1), the corresponding circle
map f(φ,α) can have at most one attracting periodic orbit.

Sketch of proof: Consider the complex family S(φ,α)(z) = zeiαe
β
2
(z− 1

z ).
The family S(φ,α) restricted to the unit circle is the real standard map f(φ,α)

[Fagella, 1994]. Each S(φ,α) is also a complex analytic map on C\{0} and
therefore any attracting orbit must attract a critical point [Devaney, 1989].
Each S(φ,α) has critical points satisfying αz2 + 2z + α2 = 0. For α < 1, these
critical points, c1 and c2, are on the negative real axis and satisfy c2 = 1

c1
.

Since S(1/z) = 1/S(z), the two critical orbits are “symmetric with respect
to the unit circle.” Thus, any attracting periodic orbit must attract not just
one, but both critical points. So there can exist only one attracting periodic
orbit. 2

This enables us to construct a single example with flames in both a p1/q1

and a p2/q2 resonance horn.

Example 19: Flames for two resonances. Define
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gα(x) = (1− α)(
sin(n1q1x)

q1

+
sin(n2q2x)

q2

) + α sin(x)

If q1 and q2 are relatively prime, this example will have n1− 1 extra pairs
of p1/q1 orbits, causing 2(n1 − 1)q extra folds in the p1/q1 resonance surface
for small α; similarly, there will be n2 − 1 extra pairs of p2/q2 orbits for
small α. Because any extra orbits must disappear as α increases toward one
(see the above Lemma), both the p1/q1 and p2/q2 resonance regions will have
flames.

Example 19 could be easily generalized to create flames in any finite
number of resonance regions whose periods are all relatively prime. The
extreme case is a the following single example having flames in an infinity of
resonance regions. The price , however, is that only a finite number of flames
will necessarily persist under perturbation.

Example 20: Flames in an infinity of horns. We now present an
analytic example having an infinite number of resonance horns with flames.
Define

gα(x) = (1− α)g0(x) + α sin(x)

where g0(x) is a Cω map causing the associated family of circle maps, F(φ,α) =
x + φ + αg0(x) to have infinitely many horns with extra folds. Thus, as α
increases from zero to one, the circle maps corresponding to the form of gα

for Example 20 will have “extra” folds in the infinity of horns which must all
die out, forming the infinitely many flame tips.

To define g0(x), we first let r be any real number. We will construct g0 so
that the corresponding family of circle maps has a p/q horn with a flame for
an infinite sequence of p/q’s which accumulate on r. First choose a sequence
{pn

qn
} → r. Require also that the qn’s are all relatively prime. Then define g0

by prescribing its Fourier series coeffients to be c±2qn = e−2qn for all qn’s in the
chosen sequence of pn

qn
’s, and zero for all other coefficients. Such a function

is Cω since the Fourier series coefficents decay exponentially [Wheeden &
Zygmund, 1977]. (This follows from the fact that, after complexifying g0(x)
to g0(z), we have that g0(z) = F◦G(z), where G(z) = eiz is entire and F (w) =∑∞

k=−∞ ckw
k converges, by our choice of ck’s, for |w| < e. In particular, g0(z)

is analytic for z real, since |eix| = 1 < e.) As in the previous example, each
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period-qn surface for xn+1 = f(xn) = xn + φ + αgα(x) has an “extra” pair
of period-qn orbits associated with it if 0 < α << 1, but no extra orbits for
0 << α < 1. Consequently, every pn

qn
horn will have a flame in it.

4 Flames are Generic

Let Υ be the function space of lifts of two-parameter families of circle home-
omorphisms of the form of Eq. (1): F(φ,α)(x) = x + φ + αg(φ,α)(x). Assume
the dependence of the homeomorphisms is C∞ as a function defined on the
cartesian product of the phase space R with the (φ, α) parameter plane. En-
dow Υ with the C∞ topology [Ruelle, 1989]. We now show that the property
of having only one attracting and one repelling orbit in each p/q resonance
region (as with the standard family) is nongeneric for two-parameter families
in Υ. Equivalently, the property of having resonance regions with internal
bifurcation features is shown to be generic. The rest of this section is devoted
to this task.

Theorem: There is an open dense set of families in Υ having the property
that the family has at least two hyperbolic attracting and two hyperbolic
repelling period-q orbits in at least part of one p/q resonance region.

We will need the following two lemmas for the proof of the theorem.

Lemma 1: Let F(φ,α)(x) ∈ Υ. Let p/q be any reduced rational number.
Since g is at least C1, g(p/q,0)(x) equals its Fourier series expansion [Wheeden
& Zygmund, 1977] which we write in the following form (the average value
zero condition on g forces the constant term to be zero):

g(p/q,0)(x) =
∞∑

k=1

Ak sin(kx + Bk) (10)

If 2q|A2q| > q|Aq| + ∑∞
k=3 kq|Akq| then for α a fixed positive but sufficiently

small number, the p/q resonance region for F(φ,α) will include an open interval
of φ values for which the corresponding circle map has at least four p/q orbits.

Proof: Define g̃(x) =
∑∞

k=1 Akq sin(kqx + Bk). Recall that ε = 0 in Eq. (9)
corresponds to φ = p/q. That equation also shows that only the Fourier
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modes of g(p/q,0)(x) which are multiples of q need to be considered to deter-
mine the existence of extra orbits near α = 0. This is why we defined g̃(x)
as we did.

Note that d
dx

(A2q sin(2qx + B2q)) = 2qA2q cos(2qx + B2q) which equals

2qA2q for x = 2πk−B2q

2q
, k = 0, ..., 2q−1, and equals−2qA2q for x = 2πk+π−B2q

2q
, k =

0, ..., 2q − 1. The inequality in the hypotheses of the lemma guarantees that
the magnitude of the contribution to g̃′(x) due to the sum of the rest of
the Fourier modes in g̃(x) is dominated at the 4q points just listed by the
contribution to g̃′(x) due to the 2qth mode. Thus, for x ∈ [0, 2π), g̃(x) must
have at least 2q points with positive slopes alternating with 2q points having
negative slopes.

To show that this implies the existence of at least 4q distinct p/q orbits
for positive values of α, note first that Eq. (9) can be rewritten (dropping
the subscript on x0) as

εα(x) = −αg̃(x) + O(α2). (11)

By fixing α sufficiently small, Eq. (11) implies that εα has 2q points with
positive slopes alternating with 2q points having negative slopes for x ∈
[0, 2π).

Since all points on a period-q orbit must exist at the same parameter
value, we must have ε(x) = ε((F(ε(x),α)(x)). Thus it is sufficient to consider the
graph of εα(x) only on a “fundamental interval,” say for x ∈ [0, F(ε(0),α)(0)).
On this fundamental interval there must exist two points with positive slopes
alternating with two points with negative slopes. Straightforward calculus
arguments lead to the existence of two local maxima and two local minima
on the fundamental interval, with the two local maxima both strictly larger
that both local mimima. That is, there exist ε values M1 ≥ M2 > m2 ≥ m1,
where the Mi’s are local maxima and the mi’s are local mimima. For any
ε0 ∈ (m2,M2), this forces at least four x values in the fundamental interval
[0, F(ε(0),α)(0)) to satisfy ε(x) = ε0. These four x values represent four distinct
p/q orbits, so (m2,M2) is the open interval of φ values claimed to be in the
p/q resonance region for our fixed small value of α.

2

Lemma 2: Let g(x) =
∑∞

k=1 Ak sin(kx + Bk) be a C∞ function on S1. Let
N be an open neighborhood of g in the C∞ topology. Then there exists

24



a g̃ ∈ N and a q ∈ Z such that if g̃(x) =
∑∞

k=1 Ãk sin(kx + B̃k), then
2q|Ã2q| > q|Ãq|+ ∑∞

k=3 kq|Ãkq|.
Proof: By the definition of the C∞ topology ([Ruelle, 1989, Appendix B],
for example), any C∞ neighborhood contains a Cr neighborhood for some
positive integer r. That is, there exists a r1 ∈ Z+ and an ε1 > 0 such that
{g̃ : ||g̃ − g||r1 < ε1} ⊂ N , where ||g̃ − g||r1 = max0≤r≤r1 ||g̃(r) − g(r)|| and
||g̃(r) − g(r)|| = maxx∈[0,2π] |g̃(r)(x)− g(r)(x)|. Recall also that g ∈ Cr implies
|Ak| = o( 1

kr ) [Zygmund, 1968] and g ∈ C∞ implies g ∈ Cr for all nonnegative
integers r. Therefore, g ∈ Cr1 and so

|Ak|kr1 → 0 as k →∞. (12)

Now choose q ∈ Z+ large enough so that |Ak|kr1 < 1
2

ε1
2r1

for all k > q. Let
A = 1

2
ε1

2r1qr1
. This choice of A implies that for all for all k > q:

|Ak|kr1

qr1
< A <

ε1

2r1qr1
(13)

Define Ã = sgn(A2q)A. (A2q is defined from the Fourier series for g
in the statement of Lemma 2.) Define B̃ = B2q. Finally define g̃(x) =
g(x) + Ã sin(2qx + B̃).

To show g̃ ∈ N : ||g̃ − g||r1 = ||Ã sin(2qx + B̃)||r1 = (2q)r1A < ε1 by
the second inequality in Eq. (13). (In the case of the analytic topology
instead of the C∞ topology, the C0 norm can be used, but x must be allowed
to be complex. Then ||g̃ − g||0 = ||Ã sin(2qx + B̃)||0 < 2A < ε1 since
| sin(2qz + B̃)| < 2 for z in a sufficiently small neighborhood of the real line.
See the notes at the end of this Section.)

To show the required dominance of the Ã2q term over the rest of the Ãkq

terms:

q|Ãq|+
∞∑

k=3

kq|Ãkq| = q|Aq|+
∞∑

k=3

kq|Akq| ≤
∞∑

k=1

kq|Akq|

<
∞∑

k=1

kq
Aqr1

(kq)r1
by the first inequality in Eq. (13)

= Aq
∞∑

k=1

1

kr1−1
< 2Aq

≤ 2q|Ã2q| , since |Ã2q| = A + |Ã|
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Now we are in a position to prove the genericity of flames:

Proof of the theorem: The openness in Υ of the families with a resonance
region having at least two hyperbolic attracting and two hyperbolic repelling
orbits follows from the structural stability of hyperbolic orbits. So we need
only verify the denseness of such families in Υ. Since families of the form of
Eq. (1) differ only via their respective forcing functions, g(φ,α), the function
space Υ, defined at the beginning of this section, is equivalent to the function
space Υ1, defined as the function space of smooth two-parameter families of
smooth forcing functions. Thus, for a given forcing function, g(φ,α), and
a neighborhood N1 of g(φ,α) in Υ1, we must produce a g̃(φ,α) in N1 whose
corresponding family of circle homeomorphisms will have a p/q resonance
region having at least two attracting and two repelling period-q orbits.

The strategy is to choose some resonance p1/q1 and determine a pertur-
bation as in Lemma 2, with g(p1/q1,0)(x) playing the role of g in Lemma 2,
which guarantees via Lemma 1 that the p1/q1 resonance region has the de-
sired extra orbits. This perturbation can either be applied to g(φ,α) for all
values of φ and α, or just to maps having parameter values in a neighbor-
hood of (p1/q1, 0). But there is a technical glitch: q1 must be greater than
the value of q that is chosen by Lemma 2, but q is determined only after the
Fourier series for g(p1/q1,0) is known. So we need a uniform choice of q that
will enable us to proceed with Lemma 2 for any forcing function g(φ,0) with φ
in a nontrivial interval. Then we can choose a rational number p1/q1 in this φ
interval with q1 > q and perturb to obtain the desired extra p1/q1 orbits. An
additional arbitrarily small perturbation can be made (by Sard’s Theorem),
if necessary, to ensure two orbits are hyperbolically attracting and two are
hyperbolically repelling. So the following lemma completes the proof.

2

Lemma 3: Let gµ(x), µ ∈ R be a C0 family of Cr+1, r ∈ Z+, periodic
functions having Fourier series expansions:

gµ(x) =
∞∑

k=1

Ak(µ) sin(kx + Bk(µ)).

Let K be a compact set in R. Then |Ak(µ)|kr → 0 as k →∞ uniformly for
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µ ∈ K.

Proof: Note that convergence for each fixed µ is already established for Cr

periodic functions by Eq. (12). From Wheeden & Zygmund [1977], we have
that f ∈ C1 implies

|Ak| ≤ 1

2π

∫ 2π

0
|f(x)− f(x +

π

k
)|dx ≤ {max

x∈S
f ′(x)}π

k
.

By applying this inequality to g(r)
µ (x) whose Fourier series expansion is

∞∑

k=1

krAk(µ) sin(kx + Bk(µ)),

we obtain
|Ak(µ)|kr ≤ { max

x∈S,µ∈K
g(r+1)

µ (x)}π

k
.

Since gµ ∈ Cr+1, the maximum in this expression exists and is finite, so the
uniform convergence of |Ak(µ)|kr to zero is established. 2

Notes about replacing the C∞ topology in the Theorem:

1. Parameter dependence need not be C∞, only C2. C2 dependence is
necessary to use the implicit function theorem in going from Eq. (8)
to Eq. (9).

2. The theorem’s result is also true if the family of homeomorphisms is
assumed to be analytic and Υ is endowed with the analytic topology
instead of the C∞ topology. Lemmas 1 and 3 need no change; The
adjustment needed for the analytic topology in Lemma 2 was pointed
out in the proof of that lemma. Parameter dependence still only needs
to be C2.

3. The theorem’s result does not appear to hold if the family of homeo-
morphisms is assumed to be Cr and is endowed with the Cr topology
because our proof of Lemma 3 requires the family to be Cr+1. If, how-
ever, we assume the family F(φ,α)(x) is Cr+1 as a function of x but endow
Υ with the Cr topology, the theorem will hold. Parameter dependence
still only needs to be C2.
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5 Comments

5.1 Implications for forced oscillators

All the features we produced in this paper were using circle maps. There is
a fairly standard construction in order to generate families of lifts of circle
maps of the form of Eq. (1) from a periodically forced planar oscillator of
form

dx

dt
= V(x) + αW(x, ωt) (14)

where x ∈ R2; ω, α, t ∈ R; W is periodic with period one in its second
variable; for α = 0 the nonautonomous flow has a repelling equilibrium point
inside a normally hyperbolic attracting limit cycle. We have reviewed this
construction in previous papers ([McGehee & Peckham, 1994], [Peckham,
1990]).

The reverse process of generating a forced oscillator family from a family
of circle map lifts of the form of Eq. (1) is also possible, but the process is not
unique and not quite so straightforward. A sketch of one possible procedure is
as follows. Put the original circle map family on the unit circle in R2. Extend
to a map of the plane by making the unit circle globally attracting, except
for the origin, which is a repelling fixed point. Compose this family of maps
of R2 with a linear contraction with a globally contracting fixed point. Make
the “contraction” the identity at α = 0 and of increasing contractivity as the
forcing amplitude α is increased. (This and similar types of “impulse forcing”
have been used by us as well as others in previous studies ([Schreiber, et. al.,
1988], [Peckham, 1990]) to build caricatures of maps which are generated
by periodically forced oscillators.) The composition results in a family of
diffeomorphisms of R2 which can then be suspended to produce a flow in
R2 × S. This flow can be thought of as the original periodically forced
planar oscillator.

Because resonance regions for periodically forced oscillators typically close
in a Hopf bifurcation at higher forcing amplitudes ([Peckham, 1990], [McGe-
hee & Peckham, 1994]), any extra orbits must eventually be eliminated as
the forcing amplitude increases. Because extra orbits are generic at zero forc-
ing amplitude, as established in the Theorem of Sec. 4, this establishes the
genericity of flames in bifurcation diagrams for periodically forced oscillators.
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5.2 Flames in applications

We have presented in this paper a variety of bifurcation scenarios which might
occur for periodically forced oscillators. On the other hand, the only feature
which we have seen in numerical studies of periodically forced oscillators
is the swallowtail. The question remains why flames, for example, are not
widely seen in past numerical studies of periodically forced oscillators. There
seem to be several possible answers. First, the features might actually be
present in periodically forced oscillators that have been studied, even for low
period resonances, but numerical work has just overlooked them. Second,
the form of the periodically forced oscillators studied in the literature is such
that the corresponding circle maps, like the standard family, are nongeneric
and do not have features such as flames. Third, these features may exist
in examples studied, but only in resonance regions with periods higher than
those numerically studied.

Determining which of these answers applies in each case is not an easy
task. It would require being able to calculate the coefficients of at least the
lower mode coefficients in a Fourier series expansion for gα in the circle map
of Eq. (1) directly from the differential equation of the form of Eq. (14).

5.3 Topology of resonance surfaces

It turns out that the bifurcations described in this paper all deal with cre-
ating extra folds in the various resonance surfaces. While these folds are
singularities with respect to the projection to the parameter plane, they are
not topologically significant for the resonance surfaces. Work in progress con-
siders resonance surfaces which have various numbers of topological handles.
Such examples can be constructed via Eq. (1) by allowing g(φ,α) to actually
depend on φ.
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7 Complete Figure Captions

1. A schematic of the 3/4 resonance region from Fig. 3 of Schreiber, et.
al. [1988]. The resonance region is in the (T, A) parameter plane for a
family of maps of the plane generated by a planar flow with “impulse
forcing.” The T parameter can be thought of as controlling forcing
frequency, the A parameter as controlling forcing amplitude. Note
especially the swallowtail in the 3/4 resonance region.

2. (Reproduced from Fig. 6a of Frouzakis, et. al. [1991] with permission
from the authors.) The 1/5 resonance region in the (k, b) parameter
plane for a family of maps of R3. Note especially the swallowtail in the
resonance region.

3. Fixed points by graph. F(−0.4,0.9)(x) = x + (−0.4) + 0.9((0.7 sin(2x)
2

+
0.3 sin(2π − h(.9)π

2
), where h(.9) = 0.972. The form of F is chosen to

match the form used later in the paper in Example 12.

4. Example 1, the Standard Family: g(x) = sin(x). The 0/1 resonance
surface and its projection to the parameter plane.

5. Example 1, the Standard Family: g(x) = sin(x). Several resonace
surfaces and their projections to the parameter plane.

6. Example 2, Coincident projections: g(x) = sin(2x).

7. Example 3, Noncoincident projections: g(x) = 0.9 sin(2x)
2

+ 0.1 sin(x).

8. Smooth bump functions h(x) and H(x).

9. Example 6, Single Flame: gα(x) = (1−A(α)) sin(2x)
2

+A(α) sin(x), where
A(α) = 0.1 + 0.9α. (a) The evolution of gα(x) : α = 0.1, 0.5, 0.9. (b)
The 0/1 resonance surface and its projection to the parameter plane
(with α replaced by h(α2)).

10. Example 7, Double Flame: gα(x) = (1−h(α)) sin(3x)+h(α) sin(x+ π
4
).

The inset shows more clearly the double flame in the projection to the
parameter plane.
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11. Example 9, Center Fold: gα(x) = (1−A(α)) sin(2x)
2

+A(α) sin(x), where
A(α) = 1− 0.7H(α).

12. Example 12, Left-side crossing: gα(x) = 0.7 sin(2x)
2

+ .3 sin(x + 2π −
π
2
h(α)). (a) The evolution of gα(x) : α = 0.1, 0.5, 0.9. (b) The 0/1

resonance surface and its projection to the parameter plane.

13. Example 13, Full twist: gα(x) = 0.7 sin(2x)
2

+ .3 sin(x + 2π − 2πh(α)).

14. (a) The two-mode parameter space: gα(x) = 1−A
2

sin(2x)+A sin(x). (b)
The path through this two-mode parameter space which corresponds
to the left edge swallowtail of Example 15.

15. Example 15, the left edge swallowtail: gα(x) = (1−A(α))
2

sin(2x)+A(α) sin(x+
B(α)), with A(α) = 1− .7H(α), and B(α) = 2π − π

2
h(α).
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