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Abstract. Periodically forced planar oscillators are typically studied by varying the
two parameters of forcing amplitude and forcing frequency. Such differential equations
can be reduced via stroboscopic sampling to a two-parameter family of diffeomorphisms
of the plane. A bifurcation analysis of this family almost always includes a study of
the birth and death of periodic orbits. For low forcing amplitudes, this leads to a
now-classic picture of Arnold resonance tongues. Studying these resonance tongues for
higher forcing amplitudes requires numerical continuation. Previous work has revealed
the usefulness of considering these tongues as projections of surfaces of periodic points
from the cartesian product of the phase and parameter planes to the parameter plane.
Many surfaces were displayed and described in [MP 1994], but their parametrization
and computation was not discussed. In this paper, we do discuss their parametrization
and computation. Especially useful are global parametrizations which allow automatic
computation of the surfaces. We argue that parametrization by “fµ(x) − x” is both
more likely to be a global parametrization and more “dynamically natural” than two
more obvious parametrizations. As a side benefit, fµ(x)− x parametrization leads to a
computable way of establishing the nonorientablility of period-two surfaces.
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1. Introduction: Resonance surfaces for forced oscillators. In
this introduction we briefly review basic results for two-parameter families
of maps of the plane which are generated by periodically forced planar os-
cillators. The main objects of interest in this paper are resonance surfaces
— surfaces of periodic points in the Cartesian product of the phase and
parameter planes. The surfaces’ projections to the parameter plane are
called resonance regions — regions of parameter values for which the cor-
responding maps have periodic orbits of a certain period. An illustration of
three such resonance surfaces for an example described later in the paper is
given in Fig. 1a. Their projections to the parameter plane reveal the three
correponding resonance regions in Fig. 1b. The fixed-point Hopf bifurca-
tion curve is included in both Figs. 1a and 1b for reference. It turns out
that resonance surfaces are two-dimenensional manifolds, most often topo-
logical disks or mobius strips. We focus on some global parametrizations
of these surfaces. The global parametrizations make their computation
more automatic and lead to an enhanced understanding of periodic point
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bifurcations and thus to a better understanding of the dynamics of forced
oscillator systems. The exposition and notation follows that of [MP 1994].
More details can be found in that reference and references therein. See
especially [AMKA 1986], [P 1988], [P 1990], [MP 1995].

1.1. The periodically forced oscillator setting. A standard gen-
eral periodically forced oscillator model is given by the equation

ẋ = V(x) + αW(x, ωt),(1.1)

where x ∈ R2. The real parameter α is the forcing amplitude, while the
real parameter ω is the forcing frequency. The function W is periodic with
period one in its second variable. We assume that V and W are both C∞.
When α = 0, equation (1.1) represents an autonomous vector field. This
vector field is assumed to have a repelling equilibrium point c0 inside an
attracting periodic orbit C0 with frequency ω0 > 0, and hence period 1/ω0.
The periodic orbit is the unforced oscillator; ω0 is its natural frequency.

It is convenient to replace the forcing frequency ω with the ratio of the
natural frequency to the forcing frequency: β ≡ ω0/ω. Restricting α to be
nonnegative leaves us with the following parameter space:

µ ≡ (β, α) ∈ P ≡ (0,∞)×[0,∞).

The stroboscopic family is obtained by following the solutions to equa-
tion (1.1), denoted φ(β,α)(x, t), for time 1/ω, which is the period of forcing.
Thus the stroboscopic maps of the plane are defined by

f(β,α)(x) ≡ φ(β,α)(x, 1/ω) = φ(β,α)(x, β/ω0).(1.2)

This is the two-parameter family of C∞ diffeomorphisms of the plane which
we study.

An important observation is that for α = 0, equation (1.2) defines
maps having the unforced oscillator orbit C0 as an invariant circle. Further,
restricted to C0, the maps are rigid rotations with rotation number equal
to β. For small α, an invariant circle near C0 persists. This implies that for
α small, the maps of equation (1.2) can be studied via circle map theory.
This is exactly the setting – perturbations of rigid rotations – of the familiar
Arnold circle maps family: x → x + β + α sin(x). As the forcing amplitude
continues to increase, however, the invariant circles tend to shrink in size,
eventually disappearing, via a Hopf bifurcation, to a point. Although this
last sentence is a great oversimplification of the full dynamical picture, it
does point out that in order to understand this transition from dominance
by the unforced oscillator (α small) to dominance by the forcing function
(α large), it is necessary to consider the full two-dimensional phase space
rather than just one-dimensional circle maps.
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Fig. 1. Resonance surfaces for two periodically forced oscillator
(PFO) models. a), b) Generic PFO; c),d),e),f) Nongeneric PFO; e),f)
are the same for any p/q.
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1.2. Resonance regions. Periodic points of f(β,α) correspond to pe-
riodic orbits of equation (1.1) which are said to be in resonance. Thus
a resonance region for equation (1.2) is defined to be a region in the pa-
rameter plane for which the corresponding maps have a periodic orbit of a
certain period. A period-q resonance region, commonly referred to as an
Arnold tongue, is known to emanate from each “rational” point (p/q, 0)
on the zero forcing amplitude axis. The continuation of these tongues to
higher forcing amplitudes is of interest to us in this paper. A more precise
definition of resonance region will be given in subsection 1.4 after defining
resonance surfaces.

1.3. Resonance surfaces. Resonance regions become more natural
objects when they are viewed as projections to the parameter plane of sur-
faces of periodic points in the cartesian product of the phase and parameter
spaces. More specifically, we define a least-period-q surface as

Γ(q) ≡ {(x, µ) ∈ P : x is a least period−q point for fµ}.

Each Γ(q) for q ≥ 2 typically consists of many distinct components. We
are most interested in the components which project to the Arnold tongues
in the parameter plane emanating from zero forcing amplitude. See again
the surfaces in Fig. 1a and their projections to the parameter plane in
Fig. 1b, especially near α = 0. Note that since the unforced oscillator
C0 is mapped as a rigid rotation with rotation number β by f(β,0), then
{C0 × (p/q, 0)} ⊂ Γ(q) (assuming p/q is reduced).

Thus we define the components of Γ(q) which are of interest as

Γp/q ≡ the component of Γ(q) containing {C0 × (p/q, 0)}.(1.3)

Previous results have established that these components are distinct for
each distinct rational number p/q. For example, Γ1/3 and Γ2/3 are nec-
essarily distinct components of Γ(q). The proof of this fact involves the
definition of a self rotation number for orbits of planar diffeomorphisms
which is an extension of the usual rotation number for circle maps [P 1988,
P 1990].

1.4. “The” Resonance Surfaces. The surfaces Γp/q are generically
orientable, C∞, and contain a single boundary component: {C0×(p/q, 0)}.
This boundary component is really the result of restricting the forcing
amplitude to [0,∞), which in effect cuts each surface off at α = 0. If we
were to allow negative values of α, the resonance surfaces would have no
boundary components. The Γp/q are typically bounded, but not closed
because points on a period-q orbit may coalesce to a periodic orbit of a
lower period (which must be a divisor of the original period). This finally
leads to the definition of “the” p/q resonance surfaces whose computation
we discuss in this paper as:

“The” p/q resonance surface ≡ Γp/q,
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where the overbar indicates topological closure. In all examples which we
have studied, Γp/q is a compact surface for q ≥ 2. We now precisely define
“the” p/q resonance region Ap/q as

Ap/q ≡ πµ(Γp/q),

where πµ is projection to the parameter plane.
It has been previously shown [P 1988, P 1990] that the closure op-

eration adds only fixed points to Γp/q. From a bifurcation viewpoint,
these fixed points fall into two classes: q ≥ 3 and q = 2. For q ≥ 3,
the fixed points are (p/q resonant) Hopf bifurcation points — with eigen-

values e±2πi p

q . We denote these points as Hp/q. Such points are generically
isolated in two-parameter families, so their addition to Γp/q via the closure

operation leaves Γp/q orientable. For q = 2, the fixed points added to Γp/2

via the closure operation are period-doubling points. They typically form
a closed curve in Γp/2 and their addition to Γp/2 typically causes Γp/2 to be
nonorientable, even though Γp/2 is orientable. In subsection 3.4 we discuss
further a computational check “around the period doubling curve” which
can be done to verify that a specific Γp/2 is nonorientable.

Examples of periodically forced oscillators have been constructed [P,
in preparation] for which resonance surfaces have topological handles, but
no other examples are known to the author. In the case where no handles
exist, however, the classification of compact surfaces implies the surfaces
must be topological disks for q ≥ 3, and, assuming nonorientability, mo-
bius strips for q = 2. The rest of the paper describes different global
parametrizations of these surfaces, how the parametrizations are related to
the dynamics of the family of stroboscopic maps of eq. (1.2), and how these
parametrizations allow easy global computation of the respective surfaces.

2. Global parametrizations of resonance surfaces. In order to
better understand global parametrizations of resonance surfaces for a generic
family of maps, we first describe how it, and other parametrizations, relate
to resonance surfaces for an easily analyzed, but nongeneric example.

2.1. A simple but nongeneric example. We remind the reader
that the coarsest description of the dynamics of the maps as a function of
the parameters µ = (β, α) is that as β increases, the rotation of the corre-
sponding maps increases, and as α increases, the invariant circle shrinks,
eventually collapsing to a point. This is a drastic oversimplification, but
it helps keep the more detailed dynamical bifurcations in perspective. The
following example is constructed to have precisely these two properties. We
define the family of maps, T(β,α)(x), as the “time-one” map of the following
family of planar differential equations, given in polar coordinates:

(ṙ, θ̇) = ((1 − α)r − r3, 2πβ).(2.1)

This is only a slight variation from the standard model for the Hopf
bifurcation for a planar differential equation. In the standard form the
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parameter β is a constant (leaving a one-parameter family) and (1 − α) is
replaced by α. For the flow of equation (2.1) the origin undergoes a Hopf
bifurcation at α = 1, as indicated in Figures 1c and 1d. For α > 1, the
origin is a globally attracting equilibrium. For α < 1, the flow has the
origin as a repelling equilibrium, and C(

√
1 − α), where C(a) is the circle

with center at the origin and radius a, as a limit cycle which attracts all
other orbits.

The limit cycles of the flow become attracting invariant curves of
T(β,α). Since the angular coordinate of this time-one map of eq. (2.1)
is θ → θ + 2πβ, all T(β,α) restricted to the corresponding invariant circles
are rigid rotations with rotation number β. The origin is a fixed point for
all parameter values. All periodic orbits except the origin must lie on the
invariant curves. Thus, it is relatively easy to see that the least-period-
q points with rotation number p/q form a surface which is the union of
all the invariant circles (α < 1) with β = p/q. If we restrict the surface
to α ≥ 0, as we did in defining Γp/q in the general setting above, then

Γp/q = {(x1, x2, β, α) : (x1, x2) ∈ C(
√

1 − α), β = p/q, α ∈ [0, 1)}. The
closure operation adds to Γp/q only the point (0, 0, p/q, 1), which is a fixed
point. (That is, (0, 0) is a fixed point for T(p/q,1).)

Thus, every Γp/q is a topological disk. Its center is the Hopf bifurcation
point. Its boundary is the attracting invariant unit circle at zero forcing
amplitude: C(1) × {(p/q, 0)}. Projections to the (β, α, x2) space of three
such p/q resonance surfaces, with p/q = 1/4, 1/3, 1/2, are shown in Fig.
1c. Note that in this projection, the invariant circles – four visible on the
1/2 surface, and one each visible on the 1/3 and 1/4 surfaces – collapse
to (vertical) line segments. Each Γp/q projects to the vertical line segment
between (p/q, 0) and (p/q, 1) in the parameter plane. This is illustrated in
Fig. 1d for the three indicated surfaces. Each Γp/q projects identically to
the unit disk in the phase plane (Fig. 1e), and to a paraboloid in the three
dimensional (x1, α, x2) space (Fig. 1f).

The dynamic center. The family of maps, T(β,α)(x) induces a map
in the four-dimensional phase × parameter space via

(x, (β, α)) 7→ (T(β,α)(x), (β, α)).(2.2)

Each resonance surface is invariant under this induced map, which merely
rotates the corresponding paraboloid Γp/q by p/q of a complete rotation.
Thus all points on the p/q surface are period-q, except for the origin, which
is fixed. From a bifurcation standpoint, this fixed point is a p/q resonant
Hopf bifurcation point (although a nongeneric Hopf point for this non-
generic example), referred to as Hp/q in subsection 1.4 above. Thus we
think of the fixed point as the dynamic center of the surface. For this
simple example, the dynamic center, the geometric center, and the center
of all three parametrizations defined below coincide, but this will not be
the case for the generic example which is presented in subsection 2.2 which
follows below.



GLOBAL PARAMETRIZATION OF RESONANCE SURFACES 7

Global surface parametrizations. As noted above and illustrated
in Fig. 1e, each resonance surface projects homeomorphically to the unit
disk in the the phase plane. The inverse of this projection is a global
parametrization of that resonance surface. We now formally define this and
two additional “projections,” whose inverses are each global parametriza-
tions of that resonance surface. In the formulas, x = (x1, x2), |x| is the
Euclidean norm of x in the plane, and Arg(x) is the angle (mod (2π)) of x

in the plane.
1. Polar coordinate projection to the phase plane:

(x1, x2, β, α) ∈ Γp/q 7→ (r, θ) ≡ (|x|, Arg(x)).

2. Constant α cross sections:

(x1, x2, β, α) ∈ Γp/q 7→ (α, φ) ≡ (α,Arg(fµ(x) − x)).

3. fµ(x) − x:

(x1, x2, β, α) ∈ Γp/q 7→ (ρ, φ) ≡ (|fµ(x) − x|, Arg(fµ(x) − x)).

From this point on in the paper, we will refer to the inverses of these
three maps, restricted to the images of the forward maps, as the phase
plane, constant α, and fµ(x)− x parametrizations, respectively, or, equiv-
alently, as the (r, θ), (α, φ), and (ρ, φ) parametrizations, respectively.

Note that the image of the phase plane map is a topological disk,
since r ∈ [0, 1], θ ∈ R and we identify (r, θ) ∼ (r, θ + 2π) and (0, θ1) ∼
(0, θ2) for any real θ1 and θ2. This identification is, of course automatic
by mapping the polar coordinates to rectangular coordinates: (r, θ) 7→
(r cos(θ), r sin(θ)).

Similarly, for the (α, φ) and (ρ, φ) parametrizations, we make the iden-
tifications: (α, φ) ∼ (α, φ+2π) and (ρ, φ) ∼ (ρ, φ+2π), respectively. Anal-
ogous to the identification of all angles θ with r = 0, we must also make
identifications for different angles φ in the (α, φ) and (ρ, φ) parametrizations
when fµ(x)−x = 0. This identification involves only fixed points on the res-
onance surfaces. Since we already know the resonance surfaces for this non-
generic model each have a single fixed point (having ρ = 0), and this point
is at α = 1, for the (α, φ) parametrization we identify (1, φ1) ∼ (1, φ2),
and for the (ρ, φ) parametrization, we identify (0, φ1) ∼ (0, φ2). We will
see a much more interesting identification for φ values with ρ = 0 when we
compute the 1/2 resonance surface for the generic example below.

With the above identifications, we assert that the three maps enumer-
ated above are all injective. The proof of this assertion is mostly contained
in the observations made at the beginning of this subsection about the

makeup of each Γp/q. We also note that this claim is corroborated for the
phase plane parametrization by Figs 1e and 1f. That the other two are
equivalent – for this nongeneric example – to the phase plane parametriza-

tion, we note that constant r circles on each Γp/q are also constant α circles
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and constant ρ circles. Similarly, constant θ rays are also constant φ rays.
The relationships between (r, θ) and (ρ, φ) are illustrated in Fig. 2 for the
specific case p/q = 1/4. In general, a small amount of trigonometry shows
that we have r = ρ

2 cos( q−2p

2q
π)

, θ = φ − π q+2
2q − p−1

1 2π. As indicated above,

r =
√

1 − α, or, equivalently, α = 1 − r2. Note that r and α are restricted
to [0, 1], but ρ ∈ [0, ρ0] where ρ0 is the distance from x to f(x) when x is
on the unit circle, and f(x) is obtained from x by rotating the unit circle
by p/q of a complete rotation. In formula: ρ0 = 2 cos( q−2p

2q π).

r

r

ρ

x

fµ(x)

θ

φ

Fig. 2. Relationship between (r, θ) and (ρ, φ) for a rigid rotation of
a circle by 1/4.

Even better, the model is so simple that we can write down explicitly
the inverses of the three projections enumerated above. That is, we can
explicitly list the three parametrizations. They are

(α, φ) 7→ (x1, x2, β, α) = (
√

1 − α cos(φ),
√

1 − α sin(φ), p/q, α),

(r, θ) 7→ (x1, x2, β, α) = (r cos(θ), r sin(θ), p/q, 1 − r2),
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and

(ρ, φ) 7→ (x1, x2, β, α) = (r cos(θ), r sin(θ), p/q, 1 − r2),

where r is the multiple of ρ and θ is the translate of φ given in the preceding
paragraph.

We emphasize the fact that the three parametrizations are essentially
the same for this nongeneric example. The only difference is that equal
spacing in the α variable is not equal spacing in the other two: r and ρ.
For example, the circles in Fig. 1e have equal r (and ρ) spacing (r =
1.0, .75, .5, .25, and ρ =

√
2r), but as we can see in Fig. 1c, they have

unequal spacing in α (α = 1 − r2).
As we shall see below, these parametrizations do not remain the same

for generic forced oscillator maps. In fact, not all even remain global
parametrizations, even when the surfaces remain topological disks, since
the three projection maps enumerated above do not always remain injec-
tive. When this happens, there is no inverse map, so the corresponding
global parametrization fails.

2.2. A generic caricature example. We investigate the resonance
surfaces Γp/q for a family of maps that are not constructed exactly as in
the introduction, but are constructed with expectations of having generic
properties of such families of maps. This family was also studied in [P 1988],
[P 1990], [MP 1994] and [MP 1995]. Instead of providing forcing via the
nonautonomous term W in equation (1.1), we provide periodic “impulse”
forcing by composing the time-one flow of the autonomous equation ẋ =
V(x) with a map which provides a periodic “kick” to the solution. The
kick is defined to be the identity for α = 0 and increasing in magnitude as
α increases. More specifically, this map is defined as

H(β,α) ≡ gα ◦ hβ ,

where hβ(x) is the time-one map of the following differential equation,
given in polar coordinates:

ṙ =
r(1 − r2)

1 + r2
, θ̇ = 2πβ +

1 − r2

1 + r2
,

and

gα(x1, x2) = (1 − α)(x1 − 1, x2) + (1, 0).

Note that in this setup, β is not restricted to be positive, but is allowed
to be any real number. So our parameter space is µ = (β, α) ∈ P ≡
R×[0,∞).

The p/q resonance surfaces for this caricature map are much too dif-
ficult to compute analytically, but they can be computed numerically. We
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have computed three surfaces, for p/q = 1/4, 1/3, 1/2. All three were al-
ready illustrated in Fig. 1a, projected to the three dimensional (β, α, x2)
space. The Hopf bifurcation curve is also included, both for context and
for comparison with Fig.’s 1c and 1d. Their projection to the parameter
plane is in Fig. 1b. Further views of the individual surfaces are presented
in figures 3 – 7.

A more detailed discussion of how these surfaces relate to the dynam-
ics and bifurcations of the corresponding family of maps is contained in
previous work [P 1988, P 1990, MP 1994, MP 1995]. Here we consider only
various parametrizations of the surfaces and the effect the parametrizations
have on computing the surfaces. We will see situations in which each of
the three parametrizations fails, but that the (ρ, φ) parametrization is in
some sense the best of the three.

The organization of figures 3–5 are as follows:

• Column 1: Projection to the phase plane, (x1, x2).
• Column 2: Projection to the (x1, α, x2) space.
• Column 3: Projection to the (β, α, x2) space.
• Row 1: Full surface.
• Row 2: (r, θ) parametrization
• Row 3: (α, φ) parametrization
• Row 4: (ρ, φ) parametrization

2.2.1. The 1/4 surface. Figure 3 shows views of the 1/4 resonance
surface and the eight saddle-node curves that meet at the Hopf bifurcation
point H1/4, which we call the dynamic center of the surface. When pro-
jected to the parameter plane, the saddle-nodes become the boundary of
the 1/4 resonance region. See Fig. 1b.

For increased clarity in Fig. 3, the full 10 × 29 mesh computed using
each of the three parametrizations is not displayed. We display in row 2
only four of the ten constant r curves, equally spaced between r = 1 and
r = 0.1. The constant θ curves are connected at r = 0.

Similarly, the third row displays only four constant α curves, equally
spaced between α = 0 and α = 0.4. The constant φ curves are connected
at the dynamic center, H1/4 since the constant α circles degenerate to a
point at the α value of H1/4, which is approximately α = 0.4194396819.

The fourth row displays only four constant ρ curves, equally spaced
between ρ =

√
2 and ρ = 0.1

√
2. The constant φ curves are connected at

the dynamic center, H1/4 since the constant ρ circles degenerate to a point
at ρ = 0.

In addition, all constant θ (φ, φ, respectively) lines have been removed
from the six figures in Columns 2, 3, and rows 2, 3, 4. Saddle-node curves
have been left in all figures for reference.

In summary, all three parametrizations are valid global parametriza-
tions for this surface, but the center of the phase space parametrization
(r, θ) does not match the dynamic center, H1/4, of the surface.
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Fig. 3. The 1/4 resonance surface.
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2.2.2. The 1/3 surface. Figure 4 shows views of the 1/3 resonance
surface and the three period-three saddle-node curves which “live” on the
surface. When projected to the parameter plane, the saddle-nodes become
the boundary of the 1/3 resonance region. See Fig. 1b and an enlargement
of the top of the 1/3 resonance region in Fig. 7a.

As for the 1/4 surface, we have not displayed the full mesh that was
computed for any of rows 2, 3, or 4. We have displayed in row 2 only four
constant r curves between r = 1 and r = 0.1, in row 3 only five constant
α curves, equally spaced between α = 0 and α = 0.43, and in row 4 only
four constant ρ curves between ρ =

√
3 and ρ = 0.1

√
3.

Note that in row 3, column 1, we have not connected the constant φ
curves to the Hopf point H1/3. This is because the numerical continuation
failed for α values slightly above 0.43. This failure is discussed further
below in subsection 2.2.4, and is related to the fact that the saddle-node
curves do not meet at the Hopf point H1/3. It is also consistent with the
generic unfolding of a 1/3 resonant Hopf point.

The other two parametrizations, by projection to the phase plane and
by fµ(x) − x, are both valid global parametrizations for the 1/3 surface,
but the center of the phase space parametrization (r, θ) does not match the
dynamic center, H1/3, of the surface.

2.2.3. The 1/2 surface. Because this surface turns out to be a topo-
logical mobius strip, there is no way any of the three global parametriza-
tions we have been considering could be valid without alteration. The
mobius strip and disk are topologically inequivalent. Thus what is surpris-
ing is that the fµ(x) − x parametrization “works” rather than that the
other two parametrizations fail.

Figure 5 shows views of the 1/2 resonance surface, the two period-two
saddle-node curves which “live” on the surface, and the period-doubling
circle. From the 1/2 resonance region in Fig. 1b and the enlargement of its
top portion in Fig. 7c, we see that the boundary of the 1/2 resonance region
comprises the saddle-nodes and the “top” part of the period-doubling circle.
As for the 1/4 and 1/3 surfaces, we have not displayed the full mesh that
was computed for any of rows 2, 3, or 4. We have displayed in row 2
only three constant r curves, equally spaced between between r = 1 and
r = 0.41, in row 3 only three constant α curves: α = 0, 0.2, 0.4, and in row
4 only six constant ρ curves, equally spaced between ρ = 2 and ρ = 0.1.

The (r, θ) and (α, φ) parametrizations do not extend to the full 1/2
surface, as is suggested by the “holes” in the center of the meshes dis-
played in rows 2 and 3 of column 1. These failures are discussed further in
subsection 2.2.4 below.

The reason fµ(x)−x parametrization can be a global parametrization
for both a disk (as it was for the 1/4 and 1/3 surfaces) and a mobius strip, is
because the identification at ρ = 0 is different for the two cases. To become
a disk, all points corresponding to ρ = 0, for any φ ∈ R were identified to a



GLOBAL PARAMETRIZATION OF RESONANCE SURFACES 13

α

β

x2

x1

x2

α

(r,θ)

(α,φ)

(ρ,φ)

x1

x2

H
1/3

Fig. 4. The 1/3 resonance surface.
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Fig. 5. The 1/2 resonance surface.
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single point. The identification for the mobius strip is instead to a double
cover of a circle: (ρ, φ) = (0, φ) ∼ (0, φ + π). Even better, the circle on
which the identification is made (ρ = 0) is dynamically significant: it is the
period doubling circle. Moreover, sense can be made of the angle φ, even
at ρ = 0 by defining it as the argument of the negative one eigenvector in
the phase plane. Note that if φ is the argument of an eigenvector, then so
also is φ + π. This is exactly the identification which leaves us with the
mobius strip.

Of the Fig. 5 views, the identification at ρ = 0 is best seen in the
row 4, column 3 figure. The largest constant ρ circle is, as always for the
(β, α, x2) projection, collapsed to a vertical line segment. The next five
circles appear in this projection as figure-eight curves, the intersection at
the center of the figure-eight being an intersection in projection only. The
fifth figure eight curve (counting the line segment) has started to fold over
slightly at its center. This sixth one has folded over almost completely.
Although it appears that this smallest figure eight has three, rather than
two, loops, this is because the middle loop (labelled PD) is the period-
doubling circle. Thus, this figure eight is about to collapse onto the period
doubling circle, in the process wrapping twice around the period doubling
circle.

In order to better visualize how the constant ρ slices limit to the period-
doubling curve as ρ → 0, we have recomputed just the part of the surface
between the sixth figure eight and the period doubling circle referred to in
the previous paragraph. This corresponds to ρ ∈ [0, 0.1]. The computation
of the circle for ρ = 0 was done separately, and then added to the mesh
computed with the fµ(x)−x parametrization for ρ = 0.1, 0.2/3, 0.1/3. The
parametrization on the period doubling curve was by the argument of the
negative one eigenvector. The result is displayed in Fig. 6. This figure
corroborates our claim that the negative one eigenvalue parametrization is
the limiting parametrization of the fµ(x) − x parametrization as ρ → 0:
the constant φ rays do extend smoothly to ρ = 0 in the figure. Because we
have used a φ mesh size of 29, which is odd, it is more obvious that constant
φ curves which are π apart limit to the same point on the period doubling
circle, but from opposite sides. For example, the φ = 55

582π = 13
292π + π

ray, which would be between the φ = 26
292π and φ = 27

292π curves in Fig.
6, would limit on the same point on the period doubling circle (ρ = 0) as
does the φ = 13

292π ray.

A side benefit of understanding this identification at the period-doubling
circle is the suggestion of a computational check on whether a given 1/2
surface is orientable. This is discussed further in section 3.4 below.

2.2.4. Failure of global parametrizations. We now describe why
the three parametrizations which fail do, in fact, fail.

Constant α for the 1/3 surface. The constant α parametrization
almost succeeds for the 1/3 surface, but it will necessarily fail for any



16 BRUCE B. PECKHAM

ρ=.1/3ρ=.1 ρ=.2/3

ρ=0 (period
doubling
circle)

x2

α

β

26
29φ=  2π27

29
φ=  2π

14
29

φ=  2π 13
29

φ=  2π

Fig. 6. The 1/2 resonance surface near the period-doubling circle.
The angle φ has been extended to φ = 0 as the argument of the negative
one eigenvector.

generic period-three surface. This is because period-three resonance regions
generically extend above the Hopf bifurcation curve. This leads to the
fact that constant α cross sections change from being a single topological
circle for α values below the α value of the Hopf point H1/3, to being
three distinct topological circles above H1/3. This change is illustrated in
Figures 7a and 7b. Fig. 7a is essentially an enlargement of the top of the
1/3 resonance region of Fig. 1b, near the Hopf curve. The Hopf curve is
not shown in Fig. 7a, but the + marks H1/3, the relevant point on the
curve. The two constant α slices and H1/3 from Fig. 7a are displayed
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projected to the phase plane in Fig. 7b. The outermost constant α curve
is for α = 0.43, which was the innermost α curve in the third row of Fig.
4. The constant α slice for the transition value, the α value of H1/3, has
three petals (not shown) which connect at H1/3. Note that the (α, φ)
parametrization actually breaks down before reaching the transition value.
This is because the angle φ, of fµ(x) − x, does not vary monotonically as
x varies around a constant α circle if α is close enough to (but below) the
transition value.

Constant α for the 1/2 surface. Constant α slices of the 1/2
resonance surface are all topological circles in the full four-dimensional
phase × parameter space, except for the two α values for which the constant
α curves in the parameter plane are tangent to the period-doubling circle.
The slice corresponding to the lower tangency (between α = 0.4 and 0.43
in Fig. 7c) is a figure eight; the slice corresponding to the upper tangency
(above α = 0.5 in Fig. 7c) is a point. The circles that correspond to α values
below the lower tangency, like α = 0.4, wrap twice around the mobius strip,
while the circles which correspond to α values which are between the upper
and lower tangency values, like α = 0.43 and 0.5, are contractible to a point.
These statements are justified in the next paragraph.

Because the projection to the phase plane is not a global parametriza-
tion either, we must explain the failure of the constant α parametrization
not by looking at how the constant α circles project to the phase plane,
but instead, by looking at how the constant α circles project to the “nat-
ural” parameter space, (ρ, φ). This is done in Fig. 7d. With the right
and left edges identified as indicated by the arrows, one can see that the
α = 0.4 circle wraps twice around the mobius strip, while the α = 0.43
and 0.5 circles are contractible to points. It is also easy to visualize on Fig.
7d the two critical slices: one between α = 0.4 and 0.43 which is a figure
eight, and the other inside the α = 0.5 circle which is a single point on the
period-doubling curve, ρ = 0.

Projection to phase plane for the 1/2 surface. This is perhaps
easier to visualize that the other two failures. The projection of the surface
shown in row 1, column 1 of Fig. 5 is obviously not one-to-one: the surface
folds over itself near the center. The innermost constant r curve shown in
row 2, column 1 is near the region where the folds begin. Thus the surface
continuation can be expected to fail for lower values of r.

2.3. Computation of the surfaces. All numerical continuations
performed for this paper were done using the author’s continuation soft-
ware package, To Be Continued [P 1987–present]. Most computations of
points on the surfaces for the generic example just described above were
done using a globally convergent version of Newton’s method in four dimen-
sions. The four variables were the two phase variables (x1, x2), and the two
parameter variables (β, α). There were four equations whose simultaneous
solution Newton’s method sought. Two were determined by the periodic
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Fig. 7. Failure of the constant α parmetrization. a) 1/3 surface,
parameter plane projection: (β, α), b) 1/3 surface, phase plane projec-
tion: (x1, x2), c) 1/2 surface, parameter plane projection: (β, α), d) 1/2
surface, projection to (φ, ρ) space. Arrows indicate the identification
of the right and left edges, (π/2, ρ) ∼ (−π/2, ρ), to form a mobius strip.
The φ axis is the period-doubling circle.

point condition f q
µ(x) − x = 0, and the other two were determined by the

specific global surface parametrization used (for example, specifying the
(r, θ) values for the phase plane parametrization). An alternative to the
fq

µ(x)−x = 0 condition was sometimes used as well. This involved keeping
track of the whole periodic orbit instead of just one point on it. It therefore
used a higher dimensional version of Newton’s method.

The computation using the fµ(x) − x parametrization worked auto-
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matically in our generic example for most of the resonance surfaces having
periods less than 10. Manual adjustments were sometimes necessary at
α = 0 since the surfaces are more degenerate there (constant α cross sec-
tions that project to a line segment in the parameter plane for α > 0
degenerate to a point at α = 0.)

3. Remarks and Conclusions.

3.1. Implications for other PFO maps. We have compared global
parametrizations of three resonance surfaces for a specific caricature of
maps obtained from a periodically forced planar oscillator. It is clear espe-
cially for the period-two surface, that using the fµ(x)−x parametrization is
a great advantage. A natural question is whether these same comparisons
would hold for other periodically forced oscillator resonance surfaces.

Local theory implies that constant α cross sections will always work
for small α on resonance surfaces of all periods greater than or equal to
2; fµ(x) − x will always work near the resonant Hopf bifurcation points,
which exist on the surfaces of period 3 or higher. Projection to the phase
plane will also work near the resonant Hopf points with the condition that
the fixed point not vary “too much” with the system parameters. We
believe fµ(x) − x will usually work near the period-doubling circle. The
other parametrizations have no chance of working near the period-doubling
circle.

The question then becomes whether the constant-α parametrization
can be extended up to higher values of α to obtain a global parametrization,
or whether the other two can be extended down to α = 0 to obtain a global
parametrization. In general, the fµ(x) − x parametrization appears to be
globally extendible in the greatest number of cases. It requires only that the
“size” of the periodic orbit shrinks as α is increased from zero. The phase
plane parametrization appears to be extendible only if the “size” of the
periodic orbit shrinks as α is increased and the “center of the periodic orbit”
doesn’t drift too much. The phase plane parametrization, of course, is never
useful near the period-doubling circle. The constant-α parametrization
appears to work for period-5 and above (and period-4 when it is like period-
5) but never for period 3 and never for q = 2.

In gereral, the conclusion is that the fµ(x)− x parametrization is the
most likely to work in most scenarios.

3.2. The superiority of fµ(x)−x: two additional scenarios. We
have presented a case above for the superiority of the fµ(x)−x parametriza-
tion over the constant α and projection to phase plane parmetrizations.
We consider the three resonance surfaces examined for our generic exam-
ple to be of the simplest form possible for generic maps generated by pe-
riodically forced oscillators. In this subsection, we further support our
claim by presenting two further complications, one which causes a con-
stant α parametrization to fail, and the other which causes a projection to
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phase plane parametrization to fail. In both cases, however, the fµ(x)− x

parametrization remains intact.
The first case is that of a resonance surface for which the Hopf bi-

furcation is subcritical instead of supercritical. Without describing all the
details, the significant result for us is that, near the Hopf bifurcation curve
where the resonance region terminates, the Arnold tongue opens up rather
than down. The tongue then “turns around” and heads back down toward
α = 0. It is clear that the topology of constant α cross sections changes
when α is increased through the α value of the Hopf point Hp/q. The
constant α parametrization thus fails. The projection to phase plane and
fµ(x) − x parametrizations, however, remain intact.

The second case involves adding an α dependent translation to a family
of maps for which the phase plane and fµ(x) − x parametrizations both
work. Phase plane parametrization will then fail for the new family, but the
fµ(x)−x parametrization will still work. For example, if we took the maps
from our generic example, and translated to the right as α increased, and
we translated so much that the Hopf point H1/3 was completely outside the
unit circle, then there would be no way that the 1/3 surface would project
in a one-to-one fashion to the phase plane. The constant α and fµ(x) − x

parametrizations, however, would remain intact. In fact, the fµ(x) − x

parametrization is unaffected by translations. Its ρ = 0 points are always
the (dynamically significant) fixed points.

3.3. Failure of all three parametrizations. It is possible to con-
struct examples where none of the three parametrizations compared in
this paper extend to a global parametrization of a given resonance surface.
For example, resonance surfaces can be constructed which have topological
handles [P, in preparation].

3.4. Determining the nonorientability of the period-2 surface.

In the process of computing the period-two surface using the fµ(x) − x

parametrization, we noted that the constant ρ circles limit on the period-
doubling circle as ρ = |fµ(x) − x| approaches zero. In addition, the ρ > 0
circles wrap around the period doubling circle twice. It turns out that if one
fixes φ = φ0 and lets ρ approach zero, the limiting point z0 on the resonance
surface is a period-doubling point, with a negative one eigenvalue. The
corresponding eigenvector has angle φ in the phase plane. Note that the
eigenvector could also be represented by the angle φ0 + π. In fact, if we
fix φ = φ0 + π and let ρ approach zero, then the limiting point on the
resonance surface is the same point z0.

From the unfoldings of period-doubling points, it is clear that the
surface of period-two points near a period-doubling point is tangent to the
negative one eigenvector. The period-doubling curve itself also lies in the
resonance surface Γp/2, and this curve is transverse to all the corresponding
negative one eigenvectors, since the eigenvectors are confined to the phase
plane. Therefore the two vectors: one in the direction tangent to the
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period-doubling curve (oriented, say, by requiring that the projection to
the parameter plane is traversed counterclockwise) and the other a negative
one eigenvector (with either one of the two of φ0 or φ0 +π chosen) form an
oriented frame for the surface of period-two points. Let us keep track of
this frame as we travel once around the period doubling circle. When we
reach the starting point, the vector parallel to the period-doubling circle
must be back to where it started. The other vector, however, could either
correspond to the same direction (φ0 +2kπ) or the opposite direction (φ0 +
π+2kπ). In the former case, the frame has kept its original orientation. In
the latter case, the frame has reversed its orientation, indicating that the
period-two surface near the period-doubling circle is nonorientable. That
is, Γp/2 is nonorientable.

This continuation once around a period-doubling circle to see whether
orientation is preserved or reversed is easily performed by numerical con-
tinuation. Thus we have a quick, computable check on whether a given
period-two surface near a period-two circle is nonorientable. Recall that,
before adding the period-doubling points to Γp/2 via the closure operation,
Γp/2 is orientable. In the case that the period-two surface contains a finite
number of topologically circular period-doubling curves (all examples we
know of have a single period-doubling curve), we can perform this check on
each period-doubling circle. If any one of them indicates nonorientability,
the whole surface is nonorientable. If, near each period-doubling circle, the
surface is orientable, then the whole surface is orientable.
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Figures 1 and 3–6 were created from data generated by To Be Con-

tinued ... [P 1987–present] and displayed by Geomview [PLM 1993].
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